06;07;12

Электрические и электролюминесцентные свойста светодиодов $\lambda = 3.85 - 3.95 \,\mu$ m на основе InAsSb в интервале температур 20-200°C

© А.А. Петухов, С.С. Кижаев, С.С. Молчанов, Н.Д. Стоянов, Ю.П. Яковлев

Физико-технический институт им. А.Ф. Иоффе, 194021 Санкт-Петербург, Россия e-mail: andrey-rus29@rambler.ru

(Поступило в Редакцию 27 апреля 2011 г.)

Приведены результаты исследоания зависимости электрических и электролюминесцентных свойств светодиодов на основе гетероструктуры InAsSbP/InAsSb/InAsSbP ($\lambda \approx 3.8-4\,\mu\text{m}$) от температуры (20–200°С). Показано, что уменьшение мощности излучения с увеличением температуры носит сверхэкспоненциальный характер и обусловлено, главным образом, ростом скорости оже-рекомбинации. Изменение положения максимума спектра излучения с температурой носит немонотонный характер, поскольку наблюдается излучательная рекомбинация как в активной области, так и в широкозонном слое. При комнатной температуре протекание тока через гетероструктуру определяется туннельным механизмом независимо от полярности приложенного напряжения. С увеличением температуры при прямом смещении проявляется термическая эмиссия носителей заряда, а при обратном — растет роль диффузионного тока.

Введение

Светодиоды (СД) средней инфракрасной области спектра $(3-5\,\mu m)$ перспективны в качестве источников излучения при создании приборов для экологического и технологического контроля окружающей среды [1]. Для решения ряда практических задач необходимы СД, работающие при повышенных температурах [2]. Однако этот вопрос слабо освещен в литературе.

Целью работы является изучение электрических и электролюминесцентных свойств СД на основе гетероструктуры InAsSbP/InAsSb/InAsSbP при температурах 20–200°С.

Изучаемые объекты и методики исследования

Светодиодные структуры выращивались по методу газофазной эпитаксии из металлоорганических соединений на подложках p-InAs (100), легированных цинком до концентрации $p \approx 2 \cdot 10^{18} \, \mathrm{cm}^{-3}$. Эпитаксиальная часть состояла из барьерного слоя *p*-InAs_{0.55}Sb_{0.15}P_{0.30} $(p \approx 2 \cdot 10^{18} \, \text{cm}^{-3})$, легированные Zn) толщиной 0.7 μ m, нелегированной области InAsSb_{0.095} активной (KJV-62) или InAsSb_{0.090} (KJV-65) толщиной 2 µm $(n \approx 2 \cdot 10^{16} \,\mathrm{cm}^{-3})$ И нелегированного слоя *n*-InAs_{0.55}Sb_{0.15}P_{0.30} ($n \approx 4 \cdot 10^{17} \,\mathrm{cm}^{-3}$) толщиной 0.7 μ m. Для формирования светодиодных чипов по методу стандартной фотолитографии выращенной на гетероструктуре формировалась разделительная сетка глубиной $\sim 25\,\mu{
m m}$ и размером $350 \times 350\,\mu{
m m}$. Чипы монтировались пайкой на стандартные корпуса ТО-18.

Спектральные измерения проводились в квазинепрерывном режиме при амплитуде токовых импульсов 100 mA и частоте 512 Hz. В качестве диспергирующего прибора использовался монохроматор MS 35041, фотосигнал регистрировался с применением синхронного детектирования охлаждаемым до 77 K фотоприемником на основе InSb (Electro-Optical Systems Inc. IS-010-E-LN4). Сопротивление при нулевом смещении R_0 измерялось с помощью мостовой схемы при напряжении на светодиоде величиной — 10 mV.

Экспериментальная часть

На рис. 1 представлены вольт-амперные характеристики (ВАХ) структуры KJV-62 в зависимости от температуры (для KJV-65 ВАХ аналогичны). Согласно [3], в случае анизотипных гетеропереходов при прямых смещениях, бо́льших некоторого значения, зависящего от температуры, протекание тока обусловлено туннельным механизмом, а ВАХ описывается выражением

$$I \sim \exp(AV) \exp(BT), \tag{1}$$

где *А* и *В* — константы, характеризующие зависимость тока от напряжения и температуры.

Рис. 1. Зависимость логарифма тока от напряжения при разных температурах для структуры KJV-62.

Рис. 2. Температурные зависимости величины A_{eff} : *1* — KJV-65, *2* — KJV-62 и последовательного сопротивления R_{series} : *3* — KJV-65, *4* — KJV-62.

Рис. 3. ВАХ светодиода KJV-65 в зависимости от температуры: *1* и 2 — вклады туннельной и тепловой составляющих в суммарный ток при 200°С (качественно). На вставке — зависимость дифференциальной проводимости светодиода от приложенного напряжения для двух температур (31 и 200°С).

Обработка экспериментальных данных показала, что зависимость $\ln I = f(T, U = 0.7V)$ линейна до температуры $\approx 170^{\circ}$ С. Величина *В* составляет $3.82 \cdot 10^{-3}$ и $6.23 \cdot 10^{-3} \, \text{K}^{-1}$ соответственно для структур KJV-62 и KJV-65. Рассчитанное из ВАХ значение А (назовем его A_{efc}), напротив, непостоянно и уменьшается с температурой (рис. 2). Из рисунка видно, что A_{eff} коррелирует с величиной последовательного сопротивления R_{series}, также рассчитанного из ВАХ. При протекании тока через светодиод часть приложенного напряжения падает на контактах прибора. Это приводит к отклонению ВАХ светодиода от зависимости (1), характеризующей p-n-переход, поэтому зависимость $\ln I \sim U$ сублинейна. Следовательно, рассчитанное значение A_{eff} меньше А. Очевидно, что чем больше последовательное сопротивление светодиода, тем меньше величина A_{eff}. Это видно из рис. 2 при сравнении $A_{\rm eff}$ и $R_{\rm series}$ структур KJV-62 и KJV-65. Погрешность в измерениях ВАХ

позволяет лишь приблизительно оценить величину *A*: для обеих структур она составляет 20 < *A* < 30.

С увеличением температуры изменяется вид ВАХ (рис. 3). Рассмотрим поведение дифференциальной проводимости g = dI/dUв зависимости OT приложенного напряжения (см. вставку на рис. 3). При комнатной температуре с ростом смещения g монотонно увеличивается (вплоть до достижения напряжения отсечки). При нагреве светодода характер зависимости изменится: на графике появляется экстремум, при $U < 300 \,\mathrm{mV}$ ($T = 200^{\circ}\mathrm{C}$) с ростом смещения дифференциальная проводимость уменьшается. Рост *g* в области малых смещений при увеличении температуры свидетельствует о том, что суммарный тока через определяется только структуру не туннельной составлящей. Существует механизм протекания тока, связанный с термической эмиссией носителей заряда, вклад которого увеличивается с ростом температуры [3]. Уменьшение g при $U < 300 \,\mathrm{mV}$ ($T = 200^{\circ}\mathrm{C}$) вызвано насыщением данной компонентой тока при $U > 300 \,\mathrm{mV}$.

Напряжение отсечки U_{cut} линейно уменьшается с ростом температуры по закону $U_{cut}(mV)$ =842.9–1.21 T(K) для структуры KJV-62, $U_{cut}(mV)$ = 977.5–1.39 T(K) для структуры KJV-65.

Известно [4], что при обратном смещении ток, текущий через *p*-*n*-переход, может быть описан выражением

$$I \sim \exp(-E_g/\eta kT),\tag{2}$$

где *п* — постоянная, характеризующая механизм протекания тока. Если $\eta = 1$, то протекание тока обусловлено экстракцией носителей заряда через *p*-*n*-переход (диффузионный ток), а при $\eta = 2$ — генерацией носителей в *p*-*n*-переходе (генерационный ток). Поскольку R₀ измерялось при постоянном напряжении, то $R_0 \sim \exp(-E_g/\eta kT)$. Действительно, $\ln R_0$ в пределах погрешности эксперимента линейно зависел от 1/Т. Величина ширины запрещенной зоны Еg была рассчитана из спектров электролюминесценции, о чем будет написано ниже. Посредством линейной аппроксимации $\ln R = f(E_{a}/kT)$ было найдено значение *n*: 1.03 и 1.01 соответственно для KJV-62 и KJV-65. Таким образом, при малом отрицательном смещении на светодиоде протекание тока определяется диффузионным механизмом, величина которого экспоненциально растет с температурой [4].

С ростом обратного смещения должно происходить насыщение диффузионного тока [5], однако этого не происходит (рис. 4). Вычисления показали, что зависимость $\ln I \sim 1/T$ при U = const линейна вплоть до температуры 170°С, при которой происходит значительное увеличение последовательного сопротивления. Исходя из (2) была рассчитана зависимость величины η от температуры и приложенного напряжения (рис. 5). Из рисунка видно, что с ростом смещения η увеличивается и при комнатной температуре достигает величины ~ 5.6 . Согласно [4,6], это свидетельствует о существенной

Рис. 4. Обратные встви ВАХ КЈV-62 в зависимости от температуры.

Рис. 5. Зависимость величины η от температуры и напряжения (KJV-62).

Рис. 6. Спектры излучения светодиодов в зависимости от температуры.

роли туннельной составляющей тока. С ростом температуры зависимость $\eta = f(U)$ ослабевает. Это связано с тем, что в отличие от диффузионного тока величина туннельного тока увеличивается с ростом напряжения и слабо зависит от температуры.

Таким образом, при обратном смещении протекание тока обусловлено диффузионным и туннельным механизмами. Вклад туннельного тока в суммарный увеличивается с ростом приложенного напряжения и максимален при комнатной температуре. По мере возрастания температуры все большую роль играет диффузионная составляющая тока.

На рис. 6 представлены спектры излучения светодиодов при комнатной температуре ($T = 33^{\circ}$ C). Длина волны в максимуме спектральной плотности мощности для KJV-62 и KJV-65 составляет соответственно 3.95 μ m (0.314 eV) и 3.84 μ m (0.323 eV). При оптических переходах с сохранением волнового вектора энергия перехода из зоны проводимости в валентную зону должна быть меньше энергии максимума электролюминесценции hv_{max} на величину kT/2 [7], т.е.

$$E_g^{\text{calc}} = h v_{\text{max}} - \frac{1}{2} k T.$$

Рассчитанная подобным образом величина ширины запрещенной зоны E_g^{calc} при комнатной температуре равна 0.301 (KJV-62) и 0.310 eV (KJV-65).

Из рис. 6 видно, что спектры излучения имеют уширение в коротковолновой области спектра, связаное с излучательной рекомбинацией в широкозонном n-слое. Однако спектральное положение области уширения соответствует меньшей энергии, нежели рассчитанная величина E_g *n*-InAs_{0.55}Sb_{0.15}P_{0.30}. В [8] изучалась фотолюминесценция слоев InAsSbP, выращенных по методу газофазной эпитаксии. Было установлено, что при содержании в четверном растворе менее 70% InAs для выращенных слоев характерны флуктуации состава. Появление неоднородностей приводило к уширению спектра фотолюминесценции, а также к сдвигу максимума в область больших длин волн по сравнению с теоретически рассчитанным значением. В нашем случае слой n-InAsSbP содержит 55% InAs, а значит, неоднороден по составу. Носители заряда скапливаются и рекомбинируют в областях флуктуационных неоднородностей, характеризующихся меньшей величиной Eg, чем y InAs_{0.55}Sb_{0.15}P_{0.30}.

Одним из основных каналов рекомбинации носителей в узкозонных материалах является безызлучательная оже-рекомбинация. Для InAsSb и InAsSbP характерны два вида оже-процессов: ССНС (рекомбинация электона и дырки с передачей выделившейся энергии второму электрону зоны проводимости) и СННЅ (рекомбинация носителей с переходом тяжелой дырки в спин-орбитально отцепленную подзону) [9].

Скорость ССНС-процесса $R_n = \gamma_n n^2 p$, где *n* и *p* — концентрации носителей, а γ_n — коэффициент рекомбинации. Температурная зависимость γ_n определяется

Рис. 7. Зависимость величины максимума спектров излучения от температуры.

Рис. 8. Зависимость логарифма мощности излучения светодиодов от обратной температуры.

выражением $\gamma_n \sim T^{-1/2} \exp(-\varepsilon^{\text{th}}/kT)$, где ε^{th} — пороговая энергия. Величину ε^{th} можно оценить по формуле $\varepsilon^{\text{th}} \approx E_g m_c/m_h$, где m_c и m_h — эффективная масса электронов и тяжелых дырок соответственно. Откуда получаем, что пороговая энергия CCHC-процесса для InAsSb_{0.15}P_{0.3} больше в ≈ 1.8 раза, чем ε^{th} для InAsSb_{0.99} [9,10]. Вследствие этого с повышением температуры скорость оже-рекомбинации растет быстрее в активной области, чем в широкозонном слое. Это приводит к изменению формы спектра (рис. 6) и немонотонной зависимости энергии фотонов в максимуме излучения (рис. 7).

В случае СННS-процесса $R_p = \gamma_p n p^2$, где при $\Delta - E_g \gg kT \gamma_p \sim \exp(-(\Delta - E_g)/kT)$ [9]. Расчет величин Δ и E_g по методике, предложенной в [11], показал, что с ростом содержания антимонида индия в тройном растворе InAsSb разность $\Delta - E_g$ увеличивается, т. е. скорость СННS-процесса уменьшается. Возможно, это приводит к более резкому спаду мощности излучения структуры KJV-65 по сравнению с KJV-62 при увеличении температуры (рис. 8).

Уменьшение мощности излучения с ростом температуры носит сперхэкспоненциальный характер, что указывает на действие нескольких механизмов безызлучательной рекомбинации. Авторы [12] предположили, что помимо оже-рекомбинации уменьшение мощности происходит и вследствие поглощения на свободных носителях.

Заключение

Исследованы электрические и электролюминесцентные свойства светодиодов на основе гетероструктуры InAsSbP/InAsSb/InAsSbP. Показано, что излучательная рекомбинация носителей заряда происходит не только в активной области, но и в неоднородном по составу широкозонном *n*-слое. Уменьшение мощности излучения с ростом температуры носит сверхэкспоненциальный характер и обусловлено, главным образом, оже-рекомбинацией ССНС- и СННS-типов. При комнатной температуре протекание тока через гетероструктуру определяется туннельным механизмом независимо от полярности приложенного напряжения. С увеличением температуры при прямом смещении проявляется термическая эмиссия носителей заряда, а при обратном смещении растет роль диффузионного тока.

Список литературы

- [1] Данилова Т.Н., Журтанов Б.Е., Именков А.Н., Яковлев Ю.П. // ФТП. 2005. Т. 39. Вып. 11. С. 1281–1311.
- [2] Айдаралиев М., Зотова Н.В., Карандашев С.А., Матвеев Б.А., Ременный М.А., Стусь. Н.М., Талалакин Г.Н. // ФТП. 2000. Т. 34. Вып. 1. С. 102–105.
- [3] Шарма Б.Л., Пурохит Р.К. Полупроводниковые гетеропереходы. М.: Советское радио, 1979. 232 с.
- [4] *Пасынков В.В., Чиркин Л.К.* Полупроводниковые приборы. М.: Высшая школа, 1987. 177 с.
- 5] Берг А., Дин П. Светодиоды. М.: Мир, 1979. 686 с.
- [6] Астахова А.П., Головин А.С., Ильинская Н.Д., Калинина К.В., Кижаев С.С., Серебренникова О.Ю., Стоянов Н.Д., Harvath Zs.J., Яковлев Ю.П. // ФТП. 2010. Т. 44. Вып. 2. С. 278–284.
- [7] Айдаралиев М., Зотова Н.В., Карандашев С.А., Матвеев Б.А., Ременный М.А., Стусь. Н.М., Талалакин Г.Н. // ФТП. 2001. Т. 35. Вып. 12. С. 1431–1433.
- [8] Duncan W.J., Ali A.S.M., Marsh E.M., Spurdens P.C. // J. Cryst. Growth. 1994. Vol. 143. P. 155–161.
- [9] Абакумов В.Н., Перель В.И., Ясиневич И.Н. Безызлучательная рекомбинация в полупроводниках. СПб.: ПИЯФ, 1997. 375 с.
- [10] Mikhailova M.P. Handbook Series on Semiconductor Parameters / Ed. by M. Levinshtein, S. Rumyantsev, M. Shur. Vol. 2. London: World Scientific, 1999. 208 c.
- [11] Adachi S.J. // Appl. Phys. 1987. Vol. 61 (10). P. 4869-4876.
- [12] Айдаралиев М., Зотова Н.В., Карандашев С.А., Матвеев Б.А., Ременный М.А., Стусь. Н.М., Талалакин Г.Н. // ФТП. 2001. Т. 35. Вып. 5. С. 619–625.