01;12

Спиральные магнитокумулятивные генераторы с усилением магнитного потока: к вопросу о сравнительных преимуществах применяемых схем усиления и об эффективности работы генераторов с динамической трансформацией

© А.А. Базанов

Российский федеральный ядерный центр — Всероссийский научно-исследовательский институт экспериментальной физики 607188 Саров, Россия E-mail: aab@elph.vniief.ru

(Поступило в Редакцию 9 ноября 2010 г.)

Аналитически и методом численного моделирования сопоставлены усилительные возможности двух известных типов спиральных магнитокумулятивных генераторов, построенных по каскадной схеме усиления магнитного потока: с динамической трансформаторной и трансформаторной связью между каскадами. Исследована тенденция, к которой ведет учет потерь магнитного потока (энергии), имеющих место в реальных системах. Проанализированы проблемы повышения надежности и эффективности генераторов с динамической трансформацией, связанные с оптимизацией режимов работы и устранением специфических для этих устройств бросков напряжения, возникающих в процессе захвата потока. Предложен способ, позволяющий избежать бросков напряжения.

Введение

Спиральные генераторы работают на принципе сохранения магнитного потока при деформации замкнутого электрического контура: $\Phi = I(L + L_W) = \text{const. B}$ процессе деформации индуктивность контура уменьшается $(L \rightarrow 0)$, а ток I возрастает $(I \rightarrow \Phi/L_W)$. В результате в нагрузку выводится энергия, намного превышающая первоначально запасенную в генераторе $E \to (\Phi^2/2L_W) \gg E_0 = \Phi^2/2(L_W + L_0)$ (предполагается, что индуктивность нагрузки много меньше начальной индуктивности контура $L_W \ll L_0$). Для повышения начальной индуктивности электрический контур генератора (рис. 1) выполняют в форме спирали 1, обычно многозаходной с нарастающим по направлению к нагрузке L_W шагом и числом заходов. Спираль запитывают от источника электрической энергии (например, конденсаторной батареи C), а выведение ее индуктивности осуществляют разлетающейся под действием взрывчатого вещества 2 центральной трубой 3. Подрыв заряда инициируют капсюлем 4. Разработка этих устройств началась в СССР и в США в начале 50-х годов (в СССР — по инициативе А.Д. Сахарова [1]). Современные генераторы этого типа способны накапливать энергию от единиц до 10-20 МЭ и генерировать токи в десятки мегаампер.

Очевидно, что результат работы таких генераторов зависит от величины начального магнитного потока, вводимого в контур. Чтобы избежать необходимости применения энергоемких запитывающих источников, в 70-х годах XX века было предложено использовать каскадную схему построения генераторов сначала с трансформаторной [2], а затем с динамической трансформаторной [3] связью между каскадами, обеспечивающей наращивание магнитного потока в процессе работы генератора.

При использовании трансформаторной связи трансформаторные узлы выделяют в отдельные элементы, последовательно соединяющие между собой каскады генератора [2]. На рис. 2 это показано на примере двухкаскадной системы. Здесь трансформаторный узел образован первичной L_T и вторичной L_U обмотками с коэффициентом взаимной индукции M_T . Во входной каскад генератора вводят начальный магнитный поток $\Phi_1(0)$, после чего деформируют контур, устремляя индуктивность входного каскада к нулю $L_1(t \to t_0) \to 0$. Нарастающий в первичной обмотке трансформатора ток I_1 индуцирует во вторичном контуре (выходном каскаде)

Рис. 1. Спиральный магнитокумулятивный генератор: *а* — в статике; *b* — в работе.

Рис. 2. Двухкаскадный генератор с трансформаторной связью между каскадами.

Рис. 3. Двухкаскадный генератор с динамической трансформацией магнитного потока.

ток I_{2T} , достигающий максимума в момент t_0 обнуления индуктивности L_1 . В этот момент замыкается ключ S и начинается деформация контура выходного каскада $L_2(t) \rightarrow 0$. Возросший в процессе трансформации магнитный поток $\Phi_{2T}(t_0) = I_{2T}(t_0)(L_2(t) + L_W)$ захватывается в выходном каскаде и выводится в нагрузку L_W .

В генераторах с динамической трансформаторной связью (их еще называют генераторами с захватом магнитного потока) вторичную обмотку трансформатора совмещают с усилительным каскадом генератора (рис. 3). На приведенной схеме динамический трансформатор образован катушкой связи входного контура L_D и индуктивностью спирали выходного (усилительного) каскада $L_2(t)$, имеющих коэффициент взаимной индукции $M_D(t)$ (конструктивно динамическую трансформацию обеспечивают за счет охвата катушкой связи выходного каскада). Последовательность операций при динамическом способе трансформации аналогична последовательности в трансформаторном способе. Однако в отличие от трансформаторного способа захват магнитного потока происходит не одномоментно с замыканием ключа S, а протекает как процесс, сопутствующий выведению индуктивности выходного каскада $L_2(t) \rightarrow 0$ после замыкания этого ключа. Соответственно захваченный магнитный поток при *t* > *t*₀ является функцией времени $\Phi_{2D}(t)$. Совмещение функций усилительных каскадов и вторичных обмоток трансформаторов в одном элементе позволяет упростить конструкцию и, кроме того, по мнению авторов этого предложения В.К. Чернышева и В.А. Давыдова такие генераторы могут обеспечивать более высокий коэффициент усиления магнитного потока по сравнению с трансформаторной схемой [3,4]. Работоспособность генераторов этого типа В.К. Чернышев и В.А. Давыдов подтвердили экпериментально [4,5]. О перспективности применения этих устройств свидетельствует и ряд работ недавнего времени других исследователей, например, [6].

Однако вопрос о сравнительных преимуществах и недостатках генераторов с динамической трансформацией остался не до конца выясненным.

Сравнительный анализ двух методов трансформации генераторов без потерь

Сравним коэффициенты усиления потока в двухкаскадных генераторах с динамическим трансформаторным и трансформаторным способами связи контуров. Если не учитывать потери энергии, то такое сравнение можно выполнить аналитически.

Нетрудно убедиться, что для генераторов с трансформаторной связью (рис. 2) магнитный поток, переданный в выходной каскад генератора (в индуктивности L_2 и L_W), к моменту t_0 замыкания ключа S равен

$$\Phi_{2T}(t_0) = I_{2T}(t_0) \left(L_2(t_0) + L_W \right)$$

= $\Phi_1(0) \frac{\left(L_2(t_0) + L_W \right) M_T}{\left(L_2(t_0) + L_W + L_U \right) L_{\text{eff}}},$ (1)

где L_{eff} — эффективная индуктивность трансформаторного узла связи,

$$L_{\rm eff} = L_T - \frac{M_T^2}{L_2(t_0) + L_W + L_U}.$$
 (2)

Рассмотрим работу генератора с динамической трансформаторной связью (рис. 3). Для большей корректности последующего сравнения в отличие от [3,4] будем полагать, что катушка связи является деформируемым электрическим контуром, т. е. имеем переменную индуктивность $L_D(t)$.

После замыкания ключа *S* для генератора с динамической трансформацией справедлива система уравнений:

$$\begin{cases} L_D(t)I_1(t) + M_D(t)I_{2D}(t) = I_1(t_0)L_D(t_0) = \Phi_1(0), \\ L_2(t)I_{2D}(t) + M_D(t)I_1(t) + L_WI_{2D}(t) = I_1(t_0)M_D(t_0), \\ M_D(t) = k_D(t)\sqrt{L_D(t)L_2(t)}. \end{cases}$$
(3)

Решив ее, получаем зависимость магнитного потока в выходном каскаде от времени

$$\Phi_{2D}(t) = \Phi_1(0) \frac{k_D(t_0) \sqrt{\frac{L_2(t_0)}{L_D(t_0)}} - k_D(t) \sqrt{\frac{L_2(t)}{L_D(t)}}}{L_W + L_2(t) (1 - k_D(t)^2)} \times (L_W + L_2(t)), \qquad (4)$$

где $k_D(t)$ — коэффициент связи между каскадами.

Если катушка связи охватывает выходной каскад генератора только на части его длины, то справедливо

условие $k_D(t_c) \rightarrow 0$ при $t \rightarrow t_c$. Тогда для магнитного потока в выходном каскаде в момент t_c имеем

$$\Phi_{2D}(t_{\rm c}) = \Phi_1(0)k_D(t_0)\sqrt{\frac{L_2(t_0)}{L_D(t_0)}}.$$
 (5)

Для обеспечения идентичности условий работы входных генераторов $L_1(t)$ в обоих схемах (динамической трансформаторной и трансформаторной) следует потребовать равенства их нагрузок, т.е. $L_D(t_0) = L_{\text{eff.}}$ Принимая во внимание (2), равенство $M_T = k_T \sqrt{L_T L_U}$, и сравнивая (5) с (1), находим

$$\frac{\Phi_{2D}(t_{c})}{\Phi_{2T}(t_{0})} = \frac{k_{D}(t_{0})}{k_{T}} \left(1 + \frac{L_{U}}{L_{2}(t_{0}) + L_{W}} \right)$$
$$\times \sqrt{\frac{L_{2}(t_{0})}{L_{U}} \left(1 - \frac{k_{T}^{2}L_{U}}{L_{2}(t_{0}) + L_{W} + L_{U}} \right)}, \qquad (6)$$

где k_T — коэффициент связи в трансформаторной схеме.

Полагая качество изготовления узлов связи в обоих схемах идентичным, считаем $k_D(t_0) = k_T = k$. Тогда учитывая, что $L_2(t_0) \gg L_W$, и обозначая $L_2(t_0)/L_U = m$, из (6) имеем

$$\frac{\Phi_{2D}(t_{\rm c})}{\Phi_{2T}(t_0)} \approx \left(1 + \frac{1}{m}\right) \sqrt{m\left(1 - \frac{k^2}{m+1}\right)}.$$
 (7)

Несложно убедиться, что в (7) функция

$$f(m,k) = \left(1 + \frac{1}{m}\right)\sqrt{m\left(1 - \frac{k^2}{m+1}\right)}$$
(8)

больше единицы при любых значениях m > 0 и $k \le 1$. Поэтому в рассматриваемом случае всегда справедливо неравенство

$$\frac{\Phi_{2D}(t_{\rm c})}{\Phi_{2T}(t_{\rm 0})} > 1, \tag{9}$$

т.е. динамическая трансформаторная связь оказывается эффективнее трансформаторной при любом значении коэффициента связи.

Отношение $\Phi_{2D}(t_c)/\Phi_{2T}(t_0)$ как функция *m* имеет минимум при $m = \sqrt{1-k^2}$, равный

$$\frac{\Phi_{2D}(t_{\rm c})}{\Phi_{2T}(t_0)} \Big|_{m=\sqrt{1-k^2}} = 2 - k^2 > 1.$$
(10)

Соответственно при таком значении *m* преимущество схемы с динамической трансформацией минимально.

В случае, когда $k_D(t_c) > 0$ (например, катушка связи охватывает выходной каскад на всей его длине) и выполняется условие

$$\frac{k_D(t_0)}{k_D(t_c)} \sqrt{\left(\frac{L_2(t_0)}{L_D(t_0)}\right) \left(\frac{L_D(t_c)}{L_2(t_c)}\right)} \gg 1,$$
(11)

производя аналогичные преобразования, получаем почти тот же (с точностью до коэффициента $\beta \ge 1$) результат

$$\frac{\Phi_{2D}(t_{\rm c})}{\Phi_{2T}(t_0)} \approx \beta f(m,k) > 1, \tag{12}$$

где

$$\beta = \begin{cases} 1 \text{ при } L_2(t_c) \ll L_W, \\ \frac{1}{1 - k_D(t_c)^2} > 1 \text{ при } L_2(t_c) (1 - k_D(t_c)^2) \gg L_W. \end{cases}$$
(13)

При этом минимум отношения $\Phi_{2D}(t_c)/\Phi_{2T}(t_0)$ при фиксированном значении k становится равным

$$\frac{\Phi_{2D}(t_c)}{\Phi_{2T}(t_0)} \bigg|_{m=\sqrt{1-k^2}} = \beta(2-k^2) > 1,$$
(14)

т.е. преимущество схемы с динамической трансформацией дополнительно возрастает в β раз.

Сравнительный анализ двух методов трансформации с учетом потерь энергии на активных сопротивлениях контуров

Тенденцию, к которой ведет учет потерь энергии на активных сопротивлениях генераторов, можно выявить исходя из следующих соображений.

По условиям сравнения запитывающие и выходные каскады обоих типов генераторов конструктивно идентичны. Идентичны и условия работы запитывающих каскадов. Однако для выходных каскадов это не так. В момент начала работы выходного каскада генератора с трансформаторной схемой усиления в нем захватывается сразу весь магнитный поток, переданный ему через трансформатор, тогда как в схеме с динамической трансформацией начальный магнитный поток в выходном каскаде равен нулю и нарастает по мере его генерации в узле динамической связи. Соответственно при равенстве конечных токов в нагрузке в любой момент времени (за исключением момента окончания работы генераторов *t*_{max}) справедливо неравенство $I_{2T}(t) > I_{2D}(t)$. Полагая для целей сравнения сопротивление R(t) выходных каскадов идентичным, находим, что потери потока в выходном каскаде генератора с динамической трансформацией будут меньшими, чем в генераторе с классической трансформаторной связью:

$$\Delta \Phi_{2D} = \int_{t_0}^{t_{max}} R(t) I_{2D}(t) dt < \Delta \Phi_{2T} = \int_{t_0}^{t_{max}} R(t) I_{2T}(t) dt.$$

Таким образом, теоретически при учете активного сопротивления контуров сравнительные преимущества генератора с динамической трансформацией должны возрастать.

Однако проведенный анализ не является полным, поскольку не учитывает распределение возникающих вдоль

Журнал технической физики, 2011, том 81, вып. 9

спиралей электрических напряжений, которые являются одним из основых факторов риска, приводящих к отказу генераторов вследствие электрических пробоев изоляции. Последнее может существенным образом повлиять на результаты сравнительного анализа. Решение этой задачи требует выполнения численных расчетов.

Расчетная модель для сравнительного анализа при наличии потерь энергии

В расчетной модели для целей сравнения предполагалось, что активные сопротивления каскадов генераторов на рис. 2 и 3 могут быть рассчитаны по формуле (15) с коэффициентами совершенства f_1 и f_2 для входного и выходного каскадов соответственно

$$R = -(1-f)\frac{dL}{dt}.$$
(15)

Индуктивности первичной L_T и вторичной L_U обмоток трансформатора находились из соотношения (2) с учетом условий $L_D(t_0) = L_{\text{eff}}$ и $m = \sqrt{1 - k^2}$, из которых следует, что

$$L_T = L_D(t_0) \left(1 - \frac{k^2 L_U}{L_2(t_0) + L_U + L_W} \right)^{-1}, \qquad (16)$$

$$L_U = \frac{L_2(t_0)}{\sqrt{1 - k^2}}.$$
 (17)

Конструктивное исполнение генератора с динамической трансформацией, использованное в расчетной модели, представлено на рис. 4. Предполагалось, что разлетающаяся труба 3 замыкает катушку связи 1 на обратный проводник 4 в месте удара A по спирали выходного каскада 2. Геометрические параметры и параметры намотки спиралей входного $L_1(t)$ и выходного $L_2(t)$ каскадов, а также катушки связи $L_D(t)$ приведены в табл. 1–3.

Предполагалось также, что генератор с трансформаторной связью имеет идентичное с генератором с динамической трансформацией исполнение входного и выходного каскадов. При этом геометрия взаимного расположения каскадов несущественна.

Рис. 4. Конструкция генератора с динамической трансформацией.

Таблица 1.	Зависимость	радиуса	трубы	r_t	от	координаты	Z
для генератор	за с динамиче	ской тра	нсформ	аци	лей		

	Bx	одной каскад	Выходной каскад				
z,cm	0-24	28-33	37-63	63-70	70-90		
r_t , mm	19	Конус $19 \rightarrow 27$	22	Конус $22 \rightarrow 29$	29		

Сначала рассчитывался генератор с динамической трансформаторной связью. Из этого расчета определялись начальные значения индуктивности катушки связи $L_D(t_0)$, коэффициента связи $k = k_D(t_0)$ и индуктивности выходного каскада $L_2(t_0)$. Затем вычислялись соответствующие им параметры генератора с трансформаторной схемой усиления магнитного потока L_T и L_U (по формулам (16), (17)) и находился ток выходной обмотки трансформатора, после чего производился численный расчет работы выходного каскада.

Численный расчет генераторов (каскадов генераторов) выполнялся методами, изложенными в [7].

В расчетах ток начальной запитки для обоих типов генераторов составлял 20 kA, индуктивность нагрузки $L_W = 15$ nH. Коэффициент f_1 принимался равным:

— для запитывающего каскада $f_1 = 0.75$ (исключая катушку связи),

— для катушки связи генератора с динамической трансформацией коэффициент f_1 варьировался от 1 до 0.5, либо потери энергии в катушке связи учитывались прямым введением активного сопротивления $R_i(t)$ в ее контур.

Для выходного каскада предполагалось, что $f_2 = 0.75$ на участке спирали диаметром 80 mm и $f_2 = 0.8$ на участке диаметром 110 mm.

Результаты расчетного моделирования и их обсуждение

В табл. 4 приведены расчетные данные об абсолютной и относительной величинах выходных токов двух типов генераторов, причем для генератора с динамической трансформацией данные приведены в зависимости от поведения активного сопротивления катушки динамической связи (от f_1 и $R_i(t)$).

В табл. 4 использованы следующие обозначения: t_D, t_T — моменты завершения работы генераторов с динамическим и разделительным трансформаторами соответственно, Δt — время движения контактной точки вдоль катушки связи.

Наибольшее преимущество динамического способа трансформации ($I_{2D}(t_D)/I_{2T}(t_T) \approx 2.2$) достигается, когда потери энергии в контуре катушки связи невелики. Однако эти режимы работы предъявляют повышенные требования к электропрочности изоляции выходной спирали. На рис. 5, *а* представлены расчетные кривые распределения напряжения для различных вариантов

	Входной каскад					Катушка связи			
z, cm	0-4	4-8	8-14	14-20	20-26	26-32	32-37	43-66	
Шаг спирали, тт	10	12	16	24	48	96	1000		224
Число заходов	2	2	3	4	8	12	16		
Радиус спирали, тт	35					35 ightarrow 47	4	7	

Таблица 2. Параметры спирали входного каскада и катушки связи

Таблица 3. Параметры спирали выходного каскада

z, cm	43-47	47-51	51-57	57-63	63-69	69-72	72-80	80-90
Шаг спирали, тт	10	12	14	24	48	1000	72	128
Число заходов	2	2	3	4	8	12		16
Радиус спирали, mm			42			$42 \rightarrow 55$	5	5

Генератор с разделительным трансформатором	Выходной ток $I_{2T}(t_T)$, МА			1.6	
Генератор с линамической	Коэффициент f ₁	1	0.5	-	—
трансформацией	Сопротивление катушки связи $R_i(t)$	_	—	$\frac{\frac{10}{\Delta t}t, m\Omega}{0 \le t \le \Delta t}$	$\frac{40}{\Delta t}t, \mathbf{m}\Omega$ $0 \le t \le \Delta t$
	Выходной ток $I_{2D}(t_D)$, МА	3.5	3.2	3.0	2.92
Отношение выходных	2.2	2.0	1.9	1.83	

Таблица 4. Расчетные данные

поведения сопротивления катушки связи, приведенных в табл. 4. Как видно из рисунка, при использовании катушек связи с омическими потерями, соответствующими коэффициентам совершенства 0.5-1, возникает выброс напряжения на завершающей стадии захвата потока в спирали выходного каскада, который превышает изначально установившийся уровень в 1.4-2.4 раза (рис. 5, *a*, кривые *1* и *2*). Появление блока напряжения индуцируется значительным нарастанием тока в короткозамкнутом контуре катушки связи к концу ее работы (рис. 5, *b*, кривые *1* и *2*), сопровождающимся резким падением коэффициента связи контуров или разрывом контура катушки связи.

Подобные броски напряжения приводят либо к снижению надежности работы генераторов из-за пробоев, либо к росту потерь магнитного потока из-за его паразитных отсеканий на изоляционном слое спирали, толщину которого приходится увеличивать.

Броски напряжения можно предотвратить, если относительно плавно вводить в контур катушки связи активное сопротивление после того, как выходной каскад будет замкнут. Распределение напряжения вдоль выходного каскада для случаев, когда сопротивление катушки связи в процессе выведения ее индуктивности линейно изменяется от 0 до $10-40 \text{ m}\Omega$ представлено на рис. 5, *а* кривой 3 (относительное отклонение кривых напряжения в указанном диапазоне сопротивлений не превышает 4%). На рис. 5, *b* (кривая 3) показано, как в этих случаях ведет себя ток в катушке связи. Видно, что к моменту окончания захвата магнитного потока он плавно падает до нуля, что позволяет устранить скачок напряжения в выходном каскаде. В указанных режимах работы выходной ток генератора с динамической трансформацией несколько снижается, но его преимущество по сравнению с трансформаторными системами попрежнему остается довольно высоким. Как следует из табл. 4, отношение выходных токов для двух типов генераторов составляет 1.83–1.9.

Отметим, что если сопротивление в контур катушки связи ввести быстро (например, в случае неуправляемого разрыва контура), то это приведет к резкому падению тока в катушке, что спровоцирует индукционный вброс магнитного потока в выходной каскад генератора, скачок напряжения на спирали и возможный ее пробой.

С точки зрения практической реализации рассмотренного способа подавления бросков напряжения можно сказать следующее. Результаты исследований, проводимых, в часности, в РФЯЦ-ВНИИЭФ [8], показывают,

Рис. 5. Расчетные кривые: *а* — распределения напряжения на спирали выходного каскада, *b* — нарастания тока в катушке связи.

что подобное поведение сопротивления характерно для узлов разрыва, работающих на принципе скользящей детонации взрывчатого вещества, распространяющейся вдоль тонкого проводника. С учетом сказанного для подавления броска напряжения обратный токопровод катушки связи 1 (рис. 6) можно выполнить из прово-

Рис. 6. Исполнение обратного токопровода катушки связи.

дящих полос 2, уложенных на подложку из взрывчатого материала 3. Ударом разлетающейся центральной трубы 4 в подложке 3 инициируется детонация, которая распространяется вдоль катушки связи 1 одновременно с движением контактной точки A и рвет проводники 2. За счет этого могут обеспечиваться синхронизация процессов захвата магнитного потока и разрыва контура катушки связи, а также поддержание требуемого уровня сопротивления до тех пор, пока не завершится процесс детанации в подложке.

Заключение

Проведенный анализ двухкаскадных схем построения генераторов с усилением магнитного потока показал, что для систем без потерь при выполнении условий (7) или (16) генераторы с динамической трансформацией магнитного потока эффективнее генераторов, построенных по классической трансформаторной схеме, не менее, чем в $\beta(2-k^2)$ раз при любом значении коэффициента трансформаторной связи k, где коэффициент $\beta \ge 1$ (см. (15), (18), (19)). При учете потерь энергии на активном сопротивлении генераторов преимущество систем с динамической трансформацией с точки зрения усиления магнитного потока дополнительно возрастает.

Однако реализация указанного преимущества осложняется возникновением броска напряжения на завершающей стадии захвата магнитного потока, что может приводить к пробоям изоляции, приводящим к отказам или существенно снижающим эффективность работы генераторов. Расчетно на конкретном примере показано, что проблема может быть решена путем плавного введения сопротивления в контур катушки динамической связи и его удержания на уровне единиц—десятков миллиОм в период захвата магнитного потока. Предложено техническое решение для практической реализации этого способа.

Таким образом, проведенный анализ дополняет выводы [3–5] о сравнительных преимуществах генераторов с динамической трансформаторной связью, внося в них существенные уточения и ограничения.

Список литературы

- [1] Сахаров А.Д., Людаев Р.З., Павловский А.И., Чернышев В.К. и др. // ДАН СССР. 1965. Т. 196. № 1. С. 65.
- [2] Павловский А.И., Людаев Р.З., Пляшкевич Л.Н., Гурин В.Е. Взрывомагнитный генератор. А. с. № 266100 (СССР). Бюл. изобретений. 1970. № 11.
- [3] Чернышев В.К., Давыдов В.А. Взрывной способ генерирования магнитного потока. А. с. 686131 (СССР). H02N11/00. Бюл. изобретений. 1979. № 34.
- [4] Давыдов В.А., Чернышев В.К. // Журн. прикл. механики и техн. физики. 1981. Т. 130. № 6. С. 112.

- [5] Чернышев В.К., Давыдов В.А., Ванеев В.Е. // Тр. 3-й Междунар. конф. по генерации мегагауссных магнитных полей и родственным экспериментам. Новосибирск, 1983. М.: Наука, 1984. С. 278.
- [6] Mintsev V.B., Ushnurtsev A.E., Fortov V.E., Leontyev A.A., Shurupov A.V. // Proc. of the IXth Int. Conf. on Megagauss Magnetic Field Generation and Related Topics. Sarov, 2002. Publishing-Printing Complex of the RFNC-VNIIFF, 2004. P. 161.
- [7] Morozov I.V., Skobelev A.N., Pak S.V. // Proc. of the 15th Int. Conf. on High-Power Partical Beams. SPb., 2005. P. 315.
- [8] Чернышев В.К., Вахрушев В.В., Волков Г.И., Иванов В.А., Пак С.В., Скоболев А.Н. // Хим. физики. 2001. Т. 20. № 9. С. 69.