01;05 Влияние размерности фононного спектра на устойчивость состояний конденсированных сред

© В.М. Кузнецов, В.И. Хромов

Российский химико-технологический университет им. Д.И. Менделеева, 125047 Москва, Россия e-mail: vikhromov@mail.ru

(Поступило в Редакцию 22 марта 2011 г.)

В рамках приближений Эйнштейна и Дебая рассмотрена задача о влиянии показателя размерности d_f фононного спектра, являющегося его структурной характеристикой в континуальных моделях, на устойчивость состояний конденсированных сред. В основу оценки устойчивости фазового состояния положен критерий Линдемана, обобщенный на произвольные значения $0 \le d_f \le \infty$. На примере исследования возможностей получения молекулярного водорода в сверхтекучем состоянии обсуждена проблема изменения физических характеристик вещества с помощью регулирования структуры его фононного спектра. Проведено сопоставление моделей Эйнштейна и Дебая в задаче динамики атомных колебаний и показана расходимость последней при размерностях фононного спектра $d_f < 2$, а также ее несоответствие при высоких температурах модели классического осциллятора для всех размерностей, кроме $d_f \to \infty$.

Введение

В квантовой теории теплоемкости Эйнштейна предполагается, что реальный спектр колебаний атомов твердого тела можно заменить одной специально подобранной частотой (ω). Полный спектр акустических колебаний учитывается в континуальной модели Дебая, разработанной для однородного изотропного пространства волновых векторов с показателем размерности $d_f = 3$. Естественным развитием указанных моделей является их обобщение на произвольные значения $0 < d_f < \infty$. Впервые такие попытки были сделаны (см., например, [1]) введением целочисленных значений: $d_f = 2$ (двумерное) и $d_f = 1$ (линейное) волновых пространств для описания температурных зависимостей теплоемкости плоских и цепочечных молекулярных структур. Дробное значение размерности d_f можно ввести в рамках фрактальной пространственной геометрии. Так, в работе [2] это сделано с целью построения теории фрактонов, в [3] — для описания низкотемпературной зависимости теплоемкости при $1 \le d_f \le 3$, а в [4,5] для общего представления теории Дебая в диапазоне $0 \leq d_f \leq \infty$.

На основании исследований [1-5] выяснилось, что размерность фононного спектра d_f является столь же фундаментальным параметром континуальной модели вещества, что и его характеристическая (дебаевская) температура $\theta_{\rm H}$.

Используя закон решеточной теплоемкости, по этому параметру можно провести классификацию конденсированных сред [5], в то время как по значениям характеристической температуры $\theta_{\rm H}$ она возможна лишь по группам веществ с одинаковой размерностью d_f .

Устойчивость конденсированных сред в моделях Дебая и Эйнштейна

Об устойчивости агрегатной фазы вещества в конденсированном состоянии можно судить по величине отклонения колеблющегося атома от равновесного положения. При этом Линдеманом было эмпирически установлено, что неустойчивое состояние, связываемое с фазовым переходом (плавлением), возникает, когда среднеквадратичное смещение $\langle r^2 \rangle^{1/2}$ -атома от положения равновесия, отнесенное к межатомному расстоянию *a*, достигает значения $\gamma = (\langle r^2 \rangle^{1/2}/a) \approx 0.1 - 0.25$. Это соотношение дает приближенный критерий, который в рамках гармонического приближения ($r \ll a$) позволяет оценить температуру $T_{\rm m}$ плавления для неквантовых кристаллов, для которых $T_{\rm m} > \theta_{\rm H}$. В дальнейшем для определенности будем придерживаться значения $\gamma \approx 0.1$.

Температурозависимая функция $\gamma(T)$, оценивающая амплитуду смещений частиц (формула Линдемана) при обобщении на произвольную размерность d_f фононного спектра в дебаевском приближении, имеет вид [6]

$$\gamma_{\rm D}(T) = \frac{\langle r^2(T) \rangle^{1/2}}{a} = \left\{ \frac{3\hbar^2 \mu d_f T^{d_f - 1}}{M k_{\rm B} a^2 (\theta_{\rm H}^{d_f} - \theta_{\rm N}^{d_f})} \right. \\ \left. \times \int_{x_{\rm min}}^{x_{\rm max}} \left[\frac{1}{2} + \frac{1}{(\exp x) - 1} \right] x^{d_f - 2} dx \right\}^{1/2}, \quad (1)$$

где $x = \hbar \omega / k_{\rm B} T$, \hbar — постоянная Планка, $k_{\rm B}$ — постоянная Больцмана, ω — частота атомных колебаний, μ — коэффициент, учитывающий число колебаний в многоатомной структуре, M — масса атома (молекулы) осциллятора, a — среднее расстояние между

частицами.1

$$heta_{
m H} = rac{\hbar\omega_{
m max}}{k_{
m B}}, \qquad heta_{
m N} = rac{\hbar\omega_{
m min}}{k_{
m B}}$$

— характеристические температуры, соответствующие максимальной $\omega_{\rm max}$ и минимальной $\omega_{\rm min}$ частотам тепловых колебаний в твердом теле соответственно.

Выражение (1) часто применяется в случае $\theta_{\rm N}=0$ (макроразмерное тело $L \gg a$) и $d_f = 3$ (закон Дебая) при расчетах температуры T_m плавления и фактора Дебая-Валлера (параметр, используемый в мёссбауэровской спектроскопии и рассеянии рентгеновских лучей и нейтронов). Тот факт, что при высоких температурах оно не приводит к значениям $(r^2)^{1/2}$, даваемым моделью классического гармонического осциллятора (см., например, [7]), в литературе обычно не комментируется. Более того, при значениях размерности фононного спектра $d_f \leq 2$ интеграл в выражении (1) является расходящимся на низких частотах. Низкочастотную расходимость выражения (1) можно по аналогии с "ультрафиолетовой катастрофой" в теории излучения абсолютно черного тела назвать "инфракрасной катастрофой" [6].

Ниже будет показано, что применение дебаевского приближения (1) к расчету температурной зависимости величины $\gamma_{\rm D}(T)$ в твердотельных структурах с $d_f < 2$ приводит к величинам $\gamma_{\rm D}(T) \approx 0.1$ при температурах $T \ll T_{\rm m}$, т.е. далеких от температуры плавления $T_{\rm m}$. Поэтому в общем случае произвольных значений d_f в задачах температурной динамики колебаний атомов твердого тела следует отказаться от дебаевского приближения и перейти к эйнштейновской модели, выбирая, например, в качестве характерной среднюю частоту фононного спектра

$$\begin{split} \langle \omega \rangle &= \frac{1}{3N} \int_{\omega_{\min}}^{\omega_{\max}} \omega g(\omega) d\omega \\ &= \frac{d_f}{d_f + 1} \omega_{\max} \frac{1 - \left(\frac{\theta_{\rm N}}{\theta_{\rm H}}\right)^{d_f + 1}}{1 - \left(\frac{\theta_{\rm N}}{\theta_{\rm H}}\right)^{d_f}}. \end{split}$$
(2)

Здесь *N* — число колеблющихся атомов,

$$\frac{\theta_{\rm N}}{\theta_{\rm H}} \approx \frac{a}{L} \ll 1$$

— относительная величина обрезания фононного спектра для образца с характерным размером *L*,

$$g(\omega) = rac{3Nd_f \omega^{d_f - 1}}{\omega_{\max}^{d_f} - \omega_{\min}^d}$$

— функция плотности состояний фононного спектра.

При этом выражение для температурной зависимости амплитуды смещений частиц в формуле Линдемана приобретает вид

$$\gamma_E(T) = \frac{\langle r^2(T) \rangle^{1/2}}{a}$$
$$= \left\{ \frac{3\hbar\mu}{Ma^2} \left[\frac{1}{2} + \frac{1}{\exp\left(\frac{\hbar\langle\omega\rangle}{k_{\rm B}T}\right) - 1} \right] \frac{1}{\langle\omega\rangle} \right\}^{1/2}.$$
 (3)

Таким образом, произвольный спектр $g(\omega)$ колебаний можно учесть как в модели Дебая (1), так и в модели Эйнштейна (3), но различным образом.

Для классической модели динамики твердого тела, как системы температурозависимых осцилляторов, имеем

$$\gamma_C(T) = \frac{1}{a\langle\omega\rangle} \sqrt{\frac{3\mu k_{\rm B}T}{M}}.$$
 (4)

Обычно в аналогах выражения (3) значения θ_N и d_f полагаются равными $\theta_N \to 0$ и $d_r = 3$, а вместо средней частоты $\langle \omega \rangle$ фононного спектра используется дебаевская частота ω_{\max} . Следует отметить, что формально $\langle \omega \rangle \to \omega_{\max}$ при $d_f \to \infty$ (см. (2)) и отличается от средней частоты $\langle \omega \rangle$ дебаевского ($d_f = 3$) спектра на 25%.

При $T \gg \theta_{\rm H}$ выражение (3) переходит в формулу (4) при любых значениях d_f и $\theta_{\rm N}/\theta_{\rm H}$. В то же время функция (1) при высоких температурах переходит в

$$\gamma_C'(T) = \frac{1}{a\omega_{\max}} \sqrt{\frac{3\mu k_{\rm B}T}{M}} \frac{d_f}{(d_f - 2)} f\left(\frac{\theta_{\rm N}}{\theta_{\rm H}}\right), \quad (5)$$

где

$$f\left(\frac{\theta_{\rm N}}{\theta_{\rm H}}\right) = \frac{1 - (\theta_{\rm N}/\theta_{\rm H})^{d_f - 2}}{1 - (\theta_{\rm N}/\theta_{\rm H})^{d_f}}.$$

Это выражение, в свою очередь, переходит в (4) только при $d_f \to \infty$, когда множитель $d_f/(d_f - 2) \to 1$ и $f(\theta_N/\theta_H) \to 1$.

На рис. 1 для различных значений d_f построены зависимости (1)–(4) от безразмерной температуры $T/\theta_{\rm H}$ при M = 100 а.т.u., a = 3.0 Å, $\mu = 1$, $\theta_{\rm N}/\theta_{\rm H} = 10^{-5}$. Асимптотика задачи такова, что приближение $d_f \to \infty$ практически выполняется уже при $d_f \ge 10$, и значения $\gamma_{\rm D}$, $\gamma_{\rm E}$, $\gamma_{\rm C}$ при $T/\theta_{\rm H} > 1$ совпадают друг с другом. При $d_f = 3$ они различаются, а при $d_f < 2$, в частности уже при $d_f = 1.9$ (D(1.9) на рис. 1), в соотношении (1) наблюдается расходимость.

На рис. 2 для отношения $\theta_N/\theta_H \sim 10^{-5}$, т.е. для макроразмерных $(L \approx 10^5 a)$ образцов, в качестве которых были выбраны Se $(d_f = 1.3, \mu = 1; \theta_H = 310 \text{ K}, a = 4.1 \text{ Å}, T_m = 490 \text{ K}, M = 13.4 \cdot 10^{-27} \text{ kg})$ и SiO₂ $(d_f = 1.05, \mu = 3; \theta_H = 1490 \text{ K}, a = 2 \text{ Å}, T_m = 2000 \text{ K}, M = 10^{-25} \text{ kg})^2$, приведены температурные зависимости $\gamma(T/\theta_H)$, рассчитанные по соотношениям (1)-(4).

¹ Предполагается, что оно может быть выбрано соответствующим образом вне зависимости от упорядоченности пространственного распределения частиц в исследуемой структуре, находящейся в трехмерном евклидовом пространстве.

² Справочные данные и данные расчетов из работы [4].

Результаты расчетов свидетельствуют о том, что относительные среднеквадратичные смещения в приближении Эйнштейна (3) при температурах $T \approx T_{\rm m}$ коррелируют с критерием Линдемана в отличие от явно завышенных значений $\gamma_D(T)$ дебаевской модели. Более того, соответствующие дебаевскому приближению данные для $\gamma_{\rm D}(T)$, приведенные на рис. 2 для Se и SiO₂, указывают на то, что эти вещества не должны существовать в твердом состоянии даже при комнатных температурах ($\gamma_{\rm D} \approx 0.1$ при $T \approx 10^{-3}$ K для Se и $T \approx 10^{-5}$ K для SiO₂). В то же время для веществ с размерностью фононного спектра $d_f > 2$ расходимость интеграла в (1) отсутствует. Расчетные значения отношения $\gamma_{\rm D}/\gamma_{\rm E} = f(T/\theta_{\rm H})$, не зависящего от конкретных характеристик вещества, таких как $M, a, \mu, \theta_{\rm H}$, приведены на рис. 3. Видно, что отношение γ_D/γ_E приближается к единице, если показатель $d_f \gg 1$, а также при сильном обрезании фононного спектра (на рисунке $\theta_{\rm N}/\theta_{\rm H} = 0.1$),

Рис. 1. Температурные изменения среднеквадратичных смещений частиц в континуальных моделях: D — Дебая, Е — Эйнштейна, С — классический гармонический осциллятор. В скобках указаны значения d_f .

Рис. 2. Температурные зависимости среднеквадратичных смещений при колебаниях атомов Se (сплошные линии) и молекул SiO₂ (пунктир): кривые *1, 2* — приближение Дебая; *3, 4* — приближение Эйнштейна; *5, 6* — классический осциллятор.

Рис. 3. Температурные зависимости отношений среднеквадратичных смещений частиц в моделях Дебая и Эйнштейна для разноразмерных ($\theta_N/\theta_H \approx a/L$) образцов: сплошные кривые $\theta_N/\theta_H = 10^{-5}$, пунктирные кривые — $\theta_N/\theta_H = 0.1$.

когда его длинноволновая часть значительно подавлена, что имеет место, например, в нанообъектах.

Устойчивость квантовых кристаллов

Оставаясь в рамках гармонического приближения, с целью получения качественных выводов рассмотрим задачу устойчивости для квантовых кристаллов, образованных атомами или молекулами легких элементов (например, H₂, He и их изотопами). В таких системах амплитуды нулевых колебаний существенно превышают значения, даваемые критерием Линдемана, т.е. $(r_0^2)^{1/2} \le a$, делая его неприменимым для оценки температуры фазового перехода (плавления). Волны де-Бройля соседних атомов в квантовых кристаллах перекрываются, что не позволяет считать их локализованными, как это имеет место в узлах кристаллической решетки классических твердотельных систем. Делокализация и, как следствие, смещение всех атомов приводят, по-видимому, к относительной "нечувствительности" структуры к критерию Линдемана при больших амплитудах нулевых колебаний в квантовых кристаллах. При этом нормировка на один атом в расчетах величины $\gamma(T)$ сохраняется.

Чтобы разрушить такую структуру, достаточны небольшие тепловые энергии, поэтому для квантовых кристаллов выполняется условие $T_{\rm m} < \theta_{\rm H}$. На рис. 4 приведены результаты расчетов функции $\gamma_{\rm E}(T)$ для молекулярного водорода H₂ с параметрами: $d_f = 3$, $\mu = 2$, $\theta_{\rm H} = 110$ K, $\theta_{\rm N}/\theta_{\rm H} = 10^{-3}$; a = 3.75 Å, $T_{\rm m} = 14$ K, $M = 3.34 \cdot 10^{-27}$ kg, а также его модельных модификаций с уменьшенными значениями размерности d_f фононного спектра.

Снижения размерности d_f реального объекта можно добиться, переходя к наномасштабу образца, помещая, например, исследуемый материал в поры матрицы иного вещества или нанотрубки. На такую возможность

Рис. 4. Относительные среднеквадратичные смещения молекул обычного $(d_f = 3)$ и модифицированного $(d_f = 2$ и $d_f = 1)$ водорода.

указывают результаты работы [6], основанные на экспериментальных данных по уменьшению температуры $T_{\rm m}$ плавления различных веществ при переходе от микроразмерных образцов к наномасшабным [8]. При этом оказывается, что если размерность фононного спектра исходного микрообразца $d_f = 3$, то в наночастицах того же материала она может быть снижена до значений $d_f \approx 2$, а в нанотрубках, по-видимому, и до $d_f \approx 1$.

У всех кривых зависимости $\gamma_{\rm E}(T)$ на рис. 4 в области низких температур $T < T_{\rm m}$ наблюдается характерное плато, хотя незначительный температурный рост этой величины все же наблюдается. Именно из-за него и происходят потеря устойчивости и фазовый переход вещества при тепловых колебаниях. Поэтому в дальнейшем будем предполагать, что критичной для потери устойчивости и соответствующего фазового перехода является значение тепловой части функции (3), т.е. $\gamma_{\rm E}^*(T_{\rm m}, \theta_{\rm H}, \theta_{\rm N}, d_f)$ в точке плавления (для молекулярного водорода $T = T_{\rm m} = 14$ K, $\theta_{\rm H} = 110$ K, $\theta_{\rm N} = 0, d_f = 3$).

Примем в качестве "разумного предположения", что именно это значение $\gamma_{\rm E}^*$, полученное на основе экспериментальных данных, можно использовать для оценок температуры плавления "модифицированного" водорода, т.е. при других значениях d_f .

Как известно, большой интерес представляет изучение возможности понижения температуры $T_{\rm m}$ плавления водорода с целью перевода его в сверхтекучее состояние. Для этого необходимо выполнение температурного условия $T_{\rm m} < T_{\lambda}$, где T_{λ} — температура перехода в сверхтекучую фазу. В работе [9] для H₂ приведена близкая к T_{λ} величина температуры идеального бозе-газа $T_{\lambda 0} \approx 6$ K, а для понижения температуры $T_{\rm m}$ предложены различные способы: создание отрицательных давлений, понижение характеристической температуры $\theta_{\rm H}$ за счет введения примесей, создания квантовых возбуждений (примесонов) и др. Тем не менее проблема получения сверхтекучего водорода пока не решена.

В этой связи обратим внимание на еще одну возможность создания условий, благоприятствующих переходу в сверхтекучее состояние: понижение T_m за счет уменьшения размерности d_f фононного спектра. Насколько изменится при этом первоначальное состояние водорода, в том числе величина а и характеристическая температура $\theta_{\rm H}$, сказать трудно, хотя ее уменьшение благоприятно сказывается на приближении к состоянию сверхтекучести [9]. Поэтому ниже будем придерживаться значений *а* и $\theta_{\rm H}$ обычного водорода. Выполненные при этом предположении расчеты по определению зависимости $T_{\rm m}$ от d_f для "тепловой" части выражения (3) представлены на рис. 5, где кривая 1 соответствует "невозмущенному" состоянию H_2 ($\theta_N/\theta_H = 10^{-10}$, $d_f = 3$), кривая 2 — водороду в нанопорах ($\theta_{
m N}/\theta_{
m H} = 0.1$ $d_f = 2$), а кривая 3 — в нанотрубках ($\theta_{\rm N}/\theta_{\rm H} = 10^{-3}$, $d_f = 1$). Видно, что условие $T_{
m m} < T_{\lambda}$ для этих случаев не достигается, и необходимо более значительное снижение размерности — до значений $d_f = 0.5 - 0.1$ (кривая 4),

Рис. 5. Предполагаемое снижение температуры плавления в модификациях молекулярного водорода по критерию $\gamma_{\rm E}^*$ ($T_{\rm m} = 14$ K, $d_f = 3$). Штриховые кривые — приближение Дебая.

Рис. 6. Предполагаемое снижение температуры плавления в модификациях молекулярного водорода по критерию $[d\gamma_{\rm E}^*(T)/dT]_{T=14\,\rm K} = {\rm const.}$

Журнал технической физики, 2011, том 81, вып. 12

которое может иметь место в кластерной форме вещества. Об этом свидетельствуют результаты обработки колебательных спектров крупных кластеров, исследованных в работе [10] с помощью пакета квантовохимических программ GAMESS.

Для определения состояния потери устойчивости можно предложить и другую оценку, полагая, например, что "критичной" является не величина $\gamma_{\rm E}^*$, обусловленная вкладом тепловой части энергии колебаний в точке $T = T_{\rm m}$, а ее температурное изменение в этой точке, т.е. величина производной $[d\gamma_{\rm E}^*(T)/dT]_{T=T_{\rm m}}$. Результаты соответствующих расчетов представлены на рис. 6. Они свидетельствуют о приближении к условиям наступления режима сверхтекучего состояния в области значений $d_f \approx 1$. Можно, конечно, предлагать и другие теоретические критерии для оценки потери устойчивости в квантовых кристаллах, но это малопродуктивно. Во-первых, потому, что при определении динамических характеристик квантовых кристаллов существен учет ангармонизма. Поэтому полученные выше в гармоническом приближении численные значения T_m могут оказаться иными. Во-вторых, строгих критериев потери устойчивости нет до сих пор даже для обычных кристаллических веществ, о чем свидетельствует вековой опыт применения критерия Линдемана, не имеющего достаточных теоретических обоснований, но подтвержденного экспериментально. Поэтому реальные изменения характеристик водорода, охлаждаемого в нанопорах или нанотрубках, можно установить только путем проведения соответствующих экспериментов.

Устойчивость неквантовых твердотельных структур

Вернемся к рассмотрению сред с малыми амплитудами нулевых колебаний и размерностями фононного спектра, изменяющимися в диапазоне $0 \le d_f < \infty$. Ради общности не будем сужать этот диапазон для решения задачи об устойчивости вещества, хотя для большинства устойчивых твердотельных состояний его можно ограничить значениями $1 \le d_f \le 3$. Тем не менее следует отметить, что и область значений $d_f \gg 1$ не является "экзотикой", как это может показаться. Например, этот диапазон неявно присутствует в различного рода оценках и приближенных решениях задач, когда средняя частота фононного спектра $\langle \omega
angle
ightarrow \omega_{
m max}$ и можно не учитывать вклад всех частот, кроме $\omega_{\rm max}$ и близких к ней. Выражение (1) переходит в (4) только при $d_f \rightarrow \infty$. Хорошо известные различия в значениях низкотемпературной ($T < \theta_{\rm H}$) зависимости теплоемкости, даваемые при d_f = 3 моделями Эйнштейна — $C_{\rm E}(T) \approx \exp(-\hbar \langle \omega \rangle / k_{\rm B} T)$ и Дебая — $C_{\rm D}(T) \approx T^3$ при $d_f \to \infty$, полностью отсутствуют (практически, как показывают расчеты, совпадение $C_{\rm E}(T) \approx C_{\rm D}(T)$ имеет место уже при $d_f \ge 10$.

Рис. 7. Устойчивость состояний конденсированной среды в зависимости от размерности фононного спектра. На вставке — фрагмент рисунка в линейном масштабе оси d_f .

Что касается области $d_f < 1$, то к ней можно отнести некоторые рыхлые фрактальные структуры [11], различные кластеры, а также структуры, для которых малые размерности d_f появляются в определенном температурном диапазоне. Последнее имеет место, например, при фазовых переходах в белках [12], а также при некоторых аномалиях в поведении теплоемкости твердых тел при низких температурах [8].

Для оценки границы устойчивости по величине d_f будем пользоваться критерием Линдемана в форме (3), применяя его к "типичным" неквантовым структурам. Пусть, например, вещество характеризуется параметрами: M = 100 a. m. u., $T = \theta_{\rm H} = 300$ K, a = 3.0 Å и $heta_{
m N}/ heta_{
m H} = (10^{-1} - 10^{-10}).$ Тогда зависимость величины $\gamma_{
m E}$ от $\lg d_f$ будет иметь вид кривых, представленных на рис. 7, где пунктиром выделен вклад в $\gamma_{\rm E}$ нулевых колебаний, обозначенный уо. Видно (см. вставку на рис. 7), что в этом случае неустойчивость ($\gamma_{\rm E} > 0.1$) возникает при $d_f \le 0.3$ для массивных ($\theta_{\rm N}/\theta_{\rm H} = 10^{-10}$) образцов и ее граница смещается в сторону меньших значений d_f в зависимости от величины обрезания $\theta_{\rm N}/\theta_{\rm H}$ фононного спектра. Если изменять массу атомов $M = (50 - 200 \, \text{a. m. u.})$ и температуру (например, $T_1 = \theta_{\rm H} = 300 \,{\rm K}, T_2 = 0.1 \theta_{\rm H} = 30 \,{\rm K}$), то результаты аналогичных расчетов по определению величины d_f , при

Значения показателя d_f , при которых достигается критерий Линдемана в динамической модели Эйнштейна. $\theta_{\rm H} = 300 \, {\rm K}, a = 3 \, {\rm \AA}$

<i>M</i> , a.m.u.	$ heta_{ m N}/ heta_{ m H}$					
	10^{-3}		10^{-6}		10^{-10}	
	Температуры Т1, Т2, К					
	300	30	300	30	300	30
50	0.465	0	0.495	0.077	0.493	0.112
100	0.225	0	0.297	0.007	0.305	0.059
200	0.055	0	0.178	0	0.195	0.019

которой достигается значение $\gamma_{\rm E}=0.1,$ можно свести в таблицу.

Приведенные в таблице данные свидетельствуют о том, что в указанном диапазоне изменения параметров M, T и θ_N/θ_H твердотельная структура устойчива, если $1 \le d_f \le \infty$, а в области значений $0 \le d_f \le 1$ среда, вообще говоря, неустойчива. При этом, согласно критерию Линдемана, граница устойчивости по d_f смещается в сторону меньших значений размерности при увеличении массы атомов M, уменьшении размеров $L(\theta_N/\theta_H \to 1)$ тела, а также при снижении температуры.

Заключение

1. Показано, что при расчетах амплитуд колебаний атомов в упругой среде применение дебаевского приближения приводит к низкочастотной расходимости, если показатель размерности фононного спектра $d_f < 2$. Эйнштейновский подход, основанный на использовании средней частоты фононного спектра, свободен от этого недостатка и применим при любых значениях показателя d_f .

2. На примере задачи о возможности получения водорода в сверхтекучем состоянии показано, что с помощью изменения показателя d_f , отражающего структуру фононного спектра, можно влиять на физические характеристики вещества, например его температуру плавления.

3. С помощью критерия Линдемана определены границы устойчивости состояний конденсированных сред с показателями размерности фононного спектра в диапазоне значений $0 \le d_f < \infty$.

Список литературы

- [1] Тарасов В.В. Проблемы физики стекла. М.: Стройиздат, 1979. 256 с.
- [2] Alexander S., Laermans C., Orbach R., Rosenberg H.M. // Phys. Rev. B. 1983. Vol. 28. P. 4615–4619.
- [3] Якубов Т.С. // ДАН СССР. 1990. Т. 310. С. 145.
- [4] Кузнецов В.М., Хромов В.И. // ЖТФ. 2008. Т. 78. Вып. 11. С. 11–16.
- [5] Кузнецов В.М., Хромов В.И. // Письма в ЖТФ. 2010. Т. 36. Вып. 11. С. 98–103.
- [6] Кузнецов В.М., Хромов В.И. // Письма в ЖТФ. 2009. Т. 35. Вып. 10. С. 66–72.
- [7] Стишов С.М. // УФН. 1974. Т. 114. Вып. 1. С. 3-40.
- [8] *Суздалев И.П.* Физико-химия нанокластеров, наноструктур и наноматериалов. М.: Комкнига, 2005. 289 с.
- [9] Гейликман Б.Т. // ФТТ. 1973. Т. 15. Вып. 11. С. 3293–3297.
- [10] Егоров Б.В., Кощеев А.В., Маркачёв Ю.Е. // Мат. моделирование. 2002. Т. 14. С. 109–115.
- [11] *Уэбман И.* // Фракталы в физике. М.: Мир, 1988. С. 488-497.
- [12] Кузнецов В.М., Хромов В.И. Труды 52-й науч. конф. МФТИ. 2009. Ч. VI. С. 80–81.