03;04

Безэлектродный микроволновый источник ультрафиолетового излучения

© Э.М. Бархударов,¹ Ю.Н. Козлов,² И.А. Коссый,¹ <u>Н.И. Малых</u>,¹ М.А. Мисакян,¹ И.М. Тактакишвили,¹ А.А. Хомиченко³

¹ Институт общей физики им. А.М. Прохорова РАН,

119991, Москва, Россия

² Институт химической физики им. Н.Н. Семенова РАН,

119991, Москва, Россия

³ Московский государственный институт радиотехники, электроники и автоматики (технический университет) МИРЭА, 119454, Москва, Россия

e-mail: barkhudarov@yandex.ru, andrey.homichenko@gmail.com

(Поступило в Редакцию 15 ноября 2011 г.)

Приведены результаты исследований параметров безэлектродного микроволнового разряда низкого давления в Ar с парами Hg, а также представлена конструкция источника УФ-излучения для обеззараживания воды и его основные параметры. В качестве источника CBЧ-излучения использован магнетрон от бытовой CBЧ-печи (f = 2.45 GHz; $N \approx 1$ kW). Максимальная мощность излучения УФ на длине волны $\lambda = 254$ nm составляла 120–130 W.

Известно, что практически все технологии создания источников УФ-излучения с использованием разрядов низкого давления в инертных газах, в частности в Ar с парами Hg, основаны на использовании электродных ламп. Одной из причин выбора Ar с парами Hg является возможность эффективного использования резонансных линий ртути $\lambda_1 = 185$ nm и $\lambda_2 = 254$ nm, для одновременной с УФ генерации O₃ и воздействия на микробиологические загрязнения воды, поверхностей, газов и др.

В последнее время обращено внимание на возможность использования безэлектродных ламп, разряд в которых создается микроволновым излучением [1-4]. Принцип создания разряда основан на трансформации СВЧ-излучения в поверхностную волну на границе плазма-диэлектрик [5,6]. Следует также обратить внимание на возможность реализации при низких давлениях ($P \leq 0.1 \, \text{Torr}$) "резонансной" формы микроволнового разряда, как на один из эффективных способов трансформации микроволновой энергии в биологически активный УФ [7]. Микроволновые безэлектродные лампы обладают целым рядом преимуществ по сравнению с электродными: отсутствие загрязнения стенок ламп, в результате разрушения электродов; практически полное отсутствие ограничений на мощность ламп и на их форму; меньший вес и габариты источников УФ, созданных на основе безэлектродных ламп; дешевизна СВЧисточников излучения, поскольку в этом качестве могут быть использованы источники бытовых СВЧ-печей.

В настоящей работе приведены результаты исследований параметров микроволнового разряда низкого давления в Ar с парами Hg, а также представлена конструкция источника УФ-излучения для обеззараживания воды и его основные параметры. В качестве источника СВЧ-излучения используется магнетрон от стандартных бытовых СВЧ-печей. Путем разделения питания катодной и анодной цепей магнетрона удалось регулировать СВЧ-мощность в пределах 100–600 W. В работе была использована следующая диагностика: метод калориметрии — регистрации СВЧ-мощности; Φ ЭУ-142 (200–320 nm) — временной характер УФ-излучения; спектрограф S2000 (Ocean Optics) — обзорный спектр излучения (200–850 nm); дипольная антенна — временной характер СВЧ-излучения; химический актинометр на основе K₃Fe(C₂O₄)₃ (200–400 nm) и радиометр UVX-25, чувствительный в области 254 nm — абсолютное измерение мощности УФ-излучения.

Схематически конструкция установки для очистки воды на основе микроволнового источника УФ-излучения приведена на рис. 1. В случае, изображенном на рис. 1, a, используются кварцевые цилиндрические лампы длиной $l = 70 \,\mathrm{cm}$ и диаметром $d = 2.5 \,\mathrm{cm}$ в количестве 4-6 штук. Лампы симметрично располагаются внутри коаксиального волновода. В случае (рис. 1, b) используется тороидальная кварцевая лампа (длиной $l = 70 \, \mathrm{cm}$, с внешним диаметром $d_1 = 7 \,\mathrm{cm}$, внутренним диаметром $d_2 = 2.5 \,\mathrm{cm}$). Внутренний электрод коаксиального волновода 1 изготовлен из медной трубки диаметром 6-8 mm, а внешний диаметр 8-10 cm 3 из металлической сетки, практически непрозрачной для СВЧизлучения. Лампы изготавливались из кварца различных марок — прозрачные и непрозрачные для излучения на длине волны $\lambda = 185 \, \text{nm}$. Первый случай используется для одновременной генерации $\lambda = 254 \, \mathrm{nm}$ и озона. Лампы заполнялись Ar с парами Hg. Давление аргона менялось в пределах 2-2 · 10⁻² Тогг. Коаксиальный волновод помещался в тороидальную емкость для воды 5, внутренняя стенка которой 4 представляет собой кварцевую трубу. Вода, предназначенная для микробиологической очистки, с помощью патрубков 6 прокачивается через емкость 5. При удалении емкости 5 источник УФ можно

Рис. 1. Микроволновый источник УФ-излучения для обработки жидкостей на основе цилиндрических (a) и тороидальной (b) безэлектродных ламп: 1 — внутренний электрод коаксиального волновода, 2 — безэлектродная УФ-лампа, 3 — внешний электрод коаксиальной линии, 4 — кварцевая трубка, 5 — емкость для обрабатываемых жидкостей, 6 — патрубки для прокачки жидкостей, 7 — объем, занятый жидкостью, 8 — отрезок прямоугольного волновода, 9 — петля связи, 10 — СВЧ-генератор (магнетрон), 11 — торцевые фланцы, 12 — вентилятор.

использовать для обработки поверхностей, помещений и др.

Схема эксперимента, позволяющая исследовать характеристики источника УФ-излучения, приведена на рис. 2. Отметим, что для определения абсолютного значения интенсивности УФ-излучения методом химической актинометрии использовалась емкость 5.

Интегральная фотография свечения разряда указывает на наличие модуляции интенсивности свечения с характерным пространственным периодом 6 сm, что указывает на образование стоячей поверхностной волны с частотой f = 2.45 GHz ($\lambda = 12$ cm) [2,3].

Временной характер СВЧ- и УФ-излучений демонстрируют осциллограммы 2 и 3 соответственно (рис. 3). Время генерации 8 ms, пауза — 12 ms. В спектре излучения доминирует линия ртути $\lambda = 254$ nm, линия Ar практически отсутствует. Более 80% УФ-излучения сосредоточено в линии $\lambda = 254$ nm. Температурные измерения показали, что максимальная интенсивность УФ-излучения соответствует интервалу температур 40–50°С.

Для определения концентрации электронов использовался метод зондирования плазмы ($\lambda = 8$ и 2.5 mm) и интерферометрии ($\lambda = 2.5$ mm) [8]. В условиях эксперимента соответствующие этим длинам волн частоты значительно превосходили частоту столкновения электронов с атомами Ar и Hg. Эксперименты проводи-

лись при давлении аргона в лампах $P_{\rm Ar} = 2$, $8 \cdot 10^{-2}$ и $2 \cdot 10^{-2}$ Torr. Из полученных результатов следует, что во всех трех случаях излучение на длине волны $\lambda = 8$ mm полностью запирается (осциллограмма *I* на рис. 3), а в случае $\lambda = 2.5$ mm полностью проходит через плазму разряда. Отсюда можно сделать заклю-

Рис. 2. Схемы экспериментов: *1* — спектрограф, *2* — внешний электрод, *3* — УФ-лампы, *4* — внутренний электрод, *5* — дипольная СВЧ-антенна, *6* — ФЭУ-142, *7* — осциллограф, *8* — радиометр UVX-25, *9* — датчик радиометра, *10* — диагностический СВЧ-тракт, *11* — генератор диагностического излучения, *12* — диэлектрическая антенна, *13* — рупор, *14* — аттенюатор.

Рис. 3. Осциллограмма сигналов: *1* — сигнал прошедшего через плазменный столб зондирующего излучения 8 mm; *2* — сигнал с дипольной СВЧ-антенны; *3* — сигнал с ФЭУ-142.

$I_{\rm anod}, {\rm mA}$	N_{UHF},\mathbf{W}	N_{el}, \mathbf{W}	N_{UV}, \mathbf{W}	N_{UHF}/N_{el}	N_{UV}/N_{UHF}	N_{UV}/N_{el}
40	100	360	54	0.28	0.54	0.15
60	150	440	67	0.34	0.45	0.15
80	200	590	81	0.34	0.40	0.14
100	250	616	90	0.41	0.36	0.15
120	325	760	106	0.43	0.32	0.14
140	375	820	110	0.46	0.29	0.13
160	438	974	115	0.45	0.26	0.12
180	500	1086	119	0.46	0.24	0.11
200	595	1200	120	0.50	0.20	0.10

Результаты экспериментов

чение, что плотность плазмы удовлетворяет неравенству: $n_1 = 1.7 \cdot 10^{13} \le n_e \le n_2 = 1.8 \cdot 10^{14} \text{ cm}^{-3}$, где n_1 и n_2 — критические плотности концентрации электронов для $\lambda = 8$ и 2.5 mm соответственно. Таким образом, плотность плазмы намного превышает критическую плотность электронов $n_e = 7.3 \cdot 10^{10} \text{ cm}^{-3}$, соответствующую частоте излучения магнетрона. Результаты, полученные методом интерферометрии ($\lambda = 2.5 \text{ mm}$) при давлении $P_{\text{Ar}} = 2 \cdot 10^{-2}$ Torr, совпадают с приведенным выше: $n_e \approx 5 \cdot 10^{13} \text{ cm}^{-3}$.

При работе с лампами, прозрачными для $\lambda_1 = 185$ nm, была определена скорость наработки озона. Взаимодействуя с кислородом, излучение с $\lambda_1 = 185$ nm генерирует O₃:

 $O_2 + h\nu = O + O,$

$$\mathbf{O} + \mathbf{O}_2 + M = \mathbf{O}_3 + M.$$

В свою очередь, излучение $\lambda_2 = 254$ nm эффективно поглощается озоном. Сечение поглощения $\sigma = 1.1 \cdot 10^{-17}$ cm². Пользуясь этим, была определена скорость наработки O₃ : ≥ 1 mg/s.

В таблице приведены данные экспериментов, выполненные по схеме (рис. 1, a) при давлении $P_{\rm Ar} =$ $= 2 \cdot 10^{-2}$ Torr. В таблице использованы следующие обозначения: *I_a* — анодный ток магнетрона; *N_{UHF}* — мощность СВЧ-излучения; N_{el} — потребляемая от сети электрическая мощность; N_{UV} — мощность УФ-излучения на длине волны $\lambda = 254$ nm. Как отмечалось выше, разделение катодной и анодной цепей источника питания магнетрона позволило регулировать мощность СВЧизлучения в пределах 100-600 W, при этом потребляемая мощность от сети менялась в пределах 360-1200 W, а мощность УФ-излучения в диапазоне 54-120 W. Из приведенных данных следует, что величина N_{UHF}/N_{el} с уменьшением Nel падает от 0.5 до 0.28, в то же время эффективность преобразования СВЧ-излучения в энергию УФ (N_{UV}/N_{UHF}) растет при снижении N_{el} от 0.2 до 0.54. В случае использования тороидальной лампы (рис. 1, b) получена примерно такая же мощность УФизлучения $N_{UV} = 130$ W.

Приведенные данные позволяют сделать заключение о возможности повышения эффективности СВЧисточника УФ-излучения за счет увеличения конверсии

Журнал технической физики, 2012, том 82, вып. 6

электрической энергии в СВЧ-излучение и конверсии последней в энергию УФ-излучения. Необходимы дальнейшие исследования. Отметим, что полученная на данном этапе эффективность СВЧ-источника УФ-излучения находится на уровне стандартных систем, использующих электродные лампы в интервале мощностей 50–100 W. Представленный СВЧ-источник УФ-излучения может быть использован для широкого круга экологических и технических задач.

Список литературы

- Al-Shamma'a A.I., Pandithas I., Lucas J. // J. Phys. D: Appl. Phys. 2001. Vol. 34. P. 2775.
- [2] Barkhudarov E.M., Misakyan M.A., Kossyi I.A., Kiselev V.A., Kozlov Y.N., Taktakishvili I.M., Tulupov A.V. Microwave discharges. Proceedings / Ed. by Yu.A. Lebedev. Moscow: Yanus-K, 2006. P. 279–284.
- [3] Barkhudarov E.M., Kossyi I.A., Malykh N.I., Misakyan M.A., Taktakishvili I.M. Proc. of the 28th ICPIG. Prague, Czech Republic, 2007. P. 1262–1264.
- [4] Коссый И.А., Бархударов Э.М., Мисакян М.А. WO 2007/048417 A1.
- [5] Moisan M., Margot J., Zakrewski L., Popov A. High Density Plasma Sources. New Jersey: Noyes Publ., 1995. P. 191.
- [6] Rauchle E. // J. Phys. IV. France. 1998. Vol. 8. Pr7-99–Pr7-108.
- [7] Бархударов Э.М., Денисова Н.В., Коссый И.А., Мисакян М.А. // Физика плазмы. 2009. Т. 35. № 7. С. 611–618.
- [8] Голант В.Е. Сверхвысокочастотные методы исследования плазмы. М.: Наука, 1968. 328 с.