04;09;12

Диагностика параметров плазмы атмосферного давления методом ближнепольного СВЧ-зондирования

© Д.В. Янин, А.В. Костров, А.И. Смирнов, М.Е. Гущин, С.В. Коробков, А.В. Стриковский, В.И. Гундорин, В.В. Назаров, М.В. Стародубцев

Институт прикладной физики РАН, 603950 Нижний Новгород, Россия e-mail: dyanin@appl.sci-nnov.ru

(Поступило в Редакцию 21 апреля 2011 г.)

Развит метод резонансного ближнепольного СВЧ-зондирования применительно к бесконтактной диагностике плазмы высокого давления. Продемонстрирована его эффективность для измерения параметров плазмы высокочастотного емкостного разряда в аргоне при атмосферном давлении. Результаты измерений сопоставлены с данными, полученными независимым способом по "отсечке" СВЧ-излучения, и теоретическими оценками.

Введение

Для исследования электродинамических характеристик веществ в СВЧ-диапазоне, в том числе и плазмы, успешно используется метод резонансного ближнепольного зондирования [1-6]. В зависимости от рабочей частоты в качестве измерительных датчиков могут использоваться либо колебательные контуры с сосредоточенными параметрами, либо распределенные резонансные системы. При внесении образца в область, занятую квазистатическим полем датчика, изменяются его резонансная частота и добротность. По этим изменениям можно судить об электрических и магнитных свойствах изучаемого объекта. Простейшим распределенным резонатором в СВЧ-диапазоне является отрезок двухпроводной линии. Изготовленная на его основе резонансная система (СВЧ-зонд) успешно применяется для диагностики низкотемпературной плазмы [4-6]. СВЧ-зонд, помещенный в плазму, позволяет определять локальные значения электронной плотности. В сравнении с традиционно используемыми в плазменных экспериментах ленгмюровскими зондами показания СВЧзонда в линейном режиме определяются только плотностью плазмы и не зависят от электронной температуры [4]. В [5] исследовались нелинейные эффекты, связанные со стрикционным воздействием СВЧ-полей на плазму вблизи проводов резонатора, и, в частности, было показано, что резонансный зонд на отрезке двухпроводной линии в нелинейном режиме можно применять для измерений электронной температуры. В [6] рассматривались возможности резонансного СВЧзонда применительно к диагностике нестационарных процессов в плазме, связанных с малыми возмущениями концентрации. В этой работе была показана рекордная чувствительность измерительной системы, позволяющей регистрировать в плазме с концентрацией электронов порядка 10¹² ст⁻³ относительные возмущения плотности на уровне $10^{-5} - 10^{-6}$.

Использование СВЧ-зонда для диагностики разрядов в газе высокого давления сопряжено со следующими трудностями. Во-первых, плазма таких разрядов характеризуется высокими значениями частоты столкновений электронов с нейтральными частицами, что приводит к увеличению потерь, вносимых в резонатор, и сильному уменьшению добротности системы. Во-вторых, зонд, помещенный в разряд, зажигаемый при высоком давлении, вносит сильные возмущения в плазму, включая локальное охлаждение заряженных частиц и нейтрального газа, а также искажение пространственной структуры разряда. В-третьих, для плазмы высокого (атмосферного) давления характерны очень высокие тепловые нагрузки на зонд, приводящие к нестабильности электродинамических параметров резонансной системы и снижению ее долговечности.

Для преодоления указанных трудностей в настоящей работе внесены следующие принципиальные изменения в метод резонансного СВЧ-зондирования, описанный в [4–6]. Во-первых, предлагается бесконтактная схема измерений, в которой измерительная часть СВЧ-зонда размещается вне плазмы, к примеру, на внешней поверхности диэлектрической разрядной камеры либо в толще ее стенок. Во-вторых, развита теория измерений резонансным СВЧ-зондом, учитывающая высокие значения частоты столкновений электронов и высокий уровень потерь, характерных для разрядов высокого давления, а также геометрию резонансной системы, используемой в модифицированной бесконтактной схеме измерений, в которой ближнепольное СВЧ-зондирование плазмы осуществляется через слой диэлектрика конечной толщины.

1. Описание эксперимента

Установка, на которой выполнялись экспериментальные исследования, схематически изображена на рис. 1. Для создания плазмы использовался ламповый парафазный высокочастотный (ВЧ) автогенератор с рабочей частотой 13.56 MHz и максимальной выходной мощ-

Рис. 1. Схема экспериментальной установки: 1 — ВЧгенератор, 2 — кольцевой электрод, 3 — разрядная трубка, 4 — баллон с рабочим газом Ar, 5 — игольчатый натекатель, 6 — дополнительные электроды, 7 — высоковольтный блок инициации разряда, 8 — металлический экран.

ностью 7 kW. Выход ВЧ-генератора через устройство согласования нагружался на два кольцевых электрода диаметром 23 mm, охватывающих кварцевую разрядную трубку с внешним диаметром 20 mm и толщиной стенок 2 mm; расстояние между электродами составляло 350 mm. В центральную часть трубки была впаяна рабочая секция в виде кварцевого параллелепипеда размерами $50 \times 50 \times 12$ mm. Газ атмосферного давления (аргон) напускался через один из торцов разрядной трубки. Для инициации разряда в трубку вводились дополнительные электроды, к которым прикладывался импульс высокого напряжения. Ионизация рабочего газа происходила в результате высокочастотного емкостного разряда. Система согласования ВЧ-тракта с нагрузкой позволяла вводить в разряд до 50% выходной мощности ВЧ-генератора. Разряд зажигался в импульснопериодическом режиме, длительность ВЧ-импульсов составляла 1.2 s при периоде повторения 50 s. В качестве источника питания ВЧ-генератора использовался высоковольтный емкостной накопитель. Длительность иони-

Рис. 2. Схема резонансного датчика: 1 — резонатор, 2 — измерительная часть резонатора, 3 — возбуждающая петля связи, 4 — приемная петля связи. ρ — волновое сопротивление резонатора, d_m — расстояние между проводами измерительной части резонатора, ρ_m — волновое сопротивление измерительной части резонатора, l_m — длина проводов измерительной части резонатора, ρ_c — волновое сопротивление возбуждающей и приемной коаксиальных линий.

зирующего импульса определялась временем разряда накопителя. Форма импульса ВЧ-напряжения, амплитуда которого экспоненциально уменьшалась с течением времени, позволяла за один цикл работы установки изменять концентрацию плазмы в широком диапазоне значений.

Датчик для измерения параметров плазмы атмосферного давления, схематически изображенный на рис. 2, представлял собой резонатор, состоящий из двух последовательно соединенных отрезков двухпроводной линии с волновыми сопротивлениями $\rho = 300 \Omega$ и $\rho_m = 350 \Omega$. Длина отрезков l = 290 mm и $l_m = 20 \text{ mm}$, расстояния между проводами соответственно d = 6 mmи $d_m = 9 \text{ mm}$. Участок резонатора с большим волновым сопротивлением являлся измерительной частью датчика. Возбуждение резонансной системы и прием ее отклика осуществлялись двумя коаксиальными линиями с волновым сопротивлением $\rho_c = 50 \Omega$ через петли магнитной связи диаметром 10 mm. Собственная резонансная частота датчика составляла 660 MHz, добротность системы порядка 100.

При проведении экспериментов измерительная часть датчика прикладывалась к стенке рабочей секции разрядной трубки, имеющей форму прямоугольника размером 50 × 50 mm. Наличие плазмы в области квазистатического поля измерительной части приводило к изменению собственной частоты и добротности резонатора. Резонатор возбуждался при помощи генератора качающейся частоты (ГКЧ). Диапазон изменения частоты позволял записывать резонансную характеристику датчика за один период качания, который составлял $T_k = 0.076$ s. Анализируя последовательность резонансных кривых, получаемых в течение разряда, можно было исследовать динамику параметров плазмы с временным разрешением, близким к периоду качания частоты Tk. Сигнал с приемной линии датчика подавался на детектор, после чего регистрировался цифровым осциллографом и обрабатывался на персональном компьютере. Синхронизация эксперимента осуществлялась сигналом пилообразного напряжения, формировавшимся в схеме управления ГКЧ и воспроизводившим зависимость частоты ГКЧ от времени. Для защиты измерительных цепей от помех, обусловленных работой ВЧ-генератора плазмы, в возбуждающие и приемные линии датчика были включены фильтры.

2. Теория резонансного СВЧ-датчика

Математическое описание работы датчика, согласно [5], сводится к решению системы телеграфных уравнений для комплексных амплитуд тока I и напряжения Uв резонаторе

$$\frac{dU}{dx} = -i\omega L_0 I + E\delta(x+0),$$
$$\frac{dI}{dx} = -i\omega C_0 U$$
(1)

с граничными условиями

$$U|_{x=0} = 0, \ \frac{dI}{dx}\Big|_{x=0} = 0, \ \frac{I}{U}\Big|_{x=l} = Y_x^{(0)} + Y_x^{(1)}.$$
 (2)

В выражениях (1)-(2) использованы следующие обозначения: L₀ и C₀ — погонная индуктивность и емкость двухпроводной линии, $E = -i\omega M(I_1 + I_2)$ — сосредоточенная вблизи закороченного конца *x* = 0 ЭДС взаимной индукции, М — коэффициент взаимной индукции между петлями связи и двухпроводной линией, I_1 и I_2 комплексные амплитуды токов в передающей и приемной петлях связи соответственно, $Y_x^{(0)}$ — адмитанс измерительной части резонатора при контакте со стенкой разрядной трубки без плазмы, $Y_x^{(0)} \ll \rho^{-1}, Y_x^{(1)}$ поправка к адмитансу измерительной части, связанная с наличием плазмы, $Y_x^{(0)} \ll Y_x^{(0)}$. Индуктивное сопротивление петель связи ωL_c мало по сравнению с волновым сопротивлением коаксиального кабеля ρ_c ($\omega L_c \ll \rho_c$), L_c близка по величине к М. Учитывая наводимую в передающей петле связи ЭДС в виде $-iI\omega M/\rho_c$, можно получить следующие выражения для токов *I*₁ и *I*₂:

$$I_1 = 2I_0 - i \frac{\omega M}{\rho_c} I, \ I_2 = -i \frac{\omega M}{\rho_c} I, \ I_0 = i \frac{U_0}{\rho_c}, \qquad (3)$$

где I_0 и U_0 — амплитуды тока и напряжения зондирующей волны в возбуждающей линии.

Решение задачи (1)–(3) на частотах ω , близких к вакуумной резонансной частоте ω_0 ($\omega = \omega_0 + \Delta \omega$, $|\Delta \omega| \ll \omega_0$), будем искать в виде асимптотического ряда по малому параметру γ :

$$I = I^{(0)} + I^{(1)} + \dots, \ U = U^{(0)} + U^{(1)} + \dots,$$
 (4)

$$\gamma \sim \max\left\{\frac{|\Delta\omega|}{\omega_0}, (Y_x^{(1)}\rho), \left(\frac{\omega M}{\rho}\right)^2, \left(\frac{\omega M}{\rho_c}\right)^2, \left|\frac{I}{I_0}\right|\right\} \ll 1.$$
(5)

В первом порядке теории возмущений можно получить следующее выражение для напряжения в приемной петле связи:

$$U_{3}(\omega) = U_{0} \left(\left(\frac{4}{\pi} Q_{0} \right)^{2} \left(\delta \omega \cdot \beta + \operatorname{Im}(q) \right)^{2} + \left(1 + \frac{4}{\pi} Q_{0} \operatorname{Re}(q) \right)^{2} \right)^{-1/2}, \quad (6)$$

где $\delta \omega = \Delta \omega / \omega_0$, $\alpha = \omega_0 M / \rho$, $\alpha_c = \omega_0 M / \rho_c$, $Q_0 = \pi / (8 \alpha \alpha_c)$ — собственная добротность резонатора

$$q = Y_x^{(1)} \rho \sin\left(2\frac{\omega_0}{c}l\right),$$

$$\beta = \frac{\omega_0}{c}l + \frac{\rho \text{Im}Y_x^{(0)}}{1 + (\rho \text{Im}Y_x^{(0)})^2}.$$
 (7)

Выражение (6) представляет собой уравнение резонансной кривой датчика. Параметр q зависит от поправки Y_x^1

Рис. 3. Иллюстрация метода изображений для трехслойной среды: два параллельных провода χ и $-\chi$ на границе раздела сред с ε_g и ε_p . В первом приближении учитываются нити изображения $+\chi'_1$, $+\tilde{\chi}_1$, $-\chi'_1$ и $-\tilde{\chi}_1$.

к адмитансу измерительной части и определяет сдвиг резонансной частоты датчика и амплитуду сигнала на резонансной частоте

$$\frac{\omega - \omega_0}{\omega_0} = \frac{\mathrm{Im}(q)}{\beta},\tag{8}$$

$$\max(U_3) = U_0 \left(1 + \frac{4}{\pi} Q_0 \operatorname{Re}(q) \right)^{-1}.$$
 (9)

Для нахождения Y_x^1 можно воспользоваться методом изображений [7]. Рассмотрим два параллельных провода с радиусом *а* и линейной плотностью заряда $+\chi$ и $-\chi$, расположенные на поверхности кварцевой разрядной трубки (рис. 3). Поскольку толщина плазменного слоя в разрядной трубке больше максимальной глубины зондирования измерительного датчика, в математической модели рабочий участок разрядной трубки можно рассматривать в виде плоского слоя кварцевого стекла и полупространства, занимаемого плазмой. Введем следующие обозначения: ε_g — диэлектрическая проницаемость кварцевой стенки разрядной трубки, ε_p — комплексная диэлектрическая проницаемость плазмы, h — толщина стенок разрядной трубки, d_m — расстояние между проводами.

В соответствии с методом изображений поле поляризационных зарядов от каждого провода в кварцевом стекле можно записать в виде бесконечной системы полей разноименно заряженных фиктивных нитей, расположенных зеркально симметрично проводам относительно границ стекло-воздух, стекло-плазма. С увеличением номера нитей изображения уменьшается вклад, вносимый ими в напряженность электрического поля в окрестности провода. При расчете поля **E** в кварцевом стекле, в первом приближении достаточно учитывать только четыре нити изображения с плотностями заряда $+\chi'_1, -\chi'_1, +\tilde{\chi}_1$ и $-\tilde{\chi}_1$:

$$\chi_{1}'|_{y=-2h} = \chi \, \frac{2(\varepsilon_{g} - \varepsilon_{p})}{(\varepsilon_{g} + 1)(\varepsilon_{g} + \varepsilon_{p})},$$

$$\tilde{\chi}_{1}|_{y=2h} = 2\chi \, \frac{(\varepsilon_{g} - \varepsilon_{p})(\varepsilon_{g} - 1)}{(\varepsilon_{g} + \varepsilon_{p})(\varepsilon_{g} + 1)^{2}},$$
 (10)

$$\mathbf{E} = \frac{2\chi\mathbf{r}_1}{\varepsilon_g r_1^2} - \frac{2\chi\mathbf{r}_2}{\varepsilon_g r_2^2} + \frac{2\chi_1'\mathbf{r}_3}{\varepsilon_g r_3^2} + \frac{2\tilde{\chi}_1\mathbf{r}_4}{\varepsilon_g r_4^2} - \frac{2\chi_1'\mathbf{r}_5}{\varepsilon_g r_5^2} - \frac{2\tilde{\chi}_1\mathbf{r}_6}{\varepsilon_g r_6^2},$$
(11)

где \mathbf{r}_1 и \mathbf{r}_2 — двумерные радиусы-векторы, отсчитываемые от проводов с линейной плотностью заряда $+\chi \, u - \chi$ в рассматриваемую точку пространства, \mathbf{r}_3 , \mathbf{r}_4 , \mathbf{r}_5 , \mathbf{r}_6 от нитей изображений $+\chi'_1$, $+\tilde{\chi}_1$, $-\chi'_1$ и $-\tilde{\chi}_1$ соответственно. Зная напряженность электрического поля в кварцевом стекле, находим разность потенциалов между проводами $U = \int_{a/2}^{d_m - a/2} E_x(x, y = 0) dx$, а следовательно, величину погонной емкости $C = \chi/U$. Если C_0 — погонная емкость проводов в вакууме, то $C = C_0 \varepsilon_{\text{eff}}$, где ε_{eff} эффективная диэлектрическая проницаемость:

$$\varepsilon_{\text{eff}} = \frac{\varepsilon_g + 1}{2 + \left[\frac{2\varepsilon_g}{\varepsilon_g + 1}\right] \left[\frac{\varepsilon_g - \varepsilon_p}{\varepsilon_g + \varepsilon_p}\right] \ln\left(\frac{d_m^2 + (2\hbar)^2}{a^2 + (2\hbar)^2}\right) \ln^{-1}\left(\frac{d_m}{a}\right)}.$$
 (12)

При заданной геометрии рабочей части разрядной трубки $\varepsilon_{\rm eff}$ зависит только от комплексной диэлектрической проницаемости ε_p плазмы

$$\varepsilon_p = \varepsilon' - i\varepsilon'',\tag{13}$$

$$\varepsilon' = 1 - \frac{\omega_{pe}^2}{\omega^2 + \nu^2}, \ \varepsilon'' = \frac{\omega_{pe}^2 \nu}{(\omega^2 + \nu^2)\omega}, \ \omega_p = \sqrt{\frac{4\pi e^2 N}{m}},$$
(14)

где ω_p — плазменная частота, *е* и *m* — соответственно заряд и масса электрона, *N* — концентрация плазмы, ν — частота столкновения электрона с нейтральными частицами.

Поскольку электрическая длина измерительной части резонатора мала по сравнению с длиной волны излучения на частоте зондирующего поля, адмитансы $Y_x^{(0)}$ и $Y_x^{(1)}$ можно представить в виде

$$Y_x^{(0)} = i\omega_0 l_m C_0 \varepsilon_{\text{eff}}(1), \ Y_x^{(1)} = i\omega_0 l_m C_0 \big(\varepsilon_{\text{eff}}(\varepsilon_p) - \varepsilon_{\text{eff}}(1)\big).$$
(15)

Выражения (7)-(9), (12)-(15) образуют замкнутую систему уравнений, позволяющую по результатам измерений смещения резонансной частоты датчика и уменьшения добротности резонанса найти концентрацию плазмы N и частоту столкновений электронов ν с нейтральными частицами.

Область применимости уравнений (12)–(15) ограничена. Система позволяет независимо находить Nи ν только в том случае, когда $|\varepsilon' - 1| \sim \varepsilon'' \sim \varepsilon_g$, что эквивалентно $\omega \sim \nu$, $\omega_p/\nu \sim \varepsilon_g$. При этом мнимая и действительная части импеданса, соответствующего плазменному промежутку, оказываются одного порядка с величиной емкостного импеданса стенок кварцевой разрядной трубки.

Для плазмы атмосферного давления такие условия не выполняются: рабочая частота измерительной системы оказывается много меньше частоты столкновений электронов с нейтралами, $\omega \ll \nu$, а $|\varepsilon/| \ll \varepsilon''$. При этом эффективная диэлектрическая проницаемость ε_{eff} , (см. (12)), от которой зависит поведение резонансной характеристики датчика, определяется только мнимой частью ε'' комплексной диэлектрической проницаемости плазмы, или величиной N/ν . Для нахождения N/ν в этом случае достаточно знать изменение амплитуды сигнала на резонансной частоте и использовать (7), (9), (12)–(15).

Для применения развитой теории необходимо выполнение условий приближения квазиэлектростатики, которые в данном случае сводятся к превышению масштабом экранировки электромагнитного поля в плазме δ_{sk} (толщины скин-слоя) максимальной глубины зондирования h_z датчика, $\delta_{sk} > h_z$. Кроме того, наличие плазмы должно приводить к регистрируемым изменениям амплитуды сигнала при резонансе. Если разрешающая способность регистрирующей аппаратуры по напряжению ΔU , то $U_0 - \max(U_3) > \Delta U$. С учетом этого для плазмы атмосферного давления можно получить диапазон регистрируемых значений N/ν :

$$\frac{m}{8e^2Q_0}\frac{\Delta U}{U_0}\frac{1}{l_mC_0\rho} < \frac{N}{\nu} < \frac{m}{4\pi e^2}\frac{c^2}{\omega d_m^2} \quad (\nu \gg \omega).$$
(16)

Для используемой в экспериментах измерительной системы $0.5 \,\mathrm{cm}^{-3}\mathrm{s} < N/\nu < 150 \,\mathrm{sm}^{-3}\mathrm{s}$, т.е. динамический диапазон измерений отношения N/ν превышает два порядка.

Использование метода "отсечки" СВЧ-излучения для диагностики параметров плазмы атмосферного давления

В качестве независимого метода диагностики параметров плазмы использовался метод "отсечки" СВЧизлучения [8]. Он основан на измерении амплитуды зондирующих волн, проходящих через слой плазмы. Используется то обстоятельство, что при определенных параметрах плазма становится непрозрачной для СВЧизлучения. В случае бесстолкновительной плазмы "отсечка" зондирующих СВЧ-волн наблюдается при приближении концентрации плазмы к критическому значению, определяемому из условия равенства действительной части диэлектрической проницаемости плазмы нулю. Для плазмы с высокой частотой столкновений значительный вклад в ослабление зондирующего СВЧизлучения вносят объемные потери, которые, в свою очередь, зависят от частоты излучения, частоты столкновений и концентрации электронов. В результате "отсечка" СВЧ-сигнала наблюдается при плотности плазмы, отличной от критической.

Экспериментальные исследования проводились для частот 70 и 5 GHz. Для излучения и приема зондирующих CBЧ-волн использовались следующие антенны: для частоты 70 GHz — в виде открытого конца волновода сечением 3.6 mm × 1.2 mm, для частоты 5 GHz — дипольная антенна с базой 18 mm, симметрированная по схеме "U-колено" [9]. Для защиты выходных цепей

Рис. 4. Расчетные значения коэффициентов прохождения CBЧ-излучения на частоте 70 (a) и частоте 5 GHz (b) через плазменный слой толщиной 10 mm в зависимости от концентрации плазмы N и частоты столкновений электронов v.

лабораторных генераторов от СВЧ-излучения, отраженного от плазмы, и интенсивного ВЧ-сигнала в подводящие тракты устанавливались ферритовые вентили. Для снижения уровня помех, обусловленных работой ВЧ-источника плазмы, измерительная цепь (детектор, фильтр, осциллограф) гальванически развязывалась с участком линии, находящимся в области максимальной амплитуды ВЧ-полей.

Выходом СВЧ-сигнала, прошедшего через плазменный слой, из режима "отсечки" считался момент, когда амплитуда волны составляла 10% от амплитуды СВЧ-сигнала в отсутствие плазмы. Параметры плазмы, найденные методом "отсечки", следует рассматривать как усредненные значения по апертуре излучающих и приемных антенн, а также по области засветки плазмы СВЧ-излучением.

Численное моделирование эксперимента по прохождению СВЧ-волн на частотах 70 и 5 GHz через плазменный слой толщиной 10 mm выполнялось по методу конечных разностей во временной области [10] (FDTD — Finite Difference Time Domain) в зависимости от концентрации N и частоты столкновений v. Расчет производился в широком диапазоне значений концентрации плазмы $N_e = 1 \cdot 10^{10} - 3 \cdot 10^{13} \text{ cm}^{-3}$ и частот столкно-вений электронов $\nu = 5 \cdot 10^9 - 4 \cdot 10^{12} \text{ s}^{-1}$. Приведенный на рис. 4 набор кривых соответствует фиксированным значениям коэффициента прохождения Т электромагнитного излучения на плоскости параметров (ν , N). При фиксированном значении концентрации N коэффициент прохождения T минимален в области параметров $\omega \approx \nu$, когда частота излучения близка к частоте столкновений электронов с нейтралами. Представленный набор кривых позволял определить концентрацию плазмы для заданного коэффициента прохождения по известной частоте столкновений.

4. Экспериментальные результаты

На рис. 5, *а* приводится зависимость мощности, поглощаемой в плазменном объеме мощности за один цикл работы плазмосоздающего ВЧ-генератора, от времени. Максимальная мощность, вкладываемая в разряд, составляет величину порядка 2 kW и соответствует началу пробоя. Далее за счет снижения напряжения на емкостном накопителе происходит монотонное уменьшение ВЧ-мощности.

На рис. 5, *b* представлена осциллограмма сигнала с диагностического датчика и синхронизационного сигнала пилообразного напряжения ГКЧ при исследовании параметров плазмы в разрядной трубке.

Зависимость отношения концентрации плазмы к электронной частоте столкновений N/ν от времени, полученная при обработке осциллограмм сигнала с резонансного датчика, представлена на рис. 5, *с*. В начале ВЧ-пробоя N/ν достигает максимального значения 120 сm⁻³s, затем монотонно уменьшается и через 0.5 s после начала разряда составляет величину

Рис. 5. a — зависимость ВЧ-мощности, поглощаемой в плазменном объеме, от времени; b — осциллограмма сигнала с резонансного датчика (верхняя кривая) и синхронизационного сигнала пилообразного напряжения свип-генератора (нижняя кривая); c — зависимость отношения N/v от времени в процессе разряда; d — осциллограммы сигналов на частотах 70 и 5 GHz, прошедших через слой плазмы.

порядка 1 сm⁻³s. При обработке предполагалось, что плазма однородна по сечению разряда и полностью заполняет кварцевую трубку. Очевидно, что учет конечной толщины пристеночного переходного слоя позволил бы более точно определить значения N/ν в центральной части разряда, которые, по-видимому, в 1.5–2 раза больше, чем приводимые данные.

Результаты измерения амплитуды СВЧ-сигналов, проходящих через плазму, приведены на рис. 5, *d*. Выход сигнала из "отсечки" для частоты 70 GHz наблюдается через 0.1 s после включения плазмосоздающего ВЧ-генератора, что соответствует значению N/v == 50 cm⁻³s, найденному при помощи резонансного диагностического датчика. Для сигнала на частоте 5 GHz выход из "отсечки" наблюдается через 0.2 s после начала ионизирующего импульса, при этом, согласно рис. 5, c, имеем $N/\nu = 38 \,\mathrm{cm}^{-3}\mathrm{s}$.

Отметим, что на частоте 70 GHz коэффициент прохождения излучения как функция времени, характеризуется пульсациями и резкими выбросами в интервале "непрозрачности" плазмы для электромагнитных волн (рис. 5, d). Такая зависимость амплитуды СВЧ-сигнала от времени обусловлена неоднородной структурой разряда и его мелкомасштабной динамикой. Как показывает фотосъемка разряда, в камере присутствуют области с повышенной ионизацией с характерными поперечными масштабами менее 10 mm. Указанный масштаб превосходит апертуру излучающих и приемных антенн. Области с повышенной ионизацией (ВЧ-стримеры) существенно нестационарны, соответственно их динамика сопровождается модуляцией амплитуды СВЧ-сигнала. Напротив, апертура антенн, используемых на частотах 5 GHz, а также длина волны излучения существенно превосходят масштабы неоднородностей плазмы, в результате мелкомасштабные неоднородности ионизации не влияют на коэффициент прохождения СВЧ-сигнала через разряд.

5. Теоретическая оценка параметров плазмы в разряде

Перед анализом экспериментальных результатов выполним оценки параметров плазмы в разряде. Для нахождения температуры электронов T_e , температуры нейтральных частиц T и частоты столкновений электронов с нейтралами ν воспользуемся уравнениями баланса энергии для электронов и нейтральных частиц, а также условием ионизационного равновесия [11].

Будем предполагать, что энергия нейтральных частиц изменяется за счет столкновений с электронами и за счет выноса тепла, обусловленного прокачкой газа через разряд:

$$N_n c_p \frac{dT}{dt} = N\delta \frac{3}{2} k (T_e - T) \nu - N_n c_p (T - T_0) \nu_{\nu}, \quad (17)$$

где c_p — теплоемкость при постоянном давлении, рассчитанная на одну нейтральную частицу, T_0 — начальная температура поступающего в разрядный объем газа, N_n — концентрация нейтрального газа, δ — доля энергии, теряемой электроном при столкновении с нейтральной частицей, v_v — частота потерь энергии за счет прокачки газа, определяемая как $v_v = u/L$ (u — скорость газового потока, L — длина разрядной камеры).

Энергия электронов увеличивается за счет работы плазмосоздающего генератора, потери энергии обусловлены столкновениями электронов с нейтральными частицами

$$Mk \frac{dT_e}{dt} = P^* - N\delta \frac{3}{2}k(T_e - T)\nu, \qquad (18)$$

где P^* — мощность, вкладываемая в единицу объема разряда, $P^* = P/V$, V — объем, занимаемый плазмой.

Условие ионизационного равновесия записывается следующим образом:

$$\nu_i = \nu_R, \tag{19}$$

где v_i — частота ионизации, v_R — частота рекомбинации, определяемая постоянной рекомбинации α и концентрацией ионов N: $v_R = \alpha N$. Для максвелловской функции распределения при условии, что энергия ионизации I значительно превышает электронную температуру T_e , частота ионизации, согласно [11], записывается в следующем виде:

$$v_i = 440 \cdot p (\operatorname{Pa}) \cdot I (\operatorname{eV}) \cdot T_e^{1/2} (\operatorname{eV}) \exp(-I/T_e).$$

Для стационарного разряда из (17) и (18) можно получить следующие соотношения:

$$P^{*} = N\delta \frac{3}{2} k(T_{e} - T)\nu,$$

$$P^{*} = \frac{p}{kT_{0}} c_{p}(T - T_{0})\nu_{\nu}.$$
(20)

Частота упругих столкновений электронов с нейтралами *v*, в свою очередь, определяется следующим образом:

$$\nu = \sigma_{en} \frac{p}{kT} \sqrt{\frac{3kT_e}{m}},\tag{21}$$

где p — давление нейтрального газа, σ_{en} — сечение рассеяния электрона на нейтральной частице, k — постоянная Больцмана.

Выражения (19)–(21) при известной мощности P^* плазмосоздающего генератора образуют систему, позволяющую определить T_e , T, ν и N.

В эксперименте скорость газового потока $u \sim 0.5$ m/s, трубки $L = 200 \,\mathrm{mm}$, радиус длина разрядной следовательно $\nu_{\nu} \sim 50 \, {
m s}^{-1}$. Начальная $R = 8 \,\mathrm{mm},$ температура газа $T_0 = 300 \,\mathrm{K}$, давление $p = 76 \cdot 10^3 \,\mathrm{Pa}$. В аргоне $\delta = 2.7 \cdot 10^{-5}$ (упругие столкновения), $\alpha \sim$ $\sim 2\cdot 10^{-10}\,cm^3/s$ (при $T = 2000 \,\mathrm{K}$) [12], $\sigma_{en} =$ $= 1.4 \cdot 10^{-16} \,\mathrm{cm}^2$ (при $T_e = 1 \,\mathrm{eV}$) [13], $I = 15.8 \,\mathrm{eV}$, $c_p = 4.83 \cdot 10^{-16} \text{ erg/K}$. При известной зависимости мощности Р, вкладываемой в разряд, от времени (рис. 5, a) можно восстановить динамику температуры электронов, температуры нейтрального газа, частоты электронных столкновений и концентрации плазмы. Результаты оценок представлены на рис. 6.

Обсуждение полученных результатов

Как уже отмечалось выше, анализ последовательности резонансных кривых диагностического датчика, полученных в процессе разряда, позволяет определить зависимость величины N/v от времени. Для получения дополнительной связи между N и v воспользуемся уравнением баланса энергии. При температуре

электронов T_e , существенно превышающей температуру ионов T_i , энергия ε , запасенная в плазме, определяется электронной компонентой

$$\varepsilon = NkT_eV. \tag{22}$$

Потери энергии могут происходить как за счет уменьшения температуры электронов и ионов, так и за счет потерь заряженных частиц в объеме, занимаемом плазмой (уменьшения концентрации). В случае стационарного разряда мощность P, вкладываемая в разряд, компенсирует потери энергии

$$P = \varepsilon \nu_E, \tag{23}$$

где *v_E* — декремент затухания энергии электронов.

Основные механизмы потерь энергии — это диффузионный уход заряженных частиц из плазменного объема с последующей поверхностной рекомбинацией на стенках камеры, рекомбинация в объеме, энергетические потери за счет упругих столкновений электронов с нейтралами, а также потери за счет передачи тепла стенкам разрядной трубки путем теплопроводности. Соответственно

$$\nu_E = \nu_D + \nu_T + \nu_R + \nu_{Coll}, \qquad (24)$$

где v_D , v_T , v_R , v_{Coll} характеризуют соответственно потери за счет диффузии, теплопроводности, рекомбинации и столкновений электронов с нейтральными частицами.

С использованием приведенных выше оценок были выполнены расчеты максимальных декрементов затухания энергии электронов для каждого из указанных механизмов на начальной стадии пробоя. Результаты этих расчетов сведены в таблицу 1.

Как следует из табл. 1, в разрядной трубке при температуре нейтрального газа (аргон) T = 1500 К, давлении $p = 76 \cdot 10^3$ Ра, концентрации электронов $N = 4 \cdot 10^{13}$ сm⁻³ и температуре электронов $T_e \sim 1$ eV преобладает механизм потерь энергии, связанный с упругими столкновениям электронов с нейтральными частицами, т.е. $v_E \simeq v_{Coll}$. Учитывая, что

$$\nu_{Coll} = \nu \delta, \tag{25}$$

из (23) получаем искомое дополнительное соотношение, связывающее N и ν

$$N_{\nu} = \frac{P}{kT_e V \delta}.$$
 (26)

С помощью выражения (26) можно оценить зависимости концентрации плазмы и электронной частоты столкновений от времени по экспериментально найденным

Таблица 1.

v_{Coll}	ν_R	v_D	v_T
$2.2\cdot10^6s^{-1}$	$8\cdot 10^3s^{-1}$	$100 {\rm s}^{-1}$	$10^5 {\rm s}^{-1}$

Рис. 6. Результаты оценок параметров плазмы в процессе разряда по известному уровню поглощенной в разряде ВЧ-мощности (рис. 5, *a*): *a* — температура нейтрального газа, *b* — температура электронов, *c* — электронная плотность, *d* — частота столкновений электронов с нейтральными частицами.

значениям N/ν , которые представлены на рис. 7. Электронная температура T_e , входящая в соотношение (26), соответствует выполненным выше оценкам, рис. 6, *b*. Как следует из рис. 7, в начале ВЧ-пробоя концентрация плазмы в разрядной трубке достигает значения $N \sim 3.5 \cdot 10^{13}$ сm⁻³, затем монотонно уменьшается и через 0.5 s после начала разряда составляет величину $N < 7 \cdot 10^{11}$ сm⁻³. Частота столкновений электронов с нейтральными частицами в течение разряда почти постоянна, $\nu \sim 2 \cdot 10^{11}$ s⁻¹, однако к концу разряда, когда амплитуда сигнала на выходе плазмосоздающего ВЧ-генератора существенно снижается, из-за остывания нейтрального газа наблюдается рост электронной частоты столкновений.

Сопоставим полученные результаты с теоретическими оценками и с данными эксперимента по "отсечке" СВЧизлучения.

Стоит отметить, что оценки параметров плазмы на основе уравнения баланса энергии частиц и условия ионизационно-рекомбинационного равновесия имеют су-

лагалось максвелловское распределение электронов по скоростям, что в присутствии сильного ВЧ-поля плазмосоздающего генератора, вообще говоря, не совсем справедливо. Во-вторых, не учитывалась зависимость сечения упругого рассеяния электронов на молекулах от энергии. Значение σ_{en} для аргона было выбрано для энергии электрона 1 eV, хотя известно, что с уменьшением энергии электрона сечение рассеяния падает и достигает минимума (эффект Рамзауэра) [12]. В-третьих, не учитывалась температурная зависимость коэффициента тройной рекомбинации. Значение α взято при температуре нейтрального газа 2000 К. С уменьшением температуры коэффициент тройной рекомбинации увеличивается. Тем не менее результаты измерений параметров плазмы методом ближнепольного СВЧзондирования (рис. 7) по порядку величины согласуются с теоретическими оценками (рис. 6), что свидетельствует о том, что выбранная в расчетах модель хорошо соответствует эксперименту.

щественные недостатки. Во-первых, в расчетах предпо-

Уровень	Частота	га Концентрация плазмы, ст ⁻³		Частота столкновений, ν , s ⁻¹
прохождения сигнала, dB	сигнала, GHz	лабораторный эксперимент	численное моделирование	лабораторный эксперимент
20	70 5	$\frac{1.4\cdot 10^{13}}{8\cdot 10^{12}}$	$2.5 \cdot 10^{13} \\ 5 \cdot 10^{12}$	$\frac{2.6 \cdot 10^{11}}{2.2 \cdot 10^{11}}$
6	70 5	$\begin{array}{c}1.1\cdot10^{13}\\4\cdot10^{12}\end{array}$	$\begin{array}{c} 8.5\cdot 10^{12} \\ 8.5\cdot 10^{11} \end{array}$	$2.35 \cdot 10^{11} \\ 1.7 \cdot 10^{11}$

Таблица 2.

Сравним результаты измерений концентрации плазмы и частоты столкновений электронов с нейтральными частицами методом резонансной ближнепольной СВЧдиагностики и методом "отсечки" СВЧ-излучения. Например, на временах порядка 0.2 s после начала работы плазмосоздающего генератора коэффициент прохождения излучения через разряд с частотой 70 GHz близок к 0.8, для частоты 5 GHz — около 0.1. Анализируя результаты численного моделирования (рис. 4), можно установить, что такие коэффициенты прохождения для данных частот соответствуют значениям концентрации $N = 4 \cdot 10^{12}$ сm⁻³ и электронной частоте столкновений

Рис. 7. Результаты измерений параметров плазмы: a — зависимость концентрации плазмы N от времени; b — зависимость электронной частоты столкновений v от времени. Треугольником показаны значения N и v, полученные по методу "отсечки" СВЧ-излучения.

 $v = 1.7 \cdot 10^{11} \text{ s}^{-1}$. С помощью ближнепольной СВЧдиагностики через 0.2 s после начала работы плазмосоздающего генератора получаем близкие значения: $N = 8 \cdot 10^{12} \text{ cm}^{-3}$ и $v = 2.2 \cdot 10^{11} \text{ s}^{-1}$. Поскольку частоты зондирования были сильно разнесены, для других моментов времени такое сравнение провести уже нельзя, так как выход сигнала на частоте 5 GHz из "отсечки" и последующий рост его коэффициента прохождения соответствуют полному прохождению излучения на частоте 70 GHz.

Далее для измеренных значений коэффициентов прохождения СВЧ-излучения (рис. 5, d) и соответствующих им частот столкновений ν (рис. 7, b) сопоставим экспериментально найденные величины концентрации плазмы N (рис. 7, a) со значениями, следующими из численного моделирования. В табл. 2 сведены значения концентраций плазмы N, при которых амплитуда СВЧсигнала, прошедшего через плазменный слой, составляет 10% (ослабление 20 dB) и 50% (ослабление 6 dB) от амплитуды СВЧ-поля, возбуждаемого антеннами в отсутствие плазмы (вакуумный уровень сигнала), полученные в ходе лабораторных экспериментов и численного моделирования. Экспериментальные значения плотности и результаты численного моделирования отличаются не более чем в 2-5 раза, что подтверждает правильность измерений, выполненных методом ближнепольной диагностики.

7. Заключение

В работе реализован метод резонансного ближнепольного СВЧ-зондирования для бесконтактной диагностики параметров плазмы разрядов высокого давления. В качестве измерительной системы использовался СВЧ-датчик на отрезке двухпроводной линии. Апробация метода осуществлялась в высокочастотном емкостном разряде в аргоне при атмосферном давлении.

Показано, что для плазмы атмосферного давления возможны измерения мнимой части комплексной диэлектрической проницаемости плазмы или величины отношения N/v. Для независимого нахождения концентрации плазмы N и электронной частоты столкновений vпривлечены измерения мощности, отбираемой от плазмосоздающего генератора, и вкладываемой в разряд. Из уравнения баланса энергии получено дополнительное соотношение для N и v, позволившее восстановить динамику плотности плазмы и электронной частоты столкновений в ходе разряда. Результаты по порядку величины согласуются с данными, полученными независимо с помощью метода "отсечки" СВЧ-излучения и в результате теоретических оценок.

Развитая методика может применяться для контроля параметров плазмы в плазмохимических установках, а также в космических приложениях, в том числе для диагностики параметров плазменной оболочки, окружающей спускаемые космические аппараты при их вхождении в плотные слои атмосферы.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 11-02-97060-р_поволжье_а).

Список литературы

- [1] Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. М. Физматгиз, 1963. 404 с.
- [2] Резник А.Н., Юрасова Н.В. // ЖТФ. 2004. Т. 74. Вып. 4. С. 108–119.
- [3] Костров А.В., Смирнов А.И., Янин Д.В., Стриковский А.В., Пантелеева Г.А. // Изв. РАН. Сер. физ. 2005. Т. 69. № 12. С. 1716–1720.
- [4] Stenzel R.L. // Rev. Sci. Instrum. 1976. Vol. 47. N 5. P. 603– 607.
- [5] Кондратьев И.Г., Костров А.В., Смирнов А.И., Стриковский А.В., Шашурин А.В. // Физика плазмы. 2002. Т. 28. № 11. С. 977–983.
- [6] Янин Д.В., Костров А.В., Смирнов А.И., Стриковский А.В. // ЖТФ. 2008. Т. 78. Вып. 1. С. 133–136.
- [7] Сивухин Д.В. Общий курс физики. Электричество. М.: Наука, 1983. 688 с.
- [8] Хилд М., Уортон С. Микроволновая диагностика плазмы. М.: Атомиздат, 1968. 392 с.
- Драбкин А.Л., Зузенко В.А. Антенно-фидерные устройства.
 М.: Сов. радио, 1974. 536 с.
- [10] Taflove A. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Boston–London: Artech House, 1995. 599 p.
- [11] Райзер Ю.П. Физика газового разряда. Учеб. руководство для вузов. 2-е изд. М.: Наука, 1992. 536 с.
- [12] Браун С. Элементарные процессы в плазме газового разряда. М.: Госатомиздат, 1961. 324 с.
- [13] Елецкий А.В., Смирнов Б.М. // УФН. 1982. Т. 136. Вып. 1. С. 25–59.