06;12

Фотолюминофоры на основе (CaO · Al₂O₃ · SiO₂) : Еи для преобразования фиолетового/ультрафиолетового излучения в излучение белого цвета

© Н.Т. Гурин, К.В. Паксютов, М.А. Терентьев, А.В. Широков

Ульяновский государственный университет, 432000 Ульяновск, Россия e-mail: gurinnt@sv.ulsu.ru

(Поступило в Редакцию 17 февраля 2011 г.)

Показано, что полученные методом прямого твердофазного синтеза при температуре 1350° в вакууме фотолюминофоры (2CaO · 0.5Al₂O₃ · 5SiO₂): Еu и (CaO · 0.2Al₂O₃ · SiO₂): Еu с добавкой 3 wt.% B₂O₃ при возбуждении излучением светодиода с максимумом спектра излучения 380 nm дают излучение белого цвета с координатами цветности, близкими к координатам цветности основных телевизионных систем EBU и NTSC, и находятся в поле белого цвета систем цветовой сигнализации по MKO.

Светоизлучающие диоды (СИД) фиолетового и ультрафиолетового диапазонов излучения, используемые совместно с фотолюминесцентными преобразователями цвета, представляют значительный интерес для получения белого цвета, основных цветов телевизионных стандартов и систем световой индикации.

Как известно, для получения твердотельных источников излучения белого цвета могут использоваться три метода [1]: объединение в одном корпусе излучателей трех основных цветов — красного, зеленого и синего; использование синих СИД, например на основе GaN/InGaN, покрытых желтым фотолюминофором, в частности $Y_3Al_5O_{12} \cdot Ce^{3+}$ (YAG : Ce^{3+}) [2]; применение фиолетового/ультрафиолетового СИД, возбуждающего белый фотолюминофор. Недостатком первого варианта является использование фактически трех СИД для получения белого цвета свечения. Второй вариант непригоден, например, для подсветки пассивных цветных индикаторных панелей ввиду отсутствия в спектре зеленой полосы излучения. Третий вариант реализации источника излучения белого цвета является оптимальным, так как с помощью одного СИД, покрытого белым фотолюминофором, кроме белого цвета, фильтрацией можно получить три основных цвета свечения, а также желтый цвет для систем сигнализаций. В связи с этим целью работы является исследование возможности получения фотолюминофоров белого цвета свечения, возбуждаемых фиолетовым/ультрафиолетовым СИД, в системе (CaO · Al₂O₃ · SiO₂) : Eu.

Ранее нами было показано [3], что полученные с помощью метода прямого твердофазного синтеза при температуре 1300° C на воздухе люминофоры в системе $(CaO \cdot Al_2O_3 \cdot SiO_2)$: Еи при возбуждении азотным лазером дают широкополосную фотолюминесценцию, перекрывающую видимую область спектра, причем после отжига в вакууме люминофор $(CaO \cdot Al_2O_3 \cdot 2SiO_2)$: Еи дает свечение, соответствующее синему цвету по МКО, отжиг состава $(CaO \cdot Al_2O_3)$: Еи приводит к изменению цвета свечения с красного, близкого к цветовому те-

левизионному стандарту EBU, на синий, соответствующий этому же стандарту, а состав $(CaO \cdot 2Al_2O_3)$:Еи дает излучение красного цвета, близкого к цветовому стандарту NTSC. Широкая полоса люминесценции при этом объяснялась фазовой неоднородностью составов, включающих блоки различных алюминатов и силикатов кальция, а также переходами в ионах Eu^{3+} и Eu^{2+} .

Для повышения фазовой однородности синтез всех люминофоров проводили в вакуумной среде в вольфрамовом тигле при повышении температуры по сравнению с [3] с 1300° до 1350°С. Кроме того, была исследована возможность улучшения условий синтеза путем добавления в систему небольшого количества (до 3 wt.%) оксида бора В₂О₃, играющего в соответствии с [4] роль высокотемпературного флюса, облегчающего протекание реакции синтеза. Люминофоры получали путем прямой твердотельной реакции в вакуумной среде исходных порошкообразных компонентов. Для приготовления люминофоров использовали следующие материалы: Al₂O₃ (марки "Ч" — содержание Al₂O₃ 99.5%), SiO₂ (кварцевое стекло с содержанием SiO₂ > 99.7%), CaO ("ОСЧ" содержание CaO 99.999%), B₂O₃ (марки "Ч" — содержание B₂O₃ 99.5%), Eu₂O₃ (марка ЕвО-Ж-99.99%). Исходные компоненты измельчались и перемешивались в течение 1h в планетарной мельнице. Полученную смесь прессовали в таблетки объемом 100-150 mm³ и отжигали на вольфрамовом тигле в вакууме под давлением 10^{-5} Torr на установке ВУП-5 при плавном повышении температуры тигля до полного расплавления таблетки. Для снятия внутренних напряжений образца и компенсации разницы температурных коэффициентов линейного расширения образца и тигля процесс остывания проводится в течение 1 h путем линейного уменьшения тока, протекающего через тигель. Для возбуждения фотолюминесценции использовался фиолетовый/ультрафиолетовый СИД марки OUE8A380Y1 с длиной волны максимума спектра излучения $\lambda_m = 380 \, \mathrm{nm}$ и полушириной спектра $\Delta \lambda_{0.5} = 10$ nm. Излучение фотолюминофора подавалось через волоконный световод и монохроматор ЛМ-3 на фотоэлектронный умножитель ФЭУ 39-А. Сигнал с ФЭУ регистрировали в автоматическом режиме, с шагом изменения длины волны $\lambda = 1$ nm, осциллографом Tektronix TDS 2014 с последующей обработкой данных персональным компьютером, с помощью которого по полученным спектрам фотолюминесценции рассчитывались координаты цветности X, Y по методике [5]. Спектры пропускания регистрировались с помощью спектрофотометра СФ-46. Во всех составах люминофоров содержание Еu составляло 3 mol.%, при котором, согласно [6], обеспечивается максимальная интенсивность фотолюминесценции в подобной системе.

Всего было синтезировано несколько составов системы с общей формулой $(k(\text{CaO}) \cdot n(\text{Al}_2\text{O}_3) \cdot m(\text{SiO}_2) \times (B_2\text{O}_3)_x)$: Еu (k, n, m -молярные доли содержания в составе оксидов CaO, Al₂O₃, SiO₂ соответственно; x — весовой процент содержания в составе B₂O₃), обладающих различными цветами свечения. Все образцы при наблюдении под микроскопом MBC-2 были стеклообразными, прозрачными в видимом диапазоне спектра, с однородным цветом свечения.

Спектры фотолюминесценции составов имеют несколько полос излучения, перекрывающих видимую область (рис. 1). Как следует из таблицы, составы *I*, *3* преобразуют фиолетовое/ультрафиолетовое излучение СИД в белое, цветовые координаты которого близки к координатам белого цвета систем телевидения NTSC (X = 0.31, Y = 0.316) и EBU (X = 0.313, Y = 0.329), а также находятся в поле белого цвета систем световой сигнализации МКО [5].

Разложение спектров по гауссианам дает для составов *I*, *3* спектральный набор из трех пиков, лежащих в сине-фиолетовой области с максимумами $\lambda_m = 414, 428, 457$ nm (состав *I*), 409, 430, 454 nm (состав *3*), одного пика в зеленой области с $\lambda_m = 545$ nm (состав *I*), 548 nm (состав *3*) и пика в красной области с $\lambda_m = 612$ nm

Рис. 1. Спектры фотолюминесценции составов системы $(k(\text{CaO}) \cdot n(\text{Al}_2\text{O}_3) \cdot m(\text{SiO}_2) \cdot (\text{B}_2\text{O}_3)_x)$: Еи, возбуждаемых излучением СИД ($\lambda_{\text{ex}} = 380 \text{ nm}$) (для спектра излучения СИД масштаб не соблюден). Обозначения составов те же, что в таблице.

Координаты	цветности	фотолюминесценции	системы
$(k(CaO) \cdot n(Al$	$_{2}O_{3}) \cdot m(SiO_{2})$	$\cdot (\mathbf{B}_2\mathbf{O}_3)_x)$: Eu	

Составы	CaO	Al ₂ O ₃	SiO ₂	B ₂ O ₃ ,	Цветовые координаты	
				wt.%	X	Y
1	2	0.5	5	0	0.301	0.321
2	2	0.5	5	3	0.218	0.247
3	1	0.2	1	3	0.308	0.344

Рис. 2. Спектры пропускания фотолюминофоров системы. Остальные обозначения те же, что и на рис. 1.

(состав 1), 618 nm (состав 3). В отличие от этого полосы излучения, формирующие сине-фиолетовую часть спектра излучения состава 2, смещены в коротковолновую область с $\lambda_m = 393$, 404, 416 и 457 nm, а полосы в зеленой ($\lambda_m = 532$ nm) и красной областях ($\lambda_m = 604$ nm), кроме такого же смещения, имеют еще и пониженную интенсивность относительно полос в сине-фиолетовой области.

Как видно из спектров пропускания полученных составов (рис. 2), образцы фотолюминофоров прозрачны в видимом диапазоне спектра. Сильное поглощение в коротковолновой области (до 400 nm) приводит к тому, что полученные стекла имеют желтоватый оттенок, а возбуждающее излучение СИД полностью поглощается образцом. Ширина запрещенной зоны образцов 1-3, рассчитанная по данным рис. 2, равна 3.01, 3.03 и 3.08 eV соответственно (погрешность ±0.02 eV).

Установлено, что увеличение концентрации оксида бора более 3 wt.% ведет к появлению поликристаллической структуры фотолюминофора, делая его непрозрачным для видимой области света. Из рис. 1 следует, что введение оксида бора в количестве до 3 wt.% изменяет также спектр излучения, смещая его в коротковолновую область, что может использоваться для корректировки координат цветности (состав 3), однако снижает интенсивность фотолюминесценции. Необходимо также отметить, что для получения прозрачного образца наи-

155

более приемлемые отношения концентрации оксидов Al₂O₃/SiO₂ находятся в пределах 5–10.

Полученные результаты можно объяснить следующим образом.

Кальций в узлах кристаллической решетки может быть замещен как ионами Eu^{2+} (при этом процесс замещения протекает путем $Eu^{2+} \to Ca^{2+}),$ так и ионами Eu^{3+} (процесс $2Eu^{3+} \rightarrow 3Ca^{2+}$) [7,8]. Помимо этого, кальций может находится в нескольких различных узлах решетки, из-за чего окружение ионов Еи для каждого узла будет различаться. Поэтому наличие в составе двух типов ионов активатора, разных позиций замещения ионов Еи в решетке, а также совокупность всех возможных внутрицентровых переходов в ионе $\operatorname{Eu}^{3+}{}^5D_0 \rightarrow {}^7F_i$ (i = 0, 1, 2, 3, 4), дающих люминесценцию в желто-оранжево-красной области, и в июне $\operatorname{Eu}^{2+} 4f^65d \rightarrow 4f^7$, дающих люминесценцию в сине-фиолетовой области [1], ведет к формированию широкополосного спектра излучения. При синтезе люминофоров в вакууме происходит восстановление ионов европия Eu³⁺ до Eu²⁺. Согласно [9], концентрация ионов Eu²⁺ в восстановительной атмосфере увеличивается по мере роста температуры отжига, однако наличие полос излучения в длинноволновой области спектра исследуемых составов свидетельствует о его неполном завершении, связанном с различными факторами. Такими факторами могут быть термодинамическая устойчивость состояний Eu³⁺ и Eu²⁺, находящихся в разных узлах кристаллической решетки, время протекания реакции синтеза, а также объем образца. В то же время подобное промежуточное состояние в значительной степени способствует получению широкополосного излучения с различными вариациями координат цветности.

Таким образом, фотолюминофоры в системе (CaO × \times Al₂O₃·SiO₂): Еи способны обеспечить преобразование излучения фиолетового/ультрафиолетового светодиода с максимумом спектра излучения $\lambda_m = 380$ nm в белое излучение, координаты цветности которого близки к соответствующим координатам цветности белого цвета телевизионных стандартов EBU и NTSC и находятся в поле белого цвета системы цветовой сигнализации по МКО. Исследованные люминофоры представляют значительный интерес и могут найти применение при разработке светодиодных излучателей белого цвета свечения, средств отображения информации и систем цветовой сигнализации.

Список литературы

- [1] *Kitai A.* Luminescent materials and applications. Chichester. Wiley, 2008. P. 212.
- [2] *Nakamura S., Fasol G.* The blue laser diodes. Berlin: Springer, 1997. P. 216–219.
- [3] Гурин Н.Т., Паксютов К.В., Терентьев М.А., Широков А.В. // ЖТФ. 2009. Т. 35. Вып. 15. С. 41–49.
- [4] Гурин Н.Т., Паксютов К.В., Терентьев М.А., Широков А.В. // Письма в ЖТФ. 2008. Т. 34. Вып. 21. С. 1–6.

- [5] Мешков В.В., Матвеев А.Б. Основы светотехники. Ч. 2. М.: Энергоатомиздат, 1989. С. 432.
- [6] Гурин Н.Т., Паксютов К.В., Терентьев М.А., Широков А.В. // ЖТФ. 2009. Т. 79. Вып. 9. С. 152–154.
- [7] Baginskiy I., Liu R.S. // J. Electrochem. Soc. 2009. Vol. 156. N 5. P. G26–G32.
- [8] Hao J., Gao J. // Appl. Phys. Lett. 2003. Vol. 82. P. 17.
- [9] Hao J., Gao J. // Appl. Phys. Lett. 2004. Vol. 85. P. 3720.