06

Термостимулированные токи биосовместимого гидроксиапатита кальция Ca₁₀(PO₄)₆(OH)₂

© Н.А. Захаров, В.А. Клюев, М.Ю. Сенцов, Ю.П. Топоров

Институт общей и неорганической химии им. Н.С. Курнакова РАН, 119991 Москва, Россия Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Москва, Россия email: zakharov@igic.rac.ru

(Поступило в Редакцию 21 сентября 2011 г.)

В интервале температур 300-600 К исследована температурная зависимость термостимулированных токов (TCT) стехиометрического нанокристаллического гидроксиапатита кальция Ca₁₀(PO₄)₆(OH)₂ и проанализировано влияние степени дисперсности на TCT.

Уменьшение размеров частиц твердых тел до наноразмеров сопровождается изменением ряда их характерных электрических, тепловых, магнитных и структурных свойств [11]. В связи с тенденцией растущего применения наноразмерных материалов вопросы влияния степени дисперсности на свойства материалов стали в последние годы объектом изучения специалистов в области фундаментальных и прикладных (электроника, медицина, строительная индустрия) исследований.

Наноразмерные материалы на основе фосфатов кальция находят все большее применение в медицинской практике в качестве имплантов [2]. Биологические фосфаты кальция — апатиты нативных тканей — относятся к основным (~ 60%) составляющим костной и зубной тканей. Они представляют собой наноразмерные (~ 5–50 nm) кристаллы игловидного габитуса с катионными (Na⁺, K⁺, Mg⁺) и анионными (CO₃²⁻, Cl⁻, F⁻) замещениями в кристаллической структуре гидроксиапатита кальция Ca₁₀(PO₄)₆(OH)₂ ГА [2]. ГА, являясь кристаллохимическим аналогом неорганической компоненты минерализованных тканей млекопитающих, служит базовым компонентом синтетических материалов для имплантантов в ортопедии и стоматологии.

Развитие методов исследования ГА для медицинского применения является важной научной задачей. Целью настоящей работы явилось использование метода термостимулированных токов (TCT) для изучения свойств синтетического стехиометрического нанокристаллического (HK) ГА и оценки влияния степени дисперсности на его физико-химические характеристики.

НК ГА был синтезирован в биомиметических условиях (310 K) в системе $Cu(OH)_2 - H_3PO_4 - H_2O$ по методике [3], моделирующей процесс биоминерализации. Результаты рентгеновского анализа порошкообразных продуктов синтеза (автоматизированный дифрактометр ДРОН-4, Си*К*_{*α*}-излучение, графитовый монохроматор, управляющая программа EXPRESS, модифицированный полнопрофильный анализ, оценка размеров блоков Коши $(D_{hkl}))$ свидетельствуют об образовании в ходе синтеза стехиометрического НК ГА гексагональной сингонии, проекция грани Р63/т (табл. 1). НК ГА удлинены вдоль оси с (отношение размеров НК ГА вдоль осей c/a > 4) и имеют размеры и кристаллографические характеристики, близкие к таковым для НК апатитов нативной кости [2]. Параметры элементарной ячейки синтезированного ГА близки по значениям к табличным данным (данные JCPDS, № 9-432).

ИК-спектры (спектрометр Nexus Nicolet, диапазон 4000—400 сm⁻¹) синтезированного ГА типичны для стехиометрического НК ГА. По результатам химического спектрального анализа (сканирующий электронный микроскоп CamScanS4, микроанализатор Linc Analytical) синтезирующий НК ГА был однороден и соответствовал стехиометрическому составу (рис. 1, *a*). Данные просвечивающей электронной микроскопии (электронный микроскоп JEOL JEM 1210) (рис. 2, *b*, *c*) свидетельствуют об агломерации наночастиц ГА в блоки с размерами около 50 nm, взаимодействующие между собой за счет образования перемычек или срастания блоков смежными гранями.

Таблица 1. Кристаллографические характеристики синтезированного НК ГА							
	Неорганическая	Массовая	Параметры элементарной ячейки	Размеры бло			

Образец	Неорганическая	Массовая	Параметры элементарнои ячеики		Размеры блока Коши, пт	
Образец	фаза	доля, %	a, Å	<i>c</i> , Å	$D\parallel$	$D\perp$
Продукт синтеза (НК ГА)	$Ca_{10}(PO_4)_6(OH)_2$	100	9.442	6.878	56.8	13.6
Данные JCPDS, № 9-432	$Ca_{10}(PO_4)_6(OH)_2$		9.418	6.884		

*Размеры блока Коши параллельно $(D \parallel)$ и перпендикулярно $(D \perp)$ оси $c \,$ НК ГА.

Рис. 1. Результаты химического спектрального анализа (*a*) образцов стехиометрического НК ГА. Агломераты НК ГА по данным просвечивающей электронной микроскопии (*b*, *c*).

Нагревание НК ГА сопровождалось монотонной потерей веса. На кривых дифференциального термического анализа имели место эндоэффекты при температурах в области ~ 381 и ~ 511 К. На основании термического анализа был сделан вывод о вхождении адсорбированной воды в синтезированный НК ГА в соответствии с бруттоформулой Ca₁₀(PO₄)₆(OH)₂ · 4H₂O.

Образцы для исследования ТСТ готовили в форме дисков (диаметр 10 mm, толщина 1.5-2 mm) прессова-

нием. Инициацию образцов проводили в поле коронного разряда в течение 20 min. Изменение ТСТ проводили на воздухе.

В серии исследованных образцов имел место незначительный разброс значений абсолютной и относительной величин интенсивности пиков ТСТ. Для всех исследованных образцов НК ГА представлялось возможным выделить температурные области, соответствующие двум характерным пикам (рис. 2) с максимумами в области температур ~ 373 и ~ 503 K, согласующимися с данными термического анализа.

Феноменологические параметры термоактивационных процессов (энергию термической активации (E(i))), характеризующую глубину уровня ловушек данного типа относительно дна зоны проводимости; частотный фактор $(K_0(i))$, характеризующий вероятность освобождения электрона из ловушек определенного типа; время жизни делокализованного электрона в зоне проводимости $\tau = 1/K_0$ определяли на основе уравнений формальной кинетики реакций первого порядка [4,5] для образцов с наиболее типичным видом температурных зависимостей TCT:

$$-\frac{dC}{d\tau} = K_0 C^l e^{-E/(kT)},\tag{1}$$

где C — концентрация активных центров, ответственных за ТСТ, τ — время, K_0 — частотный фактор, l показатель порядка реакции, E — энергия активации, k — постоянная Больцмана, T — температура, K,

$$K_0 = \mu \, \frac{E}{kT_m^2} \, e^{E/(kT_m)}, \tag{2}$$

где T_m — температура, соответствующая максимуму кривой ТСТ, μ — скорость нагревания.

Значения подгоночных максимумов ($T_{m/calc}(i)$, *i* — номер пика), полученных с использованием аппроксимации экспериментальных зависимостей полиномами, для обоих пиков TCT разумным образом согласуются по величине с экспериментально наблюдаемыми ($T_m(i)$) (табл. 2).

Рис. 2. Типичный спектр температурной зависимости ТСТ образцов стехиометрического НК ГА.

Таблица 2. Экспериментальные характеристики и расчетные параметры электронных ловушек спектров ТСТ с максимумами $T_m(i) \ (i=1,\ 2)$

i	μ	$T_m(i), \mathbf{K}$	$T_{m/calc.}(i), \mathbf{K}$	E(i), eV	$K_0(i), \ { m s}^{-1}$	$ au = 1/K_0, { m s}$
1	0.35	349	382	0.65	$6.62\cdot 10^6$	$1.51 \cdot 10^{-7}$
2	0.15	499	497	1.72	$6.65\cdot 10^{14}$	$1.50\cdot 10^{-15}$

Примечание. $\mu = dT/d\tau$, град/с — скорость нагрева образцов; $T_m(i)$ — температура максимума пика (i) кривой ТСТ экспериментальная; $T_{m/calc}(i)$ — температура максимума пика (i) кривой ТСТ для аппроксимирующей кривой; E(i) — энергия термической активации ловушек; $K_0(i)$ — частотный фактор; $\tau = 1/K_0$ — время жизни делокализованного электрона в зоне проводимости.

Интерпретация физической природы температурных зависимостей ТСТ НК ГА может быть проведена по аналогии с интерпретацией термоактивационных процессов в мелкокристаллическом ГА, исследованном с использованием термостимулированной экзоэлектронной эмиссии (ТСЭЭ) [6,7]. В соответствии с [6,7] для спектров ТСТ можно выделить два вида процессов, ответственных за возникновение пиков. Во-первых, это процессы, обусловленные как адсорбцией дефектной структурой поверхности НК ГА воды и кислорода воздуха, так и участием в термоактивационных процессах структурированной воды и воды, образующейся в результате термического разложения ГА. Для рассматриваемой задачи участие адсорбированных и структурированных молекул H₂O и O₂, а также радикалов OH⁻ и O⁻ в возникновении низкотемпературного пика (рис. 1) особенно правдоподобно в связи с результатами физикохимического анализа объекта исследования — НК ГА с брутто-формулой Ca₁₀(PO₄)₆(OH)₂ · 4H₂O, включающей несколько молекул адсорбированной воды.

Во-вторых, помимо влияния адсорбции на ТСТ активную роль в термоактивационных процессах играют фазовые превращения исследуемого объекта, сопровождающиеся нарушениями кристаллической решетки (образование напряжений и трещин при пластической деформации в ходе термического расширения) [6,7]. Высокотемпературный пик (2) ТСТ в соответствии с данными по температурной зависимости ТСЭЭ [6,7] можно связать со структурным переходом ГА (моноклинная $P2_1/b$ — гексагональная $P6_3/m$ фаза), вызванным переориентацией дипольных групп ОН⁻ в треугольных каналах их ионов Ca²⁺. При этом, как отмечалось для ТСЭЭ [6,7], тонкая структура и возможное смещение $T_m(2)$ в область высоких температур могут быть связаны с дефектностью структуры ГА.

Сравнение экспериментальных данных для термоактивационных процессов в ГА, полученных на основе использования методов ТСТ и ТСЭЭ, позволяет сделать ряд выводов о влиянии степени дисперсности на свойства ГА и характер протекающих в нем процессов. В связи с этим обращают на себя внимание прежде всего характеристики низкотемпературного пика (1) спектра ТСТ: его ширина, абсолютная и относительная (по отношению к высокотемпературному пику (2)) интенсивности. Образцам, подвергшимся термическому циклированию (при неоднократных измерениях на одном образце в пределах нагревания до 600 K), была также характерна отмеченная особенность спектров ТСТ. Ширина низкотемпературного спектрального пика (1) ТСТ превосходит ширину соответствующего пика ТСЭЭ [7]. Эта особенность спектров ТСТ может быть отнесена за счет высокой степени дисперсности НК ГА и связанной с ней значительной адсорбционной способностью НК ГА.

Вместе с тем в отличие от спектров ТСЭЭ [7] относительная интенсивность высокотемпературного пика (2) ТСТ, связанного со структурным переходом ГА, уменьшается. К этому может приводить высокая степень дефектности НК ГА, затрудняющая процессы переориентирования дипольных групп ОН[–] в треугольных каналах из ионов Ca²⁺.

Полученные результаты могут наряду с существующими методами быть использованы для физикохимического анализа НК ГА и создания методов направленного синтеза материалов с заданным комплексом свойств для медицинского применения.

За частичную финансовую поддержку исследований авторы выражают глубокую признательность фондам президиума РАН (ФНМ), ОХНМ РАН, РФФИ (ФОИН).

Список литературы

- Морохов И.Д., Петинов В.П., Трусов Л.Н., Петрунин В.Ф. // УФН. 1981. Т. 133. С. 653–692.
- [2] Dorozhkin S.V. // J. Mater. Sci. 2007. Vol. 42. P. 1061–1095.
- [3] Захаров Н.А., Сенцов М.Ю. // Сорбционные и хроматографические процессы. 2011. Т. 11. № 2. С. 177–184.
- [4] Гороховатский Ю.А., Бордовский Г.А. Термоактивационная токовая спектроскопия. М.: Наука, 1991. 248 с.
- [5] Balarin M., Zetzsche A. // Phys. Stat. Sol. 1962. Vol. 2. P. 1670– 1682.
- [6] Захаров Н.А. // Письма в ЖТФ. 2001. Т. 27. № 24. С. 22–28.
- [7] Захаров Н.А., Орловский В.П., Клюев В.А., Топоров Ю.П. // Неорган. матер. 2001. Т. 37. № 8. С. 1017–1022.