04;05;12 Напряженное состояние электроизоляционного барьера в структуре стенки жидкометаллического бланкета термоядерного реактора

© И.В. Витковский,¹ Н.А. Долгов,² А.Н. Конев¹

¹ Научно-исследовательский институт электрофизической аппаратуры им. Д.В. Ефремова, 196641 Санкт-Петербург, Россия ² Институт проблем прочности им. Г.С. Писаренко НАН Украины, 01014 Киев, Украина e-mail: vitkoviv@sintez.niiefa.spb.su

(Поступило в Редакцию 31 августа 2010 г. В окончательной редакции 25 января 2011 г.)

Разработана методика аналитического определения нормальных и касательных напряжений в трехслойной структуре многослойной стенки проточной части жидкометаллического бланкета термоядерного реактора. Приведены результаты расчетных исследований влияния упругих свойств материалов и геометрических параметров слоев на их напряженное состояние.

Введение

Надежность функционирования жидкометаллического бланкета термоядерного реактора (ТЯР) во многом зависит от способности многослойной металлокерамической стенки проточного тракта, включающей основной конструкционный материал (основу), слой, улучшающий адгезионное взаимодействие между основой и изоляционным слоем (изолятором), выдерживать механические и термоциклические нагрузки, возникающие как в процессе изготовления, так и при эксплуатации такой конструкции [1]. Следовательно, одним из основных требований к качеству многослойной металлокерамической структуры стенок проточного тракта жидкометаллического бланкета ТЯР является отсутствие расслоений.

Образование такого дефекта зависит как от толщин слоев, свойств материалов, технологии изготовления, так и от нагрузок, воздействующих на стенки.

Особенностью системы основа-покрытие является способность передавать через адгезионный контакт нагрузку как в покрытие, так и в основу. В настоящей работе рассмотрен случай, при котором напряжения в многослойной структуре возникают вследствие воздействия усилий, приложенных к плоской основе.

Известны различные модели для определения распределения напряжений в зоне адгезионного контакта основного материала с покрытием [2–7]. Ниже рассмотрено влияние упругих свойств материалов и геометрических параметров слоев на их напряженное состояние в трехслойной структуре применительно к электроизоляционному барьеру стенки проточной части жидкометаллического бланкета ТЯР.

Методика расчета нормальных и касательных напряжений

Исследования многослойных структур для жидкометаллического бланкета ТЯР показывают, что с точки зрения удовлетворительных электроизоляционных и адгезионных свойств вполне приемлемой конструкцией являются структуры с покрытиями, полученные осаждением по методу "КИБ" [8] из чередующихся слоев металла и керамики. Заметим, что для "литиевого" бланкета, в котором "основой" может быть сплав V-4Cr-Ti (VCT), предпочтительны слои хрома (Cr) и нитрида алюминия (AlN) [1,9], а для "литий-свинцового" бланкета с "основой" из EUROFER (EF) — слои из хрома и AlN или окиси алюминия (Al₂O₃).

Для проведения качественного анализа напряженного состояния такой конструкции рассмотрим упрощенную модель стенки бланкета в виде трехслойной пластины, которая подвергается растяжению (см. рисунок). Рассматриваемая структура включает конструкционный материал 1 (основу) толщиной h_1 , на одну поверхность которой осаждены улучшающий адгезию слой металла 2 толщиной h_2 и слой керамики (изолятора) 3 толщиной h_3 . Изгиб основы не учитываем вследствие незначительной ее жесткости.

При растяжении в плоскостях адгезионных контактов I (между основой и осажденным металлом) и II (между осажденными слоями металла и керамики) возникают касательные напряжения. Величину касательных напряжений для плоскостей I и II обозначим τ_1 и τ_2 соответственно.

При расчете различных адгезионных соединений (систем основа-покрытие, многослойных материалов, ком-

позиционных материалов и т.д.) делают различные предположения, касающиеся уровня напряжений в них. При исследовании напряженного состояния в адгезионных соединениях предполагается различный характер распределения касательных напряжений.

В основу принятой нами модели сдвигового запаздывания (shear-lag model) [10] положено предположение, что напряжения в системе (матрица-волокно) пропорциональны различию перемещений составляющих этой системы. Достаточно подробный обзор работ, посвященных использованию упомянутой модели при изучении адгезионных соединений, представлен в работах [7,11].

Подобно модели [10] примем:

касательные напряжения в плоскостях I и II пропорциональны разности перемещений Δu соседних слоев материалов, составляющих систему основа-покрытие, и снижаются по мере удаления от плоскостей адгезионных контактов

$$\tau_n = S_n \cdot \Delta u_n,\tag{1}$$

где S_n — некоторые постоянные системы основапокрытие, подлежащие определению, Δu — приращение перемещений сдвига в плоскости адгезионного контакта на бесконечно малом элементе длиной dz равно разности деформаций центров тяжести соседних слоев системы основа-покрытие, n = 1, 2;

разности перемещений для плоскостей адгезионного контакта $\partial(\Delta u_1)/\partial z$ и $\partial(\Delta u_2)/\partial z$ зависят от поперечных сил Q, эквивалентных воздействию соответствующих слоев, и от внешней растягивающей нагрузки

$$\frac{\partial(\Delta u_n)}{\partial z} = C_{n1}Q_1 + C_{n2}Q_2 + \delta_{n1}\varepsilon_0; \qquad n = 1, \ 2.$$

Здесь C_{n1} и C_{n2} — податливости поперечного сечения, на которые действуют силы Q_1 и Q_2 в соответствующих адгезионных плоскостях I и II, δ_{n1} — символ Кронекера, $\varepsilon_0 = -\frac{P_1}{E_1F_1}$ — удлиненение основы без покрытия при воздействии на нее внешней растягивающей нагрузки, $C_{11} = \frac{1}{E_1F_1} + \frac{1}{E_2F_2}$, $C_{12} = C_{21} = -\frac{1}{E_2F_2}$, $C_{22} = \frac{1}{E_2F_2} + \frac{1}{E_3F_3}$, где P_1 — внешняя сила, приложенная к основе, E_m , F_m , m = 1-3 — модели упругости, площади поперечного сечения основы и слоев 2, 3 соответственно.

Дифференцируя (1), получаем

$$\frac{\partial(\Delta u_n)}{\partial z} = \frac{1}{S_n} \frac{\partial \tau_n}{\partial z}, \qquad n = 1, \ 2.$$
(3)

Из выражений (2) и (3) следует

$$\frac{1}{S_n}\frac{\partial \tau_n}{\partial z} = C_{n1}Q_1 + C_{n2}Q_2 + \delta_{n1}\varepsilon_0, \qquad n = 1, 2.$$

Касательные напряжения в плоскостях I и II вычисляем из выражения

$$\tau_n = \frac{1}{t} \frac{\partial Q_n}{\partial z},\tag{4}$$

где t — ширина пластины, n = 1, 2.

Систему дифференциальных уравнений для определения усилий сдвига в плоскостях I и II преобразуем к виду

$$\frac{1}{S_n \cdot t} \frac{\partial^2 Q_n}{\partial z^2} = C_{n1} Q_1 + C_{n2} Q_2 + \delta_n \varepsilon_0, \qquad n = 1, \ 2.$$
 (5)

Решение однородной системы уравнений (5) без свободного члена $\delta_{n1} \varepsilon_0$ запишем в виде

$$Q_n = \alpha_{n1}Q_1^* + \alpha_{n2}Q_2^*, \qquad n = 1, \ 2.$$

Здесь α_{n1} , α_{n2} — некоторые постоянные множители, $Q_n^* = A_n s h(k_n z) + B_n c h(k_n z)$ — решение однородной системы уравнений, где A_n , B_n — постоянные, определяемые из граничных условий, n = 1, 2. Для нахождения корней k_1 и k_2 характеристического уравнения запишем уравнение вида

$$\begin{vmatrix} S_1 t C_1 - k^2 & S_1 t C_{12} \\ S_2 t C_{21} & S_2 t C_{22} - k^2 \end{vmatrix} = 0.$$

Отсюда уравнение

$$k^{4} - k^{2}(S_{1}tC_{11} + S_{2}tC_{22}) + S_{1}S_{2}t^{2}(C_{11}C_{22} - C_{12}^{2}) = 0,$$
(6)

имеющее два корная k_1 и k_2 :

$$k_{1}^{2} = \frac{1}{2} \Big(S_{1}tC_{11} + S_{2}tC_{22} + \sqrt{(S_{1}tC_{11} - S_{2}tC_{22})^{2} + 4C_{12}^{2}S_{1}S_{2}t^{2}} \Big),$$

$$k_{2}^{2} = \frac{1}{2} \Big(S_{1}tC_{11} + S_{2}tC_{22} - \sqrt{(S_{1}tC_{11} + S_{2}tC_{22})^{2} - 4S_{1}S_{2}t^{2}(C_{11}C_{22} - C_{12}^{2})} \Big).$$

Коэффициенты α_{n1} , α_{n2} определяем из однородных систем линейных уравнений, определитель которых равен нулю:

$$(S_1 t C_{11} - k_n^2)\alpha_{1n} + S_1 t C_{12}\alpha_{2n} = 0,$$

$$S_2 t C_{21}\alpha_{1n} + (S_2 t C_{22} - k_n^2)\alpha_{2n} = 0, \qquad n = 1,$$

При $k = k_1$ получаем

$$(S_1 t C_{11} - k_1^2) \alpha_{11} + S_1 t C_{12} \alpha_{21} = 0,$$

$$S_2 t C_{21} \alpha_{11} + (S_2 t C_{22} - k_1^2) \alpha_{21} = 0,$$
(7)

2.

тогда

$$\frac{\alpha_{21}}{\alpha_{11}} = \frac{k_1^2 - S_1 C_{11}}{S_1 t C_{12}} = \frac{S_2 t C_{12}}{k_1^2 - S_2 t C_{22}}.$$

Чтобы решение уравнений (7) было нетривиальным, положим следующее условие нормированности коэффициентов α_{n1} :

$$\sum_{n=1}^{2} \frac{\alpha_{n1}^2}{S_n t} = 1.$$
 (8)

Нормируем коэффициенты α_{11} и α_{21} , обозначив

$$\frac{\alpha_{21}\sqrt{S_1}}{\alpha_{11}\sqrt{S_2}} = \frac{\sqrt{S_1S_2}tC_{12}}{k_1^2 - S_2tC_{22}} = \mathrm{tg}\beta,$$

тогда

$$\alpha_{21} = \alpha_{11} \sqrt{\frac{S_2}{S_1}} \, \mathrm{tg}\beta.$$

В соответствии с выражением (8)

$$\frac{\alpha_{11}^2}{S_1t} + \frac{\alpha_{21}^2}{S_2t} = \frac{\alpha_{11}^2}{S_1t} + \frac{\alpha_{11}^2}{S_1t} \operatorname{tg}^2 \beta = 1$$

откуда

$$\alpha_{11} = \sqrt{S_1 t} \cos \beta, \qquad \alpha_{21} = \sqrt{S_2 t} \sin \beta.$$

Аналогично при $k = k_2$ получаем

$$\alpha_{12} = -\sqrt{S_1 t} \sin \beta, \qquad \alpha_{22} = \sqrt{S_2 t} \cos \beta.$$

Выражения для неизвестных Q_1^* и Q_2^* запишем в виде

$$Q_1^* = \frac{\alpha_{11}}{S_1} Q_1 + \frac{\alpha_2}{S_2} Q_2$$

= $\sqrt{\frac{t}{S_1}} \cos\beta \cdot Q_1 + \sqrt{\frac{t}{S_2}} \sin\beta \cdot Q_2,$
$$Q_2^* = \frac{\alpha_{12}}{S_1} Q_1 + \frac{\alpha_{22}}{S_2} Q_2$$

= $-\sqrt{\frac{t}{S_1}} \sin\beta \cdot Q_1 + \sqrt{\frac{t}{S_2}} \cos\beta \cdot Q_2.$

Тогда система уравнений (5) имеет вид

$$\frac{\partial^2 Q_n^*}{\partial z^2} = k_n^2 Q_n^* + \varepsilon_{0n}^*, \ n = 1, \ 2, \tag{9}$$

где

$$\varepsilon_{01}^* = \alpha_{11}\varepsilon_0 = \sqrt{S_1 t} \cos\beta \cdot \varepsilon_0,$$

$$\varepsilon_{02}^* = \alpha_{12}\varepsilon_0 = -\sqrt{S_1 t} \sin\beta \cdot \varepsilon_0.$$

Решение системы уравнений (9) ищем в виде

$$Q_n^* = A_n \operatorname{sh}(k_n z) + B_n \operatorname{ch}(k_n z) + Q_{0n}^*, \qquad n = 1, 2,$$

где $Q_{0n}^* = -\varepsilon_{0n}^*/k_n^2$, n = 1, 2 — частные решения системы (9).

Из симметричности функции Q_1^* относительно оси z = 0 следует $A_1 = 0$. Используя граничное условие $Q_1^*(l) = 0$, имеем

$$B_1 = \frac{\varepsilon_{01}^*}{k_1^2 \mathrm{ch}(k_1 l)},\tag{10}$$

где *l* — характерный размер в направлении, коллинеарном действию главных напряжений.

Аналогично

$$A_2 = 0, \qquad B_2 = \frac{\varepsilon_{02}^*}{k_2^2 \mathrm{ch}(k_2 l)}.$$
 (11)

9* Журнал технической физики, 2011, том 81, вып. 10

Поперечные силы Q_1 и Q_2 определяем из выражений

131

$$Q_1 = \sqrt{S_1 t} \cos\beta \cdot Q_1^* - \sqrt{S_1 t} \sin\beta \cdot Q_2^*,$$

$$Q_2 = \sqrt{S_2 t} \sin\beta \cdot Q_1^* + \sqrt{S_2 t} \cos\beta \cdot Q_2^*.$$

Используя (4), (10), (11), получаем выражения для касательных напряжений:

$$\tau_{1} = \frac{S_{1} \cos^{2} \beta \cdot \varepsilon_{0} \cdot \operatorname{sh}(k_{1}z)}{k_{1} \operatorname{ch}(k_{1}l)} + \frac{S_{1} \sin^{2} \beta \cdot \varepsilon_{0} \cdot \operatorname{sh}(k_{2}z)}{k_{2} \operatorname{ch}(k_{2}l)},$$
$$\tau_{2} = \frac{\sqrt{S_{1}S_{2}} \sin \beta \cdot \cos \beta \cdot \varepsilon_{0} \cdot \operatorname{sh}(k_{1}z)}{k_{1} \operatorname{ch}(k_{1}l)} - \frac{\sqrt{S_{1}S_{2}} \sin \beta \cdot \cos \beta \cdot \varepsilon_{0} \cdot \operatorname{sh}(k_{2}z)}{k_{2} \operatorname{ch}(k_{2}l)}.$$

Постоянные S_1 и S_2 определяем аналогично подходу [12], предполагая, что толщина поверхностного слоя основы, подвергаемая сдвигу, составляет $h_1/2$:

$$S_1 = 2\left(\frac{h_1}{G_1} + \frac{h_2}{G_2}\right)^{-1}, \qquad S_2 = 2\left(\frac{h_2}{G_2} + \frac{h_3}{G_3}\right)^{-1}.$$

Нормальные напряжения в основе и в двухслойном покрытии равны

$$\sigma_m=\frac{N_m}{F_m}; \qquad m=1-3,$$

где σ_1 — нормальные напряжения в основе, σ_2 — нормальные напряжения в подслое 2, σ_3 — нормальные напряжения в слое 3; N_m — продольная сила в соответствующих слоях.

Продольные силы системы основа-металл-керамика равны

$$N_1 = P_1 - Q_1, \quad N_2 = Q_1 - Q_2, \quad N_3 = Q_2,$$

где поперечные силы Q_1 и Q_2 вычисляются по формулам

$$Q_1 = \frac{S_1 t \cos^2 \beta \cdot \varepsilon_0}{k_1^2} \left(\frac{\operatorname{ch}(k_1 z)}{\operatorname{ch}(k_1 l)} - 1 \right) + \frac{S_1 t \sin^2 \beta \cdot \varepsilon_0}{k_2^2} \left(\frac{\operatorname{ch}(k_2 z)}{\operatorname{ch}(k_2 l)} - 1 \right),$$
$$Q_2 = \frac{\sqrt{S_1 S_2 t} \sin \beta \cdot \cos \beta \cdot \varepsilon_0}{k_1^2} \left(\frac{\operatorname{ch}(k_1 z)}{\operatorname{ch}(k_1 l)} - 1 \right) - \frac{\sqrt{S_1 S_2 t} \sin \beta \cdot \cos \beta \cdot \varepsilon_0}{k_2^2} \left(\frac{\operatorname{ch}(k_2 z)}{\operatorname{ch}(k_2 l)} - 1 \right).$$

Характер распределения нормальных и касательных напряжений в системе основа-покрытие не зависит от внешних растягивающих нагрузок, приложенных к основе. Поэтому от абсолютных значений напряжений можно перейти к относительным. Относительные касательные τ_{nr} и нормальные σ_{mr} напряжения вычисляются по формулам

$$au_{nr}=rac{ au_n}{\sigma_{
m sub}}, \quad n=1, \ 2; \qquad \sigma_{mr}=rac{\sigma_m}{\sigma_{
m sub}}, \quad m=1-3,$$

где $\sigma_{\rm sub}$ — напряжение, приложенное к основе и вычисляемое по формуле $\sigma_{\rm sub} = \frac{P_1}{F_1}$.

h_1, mm			1	5	1	5	1	5	1	5
$2l, \mu m$	$h_2, \ \mu \mathrm{m}$	$h_3, \mu m$	$\sigma_{2r}^{\max},\%$		$\sigma_{3r}^{\max},\%$		$ au_{1r}^{\max}$,%		$ au_{2r}^{\max},\%$	
25	2	15	109	110	17	17	188	189	108	109
25	2	20	113	113	11	11	196	199	115	117
25	2	40	121	121	3.4	3.4	212	217	128	132
250	2	15	159	163	164	168	188	189	108	109
250	2	20	157	161	155	159	196	199	115	117
250	2	40	152	158	117	122	212	217	128	132

Максимальные относительные напряжения для V-4Cr-4Ti/(Cr)/(AlN), ($\sigma_{1r}^{max} = 100\%$), $h_1 = 1$ и 5 mm

Оценку и анализ влияния соотношений толщин слоев и модулей упругости их материалов на напряженное состояние трехслойных структур проведем в диапазоне величин, представляющих практический интерес:

$$\frac{h_2}{h_1} = (0, 4, 2) \cdot 10^{-3},$$
$$\frac{h_3}{h_1} = (3, 4, 8, 15, 20, 40) \cdot 10^{-3};$$
$$\frac{E_2}{E_1} = \frac{E_{\rm Cr}}{E_{\rm VCT}} = 1.66, \qquad \frac{E_3}{E_1} = \frac{E_{\rm AIN}}{E_{\rm VCT}} = 1.78.$$

Для расчетов в качестве базисных значений приняты $h_1 = 1$ и 5 mm; модуль упругости сплава основы V-4Cr-4Ti принят $E_{\rm VCT} = 173$ MPa, для хрома $E_{\rm Cr} = 287$ MPa и нитрида алюминия $E_{\rm AIN} = 308$ MPa в соответствии с [13,14].

Наши исследования аналогичных конструкций показали, что отношение шага трещин в покрытии к толщине осажденных слоев металла и керамики может находиться в диапазоне от 1 до 10. Для расчетов принято $2l = 25, 250 \,\mu$ m.

Значения относительных напряжений по длине покрытия для принятых параметров представлены в таблице.

Полученные данные свидетельствуют:

• покрытие незначительно влияет на относительные нормальные напряжения в основе,

• максимальные касательные напряжения возникают в сечениях $z = \pm l$,

• максимальные нормальные напряжения в сечениях z = 0,

• с увеличением отношения h_2/h_3 касательные напряжения снижаются,

• наибольшие напряжения возникают в слое, улучшающем адгезию между основой и "изолятором".

Нетрудно видеть, что растрескивание слоев возможно при z = 0, а их расслоение при z = l.

Закючение

Разработана методика, позволяющая определять распределение нормальных и касательных напряжений в трехслойной структуре и анализировать взаимосвязь геометрических, физических и прочностных параметров конструкции.

Приведенные расчетные данные демонстрируют необходимость учета напряженного состояния слоев в структуре проточной части жидкометаллического бланкета ТЯР.

Список литературы

- Витковский И.В., Конев А.Н., Шоркин В.С. // ЖТФ. 2009. Т. 79. Вып. 2. С. 11–16.
- [2] Ting B.Y., Ramalingam S., Winer W.O. // J. Tribol. ASME. 1985. Vol. 107. N 4. P. 478–482.
- [3] Agrawal D.C., Raj R. // Acta Metallurgica. 1989. Vol. 37. N 4.
 P. 1265–1270.
- [4] Уманский Э.С., Ляшенко Б.А. // Космические исследования на Украине. 1975. Вып. 6. С. 58–64.
- [5] Прочность материалов и элементов конструкций в экспериментальных условиях. В 2-х томах / Под ред. Г.С. Писаренко. Киев: Наукова думка, 1980. Т. 2. С. 265–270.
- [6] Dolgov N.A. // Strength of Materials. 2005. Vol. 37. N 4. P. 422–431.
- [7] Долгов Н.А. // Сопротивление деформированию и разрушению материалов с функциональными покрытиями. Тернополь: Крок, 2010. 231 с.
- [8] Аксенов И.И. и др. // Укр. физ. журн. 1979. Т. 24. № 4. С. 515–525.
- [9] Михайлов В.Н., Евтихин В.А., Люблинский И.Е., Вертков А.В., Чумаков А.Н. // Литий в термоядерной и космической энергетике XXI века. М.: Энергоатомиздат, 1999. 528 с.
- [10] Cox H.L. // British J. of Appl. Phys. 1952. Vol. 3. P. 72-79.
- [11] Nairn J.A., Mendels D.A. // Mechanics of Materials. 2001. Vol. 33. N 6. P. 335–362.
- [12] Dolgov N.A., Lyashenko B.A., Rushchitskii Y.Y. et al. // Strength of Materials. 1996. Vol. 28. N 5. P. 373–375.
- [13] Свойства элементов / Под ред. Г.В. Самсонова. Справочник. Ч. 1: Физические свойства, 2-е изд. М.: Металлургия, 1976. 600 с.
- [14] Физические величины. Справочник. А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др. / Под ред. И.С. Григорьева, Мейлихова Е.З., М.: Энергоатомиздат, 1991. 1232 с.