12

Акустооптическая дифракция с учетом влияния граней светозвукопровода

© С.Н. Антонов,¹ А.В. Вайнер,¹ В.В. Проклов,¹ Ю.Г. Резвов²

¹ Институт радиотехники и электроники им. В.А. Котельникова РАН,

141190 Фразино, Московская область, Россия

² Новомосковский институт Российского химико-технологического университета им. Д.М. Менделеева,

301665 Новомосковск, Тульская область, Россия

email: v-nr@ya.ru

(Поступило в Редакцию 5 июля 2011 г.)

Теоретически и экспериментально исследовано влияние размеров светозвукопровода в плоскости, ортогональной плоскости акустооптической дифракции, на структуру акустического поля, и, как следствие, на акустооптическую дифракцию. Предложен метод приближенного расчета акустического поля с учетом отражения звукового пучка от граней кристалла. На этой основе проведен анализ в широком интервале отношения высоты преобразователя к высоте кристалла. Предсказано появление области концентрации звуковой мощности как в случае параллельных граней, так и в случае малой клиновидности. Ряд положений иллюстрирован экспериментально при использовании в качестве среды взаимодействия парателлурита. Полученные результаты могут быть использованы при конструировании акустооптических приборов.

Введение

При описании акустооптического (AO) взаимодействия обычно используются плосковолновое приближение и модель неискаженного звукового столба. Однако в реальности периодическая структура акустического поля искажена вследствие дифракционных эффектов, что следует учитывать при конструировании устройств [1–5]. Эти эффекты растут при уменьшении размеров преобразователя и частоты звуков, увеличении длины световой волны и могут многократно усиливаться акустической анизотропией среды.

В частности, широко используемый в АО-устройствах парателлурит (TeO₂) проявляет сильную акустическую анизотропию. Угол расходимости потока энергии может в десятки раз превышать дифракционную расходимость. Вследствие этого на определенном расстоянии от преобразователя существенная часть потока энергии акустического поля отражается от оптических граней и структура поля усложняется. Это явление фиксируется экспериментально и оказывает влияние на результат АОдифракции. В настоящее время нет простой методики учета этого фактора.

Настоящая работа ставит перед собой две цели. Первая — создание простой приближенной методики учета влияния акустического отражения при параллельных и сходящихся гранях. Вторая — определение конфигурации светозвукопровода, при которой возможно использование особенностей акустического поля для улучшения характеристик АО-прибора.

1. Теоретический анализ

Рассматриваемая геометрия взаимодейстивя и основные обозначения представлены на рис. 1. Прямоугольный пьезопреобразователь АО-ячейки со сторонами l_y (размер в плоскости, ортогональной плоскости АО-дифракции, — "высота") и l_z (в плоскости АОдифракции — "ширина") занимает на плоскости x = 0область $-l_{y,z}/2 \le y, z \le l_{y,z}/2$. Пусть на преобразователь подается монохроматический сигнал, и частицы среды в плоскости x = 0 совершают колебания с амплитудой A, начальной фазой φ_s и циклической частотой ω_B , соответствующей условию брэгтовского синхронизма в плосковолновом приближении АО-дифракции. В результате брэгговской АО-дифракции из падающего светового пучка (*i*) образуются проходящий (*t*) и дифрагированный (*d*) порядки.

С учетом снося звука в плоскости АО-дифракции *xz* и двумерного дифракционного искажения поле возбуждаемого акустического пучка имеет вид

$$\begin{aligned} \mathbf{x}(x, y, z, t) &= \operatorname{Re}\left\{AH_{y}(x, y)H_{z}(x, z - x\operatorname{tg}\gamma) \right. \\ &\times \exp j\left(\frac{\omega_{B}}{v_{s}}x - \omega_{B}t - \varphi_{s}\right)\right\}, \end{aligned}$$

где v_s — фазовая скорость центральной акустической волны, γ — угол между вектором Пойнтинга **G** и нормалью к преобразователю. В параболическом приближении теории дифракции комплексные профили $H_{y,z}$ имеют одинаковую структуру:

$$H_{y}(x, y) = H_{1}(X_{y}, y/l_{y}), \quad H_{z}(x, y) = H_{1}(X_{z}, z/l_{z}),$$
$$X_{y,z} = 2 \frac{v_{x}}{\omega_{B}} \frac{B_{y,z}}{l_{y,z}^{2}} x,$$
$$H_{1}(a, b) = \frac{1}{2} \left(\text{erf}\left(\frac{b+1/2}{\sqrt{ja}}\right) - \text{erf}\left(\frac{b-1/2}{\sqrt{ja}}\right) \right). \quad (1)$$

(1)

Здесь *B_{y,z}* — безразмерные коэффициенты квадратичной анизотропии, характеризующей кривизну поверхности

фазовой скорости звука (в изотропной среде $B_{y,z} = 1$). Выражение (1) описывает поле прямоугольного преобразователя в отсутствие ограничивающих поверхностей.

Для учета отражений используем следующие обстоятельства. Звуковое поле имеет узкий пространственный спектр, так что основная доля парциальных плоских волн распространяется под малыми углами к отражающим поверхностям. При таком почти скользящем падении направления падающей и отраженной волн практически симметричны относительно грани. Так как при отражении направление отраженных волн меняется мало, то законно использовать то же параболическое приближение дифракции, что и при выводе (1). Будем также использовать для всех парциальных волн одинаковый комплексный коэффициент отражения r. С учетом сказанного очевидно, что учет однократных отражений эквивалентен появлению двух "виртуальных" преобразователей с амплитудой rA, расположенных зеркально относительно отражающих граней (рис. 2). Учет последующих переотражений приведет к увеличению числа "виртуальных" преобразователей. Каждая следую-

Рис. 1. Геометрия взаимодействия: плоскость АО-дифракции (*a*), ортогональная плоскость (*b*).

Рис. 2. Модель виртуальных преобразователей: *1* — поле неограниченного преобразователя, *2*, *3* — поля "виртуальных" преобразователей, *4* — суммарное поле.

щая пара "виртуальных" преобразователей расположена дальше от реального акустического поля, поэтому их влияние начинает сказываться на большем расстоянии от преобразователя — там, где неограниченный звуковой пучок расширился бы до расстояния между ними. Поэтому ограничимся простейшим случаем и рассмотрим поле внутри кристалла как суперпозицию полей, образованных тремя преобразователями.

Рис. З иллюстрирует эволюцию распределения амплитуды акустического поля при сближении размеров плоскопараллельного кристалла и преобразователя по оси у. Расчет проделан при наибольшем влиянии отражений, когда поперечные акустические волны поляризованы вдоль оси y, а свободная поверхность кристалла граничит с воздухом при этом $r \approx 1$. Такая ситуация часто встречается на практике.

Отметим следующие особенности. При достаточно удаленных гранях (рис. 3, a), когда отражениями можно пренебречь, акустическое поле имеет область повышенной амплитуды колебаний. Если амплитуду у поверхности преобразователя принять за единицу, то в области концентрации амплитуда достигает 1.34. Этот факт хорошо известен, причем АО-методы дают четкое подтверждение этой особенности. При сближении граней (рис. 3, b) влияние отражений нарастает, структура поля деформируется, при этом амплитуда колебаний в отмеченной области концентрации увеличивается. При оптимальной в этом смысле геометрии кристалла, когда высота преобразователя составляет ~ 75% высоты ячейки, амплитуда в области концентрации достигает значения ~ 1.68 (рис. 3, c). При дальнейшем сближении

Рис. 3. Эволюция амплитуды звукового поля при уменьшении высоты кристалла относительно преобразователя. $l_y/L_y = 0$ (*a*), 0.63 (*b*), 0.77 (*c*), 0.98 (*d*). *1* — положение преобразователя. Контуры проведены по уровню 1.2 (*2*) и 1.5 (*3*).

неравномерность поля внутри ячейки в целом уменьшается. Если преобразователь занимает всю высоту ячейки, получается наибольшая равномерность (рис. 3, d). Это объясняется следующим образом. В данном случае наблюдаем центральную часть поля, созданного увеличением в 3 раза преобразователем. При этом область существенной неравномерности удаляется от преобразователя вдоль оси X в 9 раз.

Рис. 4 показывает, как в данных условиях меняется максимальное значение амплитуды при сближении размеров кристалла и преобразователя. Штрихами отмечен уровень 1.34, соответствующий бесконечно удаленным стенкам. Существенное превышение этого уровня наблюдается почти во всем рассматриваемом диапазоне, максимально эффект выражен при $l_y/L_y = 0.70-0.85$. Данную особенность можно использовать для энономичной модуляции тонких (относительно высоты преобразователя) световых пучков.

Можно дополнительно усилить концентрацию амплитуды, используя малую клиновидность кристалла (рис. 5). Как и в случае плоскопараллельных граней, увеличение амплитуды происходит за счет интерференционных эффектов, а малый наклон обеспечивает увеличение амплитуды звука "виртуальных" преобразователей в области концентрации поля.

Расчет показывает, что наибольший эффект наблюдается, если преобразователь занимает всю или почти всю высоту ячейки и при этом верхняя и нижняя грани

Рис. 4. Изменение максимальной амплитуды звука при увеличении звуковой апертуры.

Рис. 6. Амплитуда поля при малом оптимальном схождении граней.

имеют малый наклон, определяемый соотношением

$$k_s l_v \sin 2\beta \approx 1.7 \pm 0.2.$$

Здесь $k_s = \omega_B / v_s = 2\pi / \Lambda$ — волновое число звуковой волны (Λ — длина звуковой волны). С учетом малости угла можно записать

$$\beta \cong (0.12 - 0.15) \frac{\Lambda}{l_y}.$$
 (2)

В такой оптимальной конфигурации максимальная амплитуда возрастает до 1.80. Картину поля при этом иллюстрирует рис. 6, на котором контуры проведены по тем же уровням 1.2 и 1.5. Опять выделяется небольшая область высокой амплитуды, что можно использовать на практике.

Физический смысл соотношения (2) заключается в том, что при таком наклоне на высоте ячейки расположено порядка одной интерференционной полосы. При дальнейшем увеличении наклона граней возникнет характерная картина чередующихся полос.

Эксперимент

Побудительным мотивом для настоящей работы послужил анализ экспериментального исследования звукового поля в режиме брэгговского АО-взаимодействия [5]. Хотя наблюдалось хорошее количественное согласие с расчетными данными, некоторые детали явно указывали на влияние переотражений. На рис. 7 наглядно представлены расчетная и экспериментальная картины эффективности дифракции *I* при небольшом уровне АО-связи, когда режим взаимодействия визуализирует акустическое поле. Эффективность дифракции не превосходила 30%. Высота преобразователя была равна 5 mm, длина волны звука составляла $\Lambda = 31.5 \,\mu$ m.

Отметим эти детали. Сравнение рис. 7, *а* и *с* показывает, что эффективность в области концентрации звуковой мощности оказалась выше рассчитанной без

Рис. 7. Сравнение расчетной (*a* — без учета, *b* — с учетом переохлаждений) и экспериментальной (*c*) картин эффективности АО-дифракции.

учета влияния граней. Кроме того, на экспериментальных данных заметно возникновение полос, что явно указывает на это влияние. Картина, рассчитанная в рассматриваемой модели, точнее передает величину наибольшей эффективности. Особенно показательна форма области наибольшей эффективности — яркий "ромб" в расчетной модели в районе y = 0.5 mm, x = 5 mm хорошо отражает экспериментальные данные.

В целом экспериментальная картина имеет черты обеих расчетных моделей. Возможные несоответствия можно объяснить рядом факторов. В частности, часть нижней грани ячейки была прикреплена к подставке, что влияло на условия отражения. Также могли влиять возможная непараллельность граней, не совсем симметричное расположение преобразователя и пр.

Заключение

По результатам проделанной работы можно сделать следующие выводы.

1. Переотражения звука от граней АО-ячейки могут существенно искажать акустическое поле, что влияет на результат АО-дифракции. При отношении высоты преобразователя к высоте плоскопараллельного кристалла $l_y/L_y = 0.70-0.85$ и коэффициенте отражения r = 1 происходит существенное увеличение амплитуды в области дифракционной концентрации звуковой мощности. Это можно использовать для экономичной модуляции тонких (относительно высоты преобразователя) световых пучков. При дальнейшем сближении размеров l_y и L_y акустическое поле становится более однородным.

2. Дополнительно увеличить амплитуду в указанной области можно за счет малой симметричной клиновидности кристалла. В оптимальном случае преобразователь занимает по высоте почти весь кристалл, а малый угол между нормалью к преобразователю и каждой из двух граней определяется диапазоном $\beta \cong (0.12-0.15)(\Lambda/l_y)$, где Λ — длина звуковой волны.

3. Влияние граней обязательно следует оценивать при использовании парателлурита, так как в этом случае обычно совпадают несколько факторов, усиливающих это влияние: малая скорость звука, большой коэффициент квадратичной анизотропии, близкий к единице коэффициент отражения акустических волн (обычно поперечных, поляризованных ортогонально плоскости АОдифракции).

4. Результаты ранее проведенных экспериментальных исследований влияния пространственной структуры акустического поля на АО-взаимодействие качественно подтверждают ряд выдвинутых положений.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 10-02-00029-а) и Министерства образования и науки России (государственный контракт 14.740.11.0077).

Список литературы

- Maloney W.T., Meltz G., Gavel R.L. // IEEE Trans. Son. Ultrason. 1968. V. Su-15. N 3. P. 167–172.
- [2] Хаткевич А.Г. // Акустич. журн. 1978. Т. 24. № 1. С. 108– 115.
- [3] Григорьев М.А., Навроцкая Ю.Н., Прохоров В.В., Петров В.В., Толстиков А.В. // Опт. и спектр. 1998. Т. 84. № 2. С. 307–311.
- [4] Магдич Л.Н., Писаревский Ю.В., Семеновский Н.Н., Сильвестрова О.Ю. // Радиотехника и электроника. 2008. Т. 53. № 12. С. 1528–1532.
- [5] Антонов С.Н., Вайнер А.В., Проклов В.В., Резвов Ю.Г. // ЖТФ. 2010. Т. 80. Вып. 3. С. 97–106.