# 01;05;12 Модель размола порошков

© А.С. Курлов, А.И. Гусев

Институт химии твердого тела УрО РАН, 620990 Екатеринбург, Россия e-mail: gusev@ihim.uran.ru

#### (Поступило в Редакцию 26 октября 2010 г.)

Предложена модель размола порошков, устанавливающая связь между приложенной энергией и средним размером D частиц порошка. Показано, что энергия при размоле расходуется на разрыв межатомных связей в кристаллических частицах и на создание дополнительной поверхности при измельчении порошка. Возникновение микронапряжений  $\varepsilon$  замедляет измельчение порошка. При прочих равных условиях средний размер частиц D после размола тем меньше, чем больше продолжительность размола t и чем меньше размер частиц исходного порошка и его масса M. Проведено сопоставление модели с экспериментом, выполненным на порошке карбида вольфрама WC.

## Введение

Изучению прочности и механического разрушения твердого тела посвящено много оригинальных и обобщающих работ (см., например, [1-9]), в которых основное внимание уделено описанию и анализу теории прочности и механизма разрушения (кинетика разрыва межатомных связей при упругой деформации, образование и рост трещин, релаксация напряжений и т.д.). Разрушение твердого тела в результате длительных механических деформаций сжатия, сдвига, изгиба сводится к его постепенному диспергированию, измельчению до порошкообразного состояния. Размер частиц порошка в зависимости от величины приложенной энергии может соответствовать микро- или нанометровому диапазону. Механическое измельчение порошков оказалось одним из эффективных и производительных методов получения различных веществ и метериалов в нанокристаллическом состоянии и широко используется в современном физическом материаловедении [10-13]. Механический размол (ball milling) позволяет достаточно просто получать нанокристаллические порошки [6,12,14] с размером частиц менее 20.

Изучение механического размола до сих пор выполняется на эмпирическом уровне, хотя в литературе имеются несколько моделей размола [7,15,16]. Согласно [7], при механическом истирании порошков деформация локализуется в полосах сдвига с высокой плотностью дислокаций. Дислокационная модель [15] базируется на предположении о том, что для каждого материала (вещества) существует некоторый минимальный размер D<sub>min</sub> частиц, который может быть достигнут при размоле [17,18]. Согласно [15,17], размер D<sub>min</sub> определяется равновесием между возникновением дислокационной структуры при размоле и ее релаксацией при достижении определенного уровня напряжений вследствие аннигиляции и рекомбинации дислокаций в малоугловые границы, разделяющие отдельные зерна. В модели [15] учитываются также данные [17,18] о том, что размер частиц металлов, получаемых при размоле в одинаковых условиях, обратно пропорционален температуре плавления  $T_{\text{melt}}$ , модулям сдвига и всестороннего сжатия Gи Кс. Однако модель [15] лишь описывает имеющиеся экспериментальные результаты и постулирует зависимость  $D_{\min}$  от некоторых свойств материала (твердости, модуля сдвига, энергии активации миграции вакансий), но не устанавливает связь энергии или продолжительности размола с величиной размера частиц, достигнутого размолом. Авторы [16] на основе дифракционных данных описывали размерное распределение частиц порошка и оценивали степень его измельчения, не пытаясь предложить какую-либо предсказательную модель. Зависимость размера частиц нанокристаллических порошков от параметров размола была кратко рассмотрена в работе [19]. В целом в литературе нет моделей, устанавливающих связь между размером частиц получаемых нанокристаллических порошков и затраченной на размол энергией, а также учитывающих размер частиц и массу исходного порошка, его физические свойства.

В данной работе предложена модель механического размола порошков до частиц меньшего размера и рассмотрена ее применимость для оценки размера частиц полученного порошка как функции приложенной энергии, массы *M* исходного порошка и размера его частиц.

### Модель размола

Рассмотрим исходный порошок с частицами, имеющими средний линейный размер  $D_{in}$ . Объем частицы исходного порошка и площадь ее поверхности равны  $V_{in} = f_v D_{in}^3$  и  $S_{in} = f_s D_{in}^2$ , где  $f_v$  и  $f_s$  — формфакторы объема и площади поверхности (коэффициенты пропорциональности, зависящие от формы тела). Для сферических частиц формфакторы равны  $f_v = \pi/6$  и  $f_s = \pi$ , откуда  $f_s/f_v = 6$ ; для кубических частиц  $f_v = 1$ и  $f_s = 6$ , поэтому тоже  $f_s/f_v = 6$ ; для частиц в виде тонких пластинок  $f_s/f_v \approx 2$ . Если в первом приближении частицы исходного и размолотого порошков одинаковы по форме (или распределение частиц по форме в исходном и размолотом порошках одинаково), то  $f_s/f_v$  есть постоянная величина.

Пусть исходный порошок имеет плотность d и его масса равна M, тогда число частиц исходного порошка равно  $M/dV_{\rm in} = M/(df_v D_{\rm in}^3)$ . Согласно [8], при разрушении твердого тела энергия расходуется на совершение работы по разрыву межатомных связей в кристалле и на создание дополнительной поверхности, возникающей при раскалывании кристаллических частиц. С учетом этого энергию  $E_{\rm mill}$ , расходуемую на размол, можно представить как

$$E_{\rm mill} = \frac{M}{df_v D_{\rm in}^3} \left( E_{\rm rupt} + E_{\rm surf} \right), \tag{1}$$

где  $E_{\text{rupt}}$  — энергия, расходуемая на разрыв межатомных связей в одной частице исходного порошка,  $E_{\text{surf}}$  — энергия, расходуемая на создание дополнительной поверхности при измельчении одной частицы исходного порошка.

При размоле одной частицы исходного порошка образуется  $n = D_{in}^3/D^3$  меньших частиц со средним линейным размером D, объемом и площадью поверхности одной частицы  $f_v D^3$  и  $f_s D^2$ . Площадь поверхности всех частиц, возникших при размоле, равна  $S = n f_s D^2 = f_s D_{in}^3/D$ , а увеличение площади поверхности  $\Delta S = S - S_{in} = f_s D_{in}^2(D_{in} - D)/D$ .

Раскалывание кристалла происходит по плоскостям скольжения. Пусть площадь плоскости скольжения, приходящейся на одну элементарную ячейку рассматриваемого кристалла, равна  $s_f$ , тогда число плоскостей, по которым произошло раскалывание, равно  $\Delta S/s_f$ . Если через каждую плоскость скольжения, отнесенную к элементарной ячейке, проходило q межатомных связей с энергией u, то энергия, затраченная на разрыв связей при измельчении одной частицы исходного порошка, равна

$$E_{\text{rupt}} = qu\Delta S/s_f = quf_s D_{\text{in}}^2 (D_{\text{in}} - D)/s_f D. \qquad (2)$$

Приращение поверхностной энергии, связанное с увеличением площади поверхности частиц на величину  $\Delta S$ , равно  $\Delta E_s = \gamma \Delta S$ , где  $\gamma$  — удельная (приходящаяся на единицу площади границы раздела) избыточная энергия, обусловленная неупорядоченной сеткой краевых дислокаций. Согласно [8,20], энергия  $E_{surf}$ , затраченная на создание дополнительной поверхности, возникающей при раскалывании кристаллических частиц, в сотни раз больше, чем приращение  $\Delta E_s$  поверхностной энергии, т. е.  $E_{surf} = \beta \Delta E_s = \beta \gamma \Delta S$ , где  $\beta$  — коэффициент пропорциональности, поэтому

$$E_{\rm surf} = \beta \gamma \Delta S = \beta \gamma f_s D_{\rm in}^2 (D_{\rm in} - D) / D. \tag{3}$$

При размоле, как и других методах механической деформации, границы частиц или зерен (т.е. границы раздела) являются неравновесными. Авторы [21] предложили модель неравновесных границ, учитывающую наличие в них хаотических ансамблей внесенных

зернограничных дислокаций. Это позволило получить выражение для величины среднеквадратичной деформации и оценить избыточную энергию границ раздела, непосредственно связанную с появлением полей упругих напряжений. В частности, было получено выражение для удельной избыточной энергии границ раздела  $\gamma$ , создаваемой хаотичной сеткой краевых дислокаций, имеющих вектор Бюргерса **b** =  $(\pm b, 0, 0)$ :

$$\gamma = \frac{Gb^2\rho\ln(D_{\rm in}/2b)}{4\pi(1-\nu)}.$$
(4)

В (4) величины G и  $\nu$  — модуль сдвига и коэффициент Пуассона вещества,  $\rho \approx \rho_V D/3$  и  $\rho_V$  — линейная и объемная плотность дислокаций.

Согласно [22], объемная плотность дислокаций, хаотически распределенных в теле зерна, равна среднему геометрическому от плотности дислокаций  $\rho_D = 3/D^2$ , связанных с размером *D* зерна, и плотности дислокаций  $\rho_s = C\varepsilon^2/b^2$ , связанных с микронапряжениями  $\varepsilon$ , т.е.

$$\rho_V = (\rho_D / \rho_s)^{1/2}.$$
(5)

1 10

С учетом (5) линейная плотность дислокаций  $\rho$  равна

$$\rho \approx \rho_V D/3 = \left[ (3/D^2)(C\varepsilon^2/b^2) \right]^{1/2} D/3$$
$$= \sqrt{3C} \varepsilon/3b, \tag{6}$$

где *С* — постоянная для данного вещества величина, лежащая в пределах от 2 до 25 [22].

Записав удельную избыточную энергию  $\gamma$  (4) с учетом (6) и подставив ее в формулу (3), найдем энергию  $E_{surf}$ , затраченную на создание дополнительной поверхности при измельчении кристаллической частицы:

$$E_{\text{surf}} = \beta \gamma f_s D_{\text{in}}^2 (D_{\text{in}} - D) / D$$
$$= \frac{\sqrt{3C} \beta f_s}{12\pi} \frac{Gb D_{\text{in}}^2 (D_{\text{in}} - D) \ln(D_{\text{in}} / 2b)}{(1 - \nu)} \frac{\varepsilon}{D}.$$
 (7)

После подстановки (2) и (7) в (1) получим формулу, связывающую энергию размола  $E_{\text{mill}}$  со средним размером частиц D, получаемых в результате размола:

$$E_{\text{mill}} = \frac{Mf_s}{df_v} \frac{(D_{\text{in}} - D)}{DD_{\text{in}}} \\ \times \left[ \frac{12\pi (1 - \nu)qu + \sqrt{3C}\beta Gbs_f \varepsilon \ln(D_{\text{in}}/2b)}{12\pi (1 - \nu)s_f} \right].$$
(8)

Как видно из выражения (8), при размоле наряду с уменьшением размера частиц, т.е. измельчением, в частицы вносятся микронапряжения.

Для конкретного вещества величины d,  $f_s$ ,  $f_v$ , q, u, C,  $\beta$ , G, v, b,  $s_f$  фиксированы, энергия размола пропорциональна продолжительности размола t, а размер частиц и микронапряжения являются функциями

продолжительности размола t и массы порошка M, поэтому выражение (8) можно преобразовать к виду

$$E_{\text{mill}}(t) = M[D_{\text{in}} - D(t, M)]$$
  
 
$$\times [A + B\varepsilon(t, M) \ln(D_{\text{in}}/2b)]/D(t, M)D_{\text{in}}, \quad (9)$$

откуда

$$D(t, M) = \frac{M[A + B\varepsilon(t, M)\ln(D_{\rm in}/2b)]}{E_{\rm mill}(t) + M[A + B\varepsilon(t, M)\ln(D_{\rm in}/2b)]/D_{\rm in}},$$
(10)

где  $A = (f_s/f_v)qu/s_f d$ ,  $B = (f_s/f_v)\sqrt{3C}\beta Gb/[12\pi \times \times (1-\nu)d]$  — некоторые постоянные, характерные для данного вещества. Формула (10) удовлетворяет краевому условию  $D(0, M) = D_{in}$ , так как в начальный момент времени t = 0 энергия размола  $E_{mill}(0) = 0$  и микронапряжения  $\varepsilon(0, M) = 0$ . Как видно из (10), возникновение микронапряжений  $\varepsilon$  замедляет измельчение порошка. Формула (10) является основным выражением модели размола, устанавливающей средний размер частиц порошка как функцию приложенной энергии размола  $E_{mill}(t) \sim kt$ . В зависимости от конструкции размольного устройства (высокоэнергетические планетарные, шаровые и вибрационные мельницы, дезинтеграторы) и механики движения мелющих тел коэффициент k в энергии размола  $E_{mill}(t)$  будет иметь разный вид.

При известном начальном размере  $D_{in}$  частиц и фиксированной продолжительности времени размола t зависимость D частиц размолотого порошка от массы M (величины загрузки) исходного вещества описывается функцией

$$D(t = \text{const}, M) = D_{\text{in}}M/(KD_{\text{in}} + M), \qquad (11)$$

где

$$K = \frac{E(t = \text{const})}{A + B[\ln(D_{\text{in}}/2b)]\varepsilon(t = \text{const}, M)}$$

— постоянная величина для заданного времени *t*. Таким образом, чем меньше масса загруженного вещества при одинаковой продолжительности размола, тем меньше размер частиц полученного порошка.

Величина микронапряжений  $\varepsilon = \Delta l/l \equiv \Delta d/d$  характеризует усредненную по объему кристалла однородную деформацию, т.е. относительное изменение  $\Delta d$  межплоскостного расстояния d в сравнении с идеальным кристаллом. В соответствии с законом Гука в общем случае  $\Delta l/l = \sigma/E$ . Разрушение начинается при достижении критической величины напряжения  $\sigma_{max}$ , равной прочности вещества при данном виде деформации, поэтому  $\varepsilon_{max} = \sigma_{max}/E$ , где E — соответствующий модуль упругости. Микронапряжения  $\varepsilon$  меняются от нуля при t = 0 до предельной величины  $\varepsilon_{max}$ , при превышении которой разрушается кристаллическая решетка размалываемого вещества, а при одинаковой продолжительности размола величина микронапряжений тем меньше, чем больше масса размалываемого вещества. С учетом этого зависимость микронапряжений  $\varepsilon$  от продолжительности размола t и массы вещества M можно описать функцией

$$\varepsilon(t, M) = \varepsilon_{\max}[t/(t+\tau)][M/(M+p)]$$
$$\equiv (\sigma_{\max}/E)[t/(t+\tau)][M/(M+p)].$$

где т и *p* — нормирующие параметры.

Построим теоретическую зависимость среднего размера частиц D от продолжительности размола t и массы M измельчаемого вещества на примере карбида вольфрама WC.

Гексагональный (пр. гр. *Рбm2*) карбид вольфрама WC с периодами элементарной ячейки *a* = 0.29060 и  $c = 0.28375 \,\mathrm{nm}$  имеет плотность  $d = 15.8 \,\mathrm{g} \cdot \mathrm{cm}^{-3}$ , модуль всестороннего сжатия  $K_c = 630 \,\text{GPa}$ , модуль сдвига G = 274 GPa, предел прочности при сжатии  $\sigma_c \approx 2.7 \,\text{GPa}$  и коэффициент Пуассона  $\nu = 0.31 \, [23, 24].$ С учетом этого для WC предельная величина микронапряжений лежит в интервале 0.0045 <  $\varepsilon_{\text{max}}$  < 0.01. Электронно-микроскопическое исследование образования дислокаций при пластической деформации WC [25] показало, что в нем основной системой скольжения является {10-10} (0001), т.е. деформация по плоскости {10-10} в направлении (0001). Кроме того, в этой же плоскости {10-10} возможно скольжение в направлениях (11-23) и (2-1-10). С учетом периодов a и cэлементарной ячейки WC для гексагонального карбида вольфрама  $s_f \approx 0.084 \,\mathrm{nm^2}$ . Векторы Бюргерса, соответствующие скольжению в указанных направлениях, равны  $\mathbf{b} = \langle 0001 
angle, \ (1/3) \langle 11\text{-}23 
angle$  и  $(1/3) \langle 2\text{-}1\text{-}10 
angle$  и для гексагонального WC по абсолютной величине составляют  $b \approx 0.28 - 0.29$  nm [25].

Величину qu можно оценить из энергии атомизации  $E_{\rm at}$ . Элементарная ячейка карбида вольфрама включает одну формульную единицу WC и имеет 6 граней, поэтому  $qu \sim E_{\rm at}/6N_A$  ( $N_A$  — число Авогадро). Энергия атомизации гексагонального карбида WC, определенная из термодинамических данных [23,26–28], равна  $E_{\rm at} = 1600 \pm 50 \, {\rm kJ} \cdot {\rm mol}^{-1}$ , поэтому  $qu = 4.43 \cdot 10^{-19} \, {\rm J}$ . С учетом этих значений при  $f_s/f_v = 6$ , C = 18 и  $\beta = 100$  для гексагонального карбида вольфрама постоянные A = 0.002 и  $B = 0.85 \, {\rm J} \cdot {\rm m} \cdot {\rm kg}^{-1}$  [19].

Анализ механики движения мелющих шаров, выполненный ранее [29] на примере высокоэнергетической планетарной шаровой мельницы PM-200 Retsch, показал, что при одинаковых условиях размола энергия, расходуемая на измельчение порошка, пропорциональна кубу угловой скорости вращения мельницы,  $\omega^3$ , и продолжительности размола t, т.е.  $E_{\text{mill}}(t) = \kappa \omega^3 t$ , где  $\kappa \approx 0.0015 \text{ kg} \cdot \text{m}^2$ .

Зависимость  $D_{\text{theor}}(t, M)$ , рассчитанная по формуле (10) с учетом теоретически найденных параметров *A* и *B* при  $\varepsilon_{\text{max}} = 0.008$ , угловой скорости вращения  $\omega = 8.33 \text{ s}^{-1}$  и исходном размере частиц карбида вольфрама  $D_{\text{in}} = 6000 \text{ nm}$ , показана на рис. 1. Видно, что размер *D* частиц после размола тем меньше, чем больше продолжительность размола *t*, меньше масса *M* 



**Рис. 1.** Теоретическая зависимость D(t, M) размера частиц порошка карбида вольфрама от массы M исходного порошка и продолжительности размола t.

размалываемого порошка и меньше размер  $D_{in}$  частиц исходного порошка. Быстрое уменьшение размера частиц происходит на начальном этапе, когда продолжительность размола t не превышает 10 000 s. При дальнейшем увеличении длительности размола и фиксированной массе M зависимость D(t, M) асимптотически стремится к некоторому предельному значению.

#### Сопоставление эксперимента и модели

Для сравнения предлагаемой модели с экспериментом был изучен размол исходного крупнозернистого (со средним размером частиц  $D_{\rm in} \approx 6\,\mu{\rm m}$ ) порошка карбида вольфрама до нанокристаллического (с размером частиц до 10 nm) состояния.

Размол проводили в планетарной шаровой мельнице PM-200 Retsch. Как уже было отмечено, при одинаковых условиях размола энергия, расходуемая на измельчение порошка, равна  $E_{\text{mill}}(t) = \kappa \omega^3 t [29]$ , где

$$\kappa = 8\pi^3 a_k N_b m \left(R_c^2 + r^2\right)^{1/2} R_c \frac{64 - 3(r/R_c)^4}{64 - 16(r/R_c)^2}$$

— параметр, характерный для данной мельницы,  $\omega$  — угловая скорость вращения мельницы,  $R_c$  — радиус окружности, по которой движется ось стакана, r — внутренний радиус стакана,  $N_b$  — количество мелющих шаров, m — масса каждого шара,  $a_k$  — коэффициент, по-казывающий, какая часть энергии расходуется на размол порошка.

При дроблении и размоле бо́льшая часть энергии расходуется на упругую деформацию мелющей системы,

т.е. на взаимодействие мелющих тел со стенками размольной камеры, а на размол порошка идет менее 3-5% общей кинетической энергии [7,10], поэтому  $a_k \ll 1$ . Для мельницы PM-20 Retsch  $R_c = 0.075$  m, r = 0.0225 m, общая масса мелющих шаров  $N_bm - 0.1$  kg; если принять  $a_k = 0.01$ , то коэффициент  $\kappa \approx 0.0015$  kg · m<sup>2</sup>.

С учетом  $E_{\text{mill}}(t) = \kappa \omega^3 t$  и зависимости микронапряжений  $\varepsilon$  от продолжительности размола t и массы вещества M формулу (10) можно записать в следующем виде:

$$D(t, M) =$$

 $\frac{M\{A+B[\ln(D_{\rm in}/2b)]\varepsilon_{\rm max}[t/(t+\tau)][M/(M+p)]\}}{\kappa\omega^{3}t+M\{A+B[\ln(D_{\rm in}/2b)]\varepsilon_{\rm max}[t/(t+\tau)][M/(M+p)]\}/D_{\rm in}}.$ (12)

Размол происходил в автоматическом режиме со скоростью вращения  $\omega = 8.33 \,\mathrm{s}^{-1}$  с изменением направления вращения через каждые 15 min и остановкой на 5 s между изменениями направления вращения. Общая масса мелющих шаров была равна ~ 100 g, количество шаров  $N_b \sim 450$  штук. Размол вели с дабавлением от 5 до 15 ml изопропилового спирта, после размола порошки высушивали. Величина загрузки M, т.е. масса порошка, взятого для размола, в разных опытах составляла 10, 20, 25 и 33.3 g.

Средний размер  $\langle D \rangle$  частиц (более точно — средний размер областей когерентного рассеяния) и величину микронапряжений  $\varepsilon$  в размолотых порошках карбида вольфрама определяли рентгеновским методом по уширению дифракционных отражений. Дифракционные измерения проводили на дифрактометре Shimadzu XRD-7000 методом Брегга-Брентано в интервале углов  $2\theta$  от  $10^{\circ}$  до  $140^{\circ}$  с пошаговым сканированием  $\Delta(2\theta) = 0.03^{\circ}$  и временем экспозиции 2 s в точке в излучении Cu $\kappa \alpha_{1,2}$ . Дифракционные отражения описывали функцией псевдо-Фойгта.

В дифракционном эксперименте средний размер  $\langle D \rangle$  областей когерентного рассеяния равен  $\langle D \rangle = \lambda/[\cos \theta \beta_d(2\theta)]$ , где  $\beta_d(2\theta)$  — размерное уширение дифрационных отражений,  $\lambda$  — длина волны излучения,  $\theta$  — угол рассеяния [12,31]. Для оценки уширения в специальном дифрационном эксперименте на гексабориде лантана LaB<sub>6</sub> (NIST Standart Reference Powder 660a) нашли инструментальную функцию разрешения дифрактометра Shimadzu XDR-7000, равную  $FWHM_R(2\theta) = (u tg^2 \theta + v tg \theta + w)^{1/2}$  с параметрами u = 0.006 18, v = -0.004 57 и w = 0.007 78. Уширение находили как  $\beta(2\theta) = \sqrt{FWHM_{exp}^2 - FWHM_R^2}$ , сравнивая экспериментальную ширину  $FWHM_{exp}$  отражений WC с инструментальной функцией разрешения  $FWHM_R$ .

Размерное и деформационное уширения разделяли и средний размер  $\langle D \rangle$  областей когерентного рассеяния и величину микронапряжений  $\varepsilon$  находили методом Вильямсона–Холла [12,31,32], используя зависимость приведенного уширения  $\beta^*(2\theta) = [\beta(2\theta) \cos \theta]/\lambda$  отражений (hkl) от вектора рассеяния  $s = (2 \sin \theta)/\lambda$ .



**Рис. 2.** Оценка среднего размера частиц  $\langle D \rangle$  и микронапряжений  $\varepsilon$  в нанокристаллическом порошке карбида вольфрама, полученном в течение 10 h высокоэнергетического размола 20 g исходного порошка:  $D = 37 \pm 5$  nm,  $\varepsilon = 0.75 \pm 0.02\%$ .

В этом случае средний размер *D* находят экстраполяцией зависимости приведенного уширения  $\beta^*(2\theta)$ от величины вектора рассеяния *s* на значение *s* = 0, т. е.  $\langle D \rangle = 1/\beta^*(2\theta) = \lambda/[\cos \theta \beta(2\theta)]$  при  $\theta = 0$ , так как  $\beta(2\theta)|_{\theta=0} \equiv \beta_d(2\theta)$ . Величина микронапряжений  $\varepsilon$  характеризует относительное изменение межплоскостного расстояния и ее в относительных единицах находят из угла наклона  $\varphi$  прямой, аппроксимирующей зависимость  $\beta^*$  от *s*, по формуле

$$\varepsilon = \left\{ \frac{\beta^*(2\theta)}{2s} \right\} \equiv \frac{(\operatorname{tg} \varphi)}{2}.$$

В качестве примера на рис. 2 показана оценка среднего размера  $\langle D \rangle$  областей когерентного рассеяния после 10 h размола 20 g исходного порошка WC:  $\langle D \rangle = 37 \pm 5$  nm, а величина микронапряжений составляет  $\varepsilon = 0.0075 \pm 0.0002$ , или 0.75  $\pm 0.02\%$ .

Распределение частиц по размеру в нанопорошке карбида вольфрама WC, полученном механическим высокоэнергетическим размолом, определяли также на лазерном анализаторе Laser Scattering Particle Distribution Analyzer HORIBA-Laser LA-920. По этим данным, наименьший размер частиц в нанопорошке WC составляет  $\sim 80$  nm, а половина всех частиц имеет размер менее 170 nm. Это означает, что частицы нанопорошка агломерированы. То, что размолотый порошок легко агломерируется, следует из данных сканирующей электронной микроскопии: согласно им, размер агломератов составляет от 0.1 до  $0.4 \mu$ m.

В целом оценки среднего размера частиц по уширению дифракционных отражений в нанопорошке карбида вольфрама качественно согласуются с данными электронной микроскопии и размерного распределения. Дифракционное определение дает меньший размер частиц, так как в микроскопическом и лазерном методах оценивается размер не отдельных частиц, а их агломератов. Заметим также, что дифракционный метод является объемным и потому определяет размер частиц, усредненный по всему объему. Кроме того, в дифракционном методе наряду с размером частиц количественно определяется величина микронапряжений, что нельзя сделать другими методами.

Экспериментальные зависимости среднего размера D частиц порошка WC и микронапряжений  $\varepsilon$  от продолжительности t размола и массы M исходного порошка показаны на рис. 3. Как видно, при использованных параметрах размола быстрое уменьшение размера частиц и рост микронапряжений происходят в первые 100-150 min.



**Рис. 3.** Зависимости среднего размера частиц D ( $\circ$ ) и микронапряжений  $\varepsilon$  ( $\bullet$ ) от продолжительности высокоэнергетического размола t и массы M исходного крупнозернистого порошка WC в планетарной шаровой мельнице PM-200 Retsch (масса шаров 100 g, скорость вращения  $8.33 \, \text{s}^{-1}$ ). Экспериментальные данные по размеру частиц  $D_{\text{ехр}}$  аппроксимированы функцией (13) с параметрами  $a_D = 0.00199$  и  $b_D = 7.6514 \text{ m} \cdot \text{s/kg}$  (при измерении  $\varepsilon$  в а.u.). Изменение микронапряжений описано эмпирической зависимостью  $\varepsilon(t, M) = \varepsilon_{\text{max}}[t/(t + \tau)][M/(M + p)]$ , где  $\varepsilon_{\text{max}} = 0.007 \, 842$ ,  $\tau = 7335 \text{ s}$  и p = -0.00164 kg. Теоретическая зависимость  $D_{\text{theor}}(t)$  показана пунктиром.

При дальнейшем увеличении длительности размола зависимости D(t) и  $\varepsilon(t)$  асимптотически приближаются к некоторым предельным значениям. Уменьшение величины загрузки M исходного вещества при одинаковой продолжительности размола сопровождается уменьшением размера частиц и ростом микронапряжений.

При одинаковой угловой скорости вращения  $\omega$  соотношение (12) приобретает вид

$$D(t, M) = \frac{M[a_D + b_D \varepsilon(t, M)]}{t + M[a_D + b_D \varepsilon(t, M)]/D_{\text{in}}},$$
 (13)

где

$$b_D = B/\kappa\omega^3 = [B\ln(D_{\rm in}/2b)]/\kappa\omega^3$$
$$= \sqrt{3C} (f_s/f_v)\beta Gb\ln(D_{\rm in}/2b)/[12\pi(1-v)d\kappa\omega^3]$$

И

$$a_D = A/\kappa\omega^3 = (f_s/f_v)qu/(s_f d\kappa\omega^3).$$

При  $\kappa \approx 0.0015 \,\text{kg} \cdot \text{m}^2$ , угловой скорости вращения  $\omega = 8.33 \,\text{s}^{-1}$  и исходном размере частиц  $D_{\text{in}} = 6 \cdot 10^{-6} \,\text{m}$  из теоретической оценки величин *A* и *B* следует, что  $a_D = 0.002 \,32 \,\text{m} \cdot \text{s/kg}$  и  $b_D = 9.0899 \,\text{m} \cdot \text{s/kg}$ .

Как видно из рис. 3, экспериментальные данные  $D_{\exp}(t, M = \text{const})$  хорошо аппроксимируются функцией (13) с параметрами  $a_D = 0.001\,99\,\mathrm{m\cdot s/kg}$  и  $b_D = 7.6514\,\mathrm{m\cdot s/kg}$  (при измерении  $\varepsilon$  в а.u.). Согласие теоретически оцененных параметров  $a_D$  и  $b_D$  со значениями, найденными из эксперимента, вполне удовлетворительное. Микронапряжения  $\varepsilon$  (а.u.) описаны эмпирической зависимостью  $\varepsilon(t, M) = \varepsilon_{\max}[t/(t+\tau)][M/(M+p)]$ , где  $\varepsilon_{\max} = 0.007842$ ,  $\tau = 7335$  в и  $p = -0.00164\,\mathrm{kg}$ .

Зависимость  $D_{\text{theor}}(t, M = \text{const})$  (рис. 3), найденная по формуле (13) с учетом теоретических значений параметров  $a_D$  и  $b_D$ , лежит несколько выше экспериментальной зависимости. Наблюдаемое расхождение эксперимента и расчета обусловлено приближенной оценкой величины qu и эмпирических коэффициентов a,  $f_s/f_v$ , С и  $\beta$ .

### Заключение

Предложенная модель механического размола порошков позволяет перейти от эмпирического подбора условий размола к теоретическому определению параметров размола исходя из физических характеристик исходного порошка. Модель размола применима к однофазным твердым веществам. В случае порошковых смесей нужно специальным образом учитывать их многофазность.

Работа поддержана проектом РФФИ № 10-03-00023а, совместным проектом № 09-С-3-1014 Уральского и Сибирского отделений РАН и проектом ориентированных фундаментальных исследований УрО РАН № 00-3-11-УТ.

# Список литературы

- Журков С.Н., Нарзулаев Б.Н. // ЖТФ. 1953. Т. 23. Вып. 10. С. 1677–1689.
- [2] Регель В.Р., Слуцкер А.И., Томашевский Э.Е. // УФН. 1972.
   Т. 106. № 2. С. 193–228.
- [3] Регель В.Р., Слуцкер А.И., Томашевский Э.Е. Кинетическая природа прочности твердых тел. М.: Наука, 1974. 560 с.
- [4] Бутягин П.Ю. // Успехи химии. 1984. Т. 53. № 11. С. 1769–1789.
- [5] Попович А.А., Рева В.П., Василенко В.Н., Попович В.А., Белоус О.А. // Порошк. металлургия. 1993. № 2. С. 37–43.
- [6] *Бутягин П.Ю.* // Успехи химии. 1994. Т. 63. № 12. С. 1031–1043.
- [7] Fecht H.-J. // Nanostruct. Mater. 1995. Vol. 6. N 1-4. P. 33-42.
- [8] Butyagin P.Yu. // Advances in Mechanochemistry, Physical and Chemical Processes under Deformation. Harward: Harward Acad. Publ., 1998; Chem. Rev. 1998. Vol. 23. P 2. P. 91–165.
- [9] Fracture and Strength of Solids VI. Proc. 6<sup>th</sup> Int. Conf. on Fracture and Strength of Solids (FEOFS 2005). April 4–6, 2005, Bali, Indonesia / Ed. by Ichsan Setya Putra and Djoko Suharto. Key Eng. Mater. 2006. Vol. 306–308. 1600 p.
- [10] Авакумов Е.Г. Механические методы активации химических процессов. Новосибирск: Наука, 1988. 305 с.
- [11] Gusev A.I. // Dekker Encyclopedia of Nanoscience and Nanotechnology / Ed. by J.A. Schwarz, C. Contescu, K. Putyera. NY: Marcel Dekker Inc., 2004. Vol. 3. P. 2289–2304.
- [12] Gusev A.I., Rempel A.A. Nanocrystalline Materials. Cambridge: Cambridge Int. Science Publ., 2004. 351 p.
- [13] Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. 2-е изд. М.: Физматлит, 2007. 416 с.
- [14] Balogh J., Bujdosó L., Faigel G., Gránásy L., Kemény T., Vincze I., Szabó S., Bakker H. // Nanostruct. Mater. 1993. Vol. 2. N 1. P. 11-18.
- [15] Mohamed F.A. // Acta Materialia. 2003. Vol. 51. N 14. P. 4107–4119.
- [16] Бойко В.Ф., Верхотуров А.Д. // Перспективные материалы. 2008. № 6. С. 84–87.
- [17] Eckert J., Holzer J.C., Krill C.E., Johnson W.L. // J. Mater. Res. 1992. Vol. 7. N 7. P. 1751–1761.
- [18] Oleszak D., Shingu P.H. // J. Appl. Phys. 1996. Vol. 79. N 6. P. 2975–2981.
- [19] *Курлов А.С., Гусев А.И.* // Письма в ЖТФ. 2007. Т. 33. Вып. 19. С. 46–54.
- [20] Бутягин П.Ю., Стрелецкий А.Н. // ФТТ. 2005. Т. 47. Вып. 5. С. 830–835.
- [21] Nazarov A.A., Romanov A.E., Valiev R.Z. // Nanostruct. Mater. 1994. Vol. 4. N 1. P. 93–102.
- [22] Williamson G.K., Smallman R.E. // Phil. Mag. 1956. Ser 8. Vol. 1. N 1. P. 34–46.
- [23] Свойства, получение и применение тугоплавких соединений (справочник) / Под ред. Т.Я. Косолаповой. М.: Металлургия, 1986. 928 с.
- [24] Gubicza J., Ribárik G., Goren-Muginstein G.R., Rosen A.R., Ungár T. // Mat. Sci. Eng. A. 2001. Vol. A309–310. P. 60–63.
- [25] Bolton J.D., Redington M. // J. Mater. Sci. 1980. Vol. 15. N 12. P. 3150–3156.

- [26] Wicks C.E., Block F.E. Thermodynamic Properties of 65 Elements, Their Oxides, Halides, Carbides and Nitrides. Washington: US Government Printing Office, 1963. 240 p.
- [27] Термодинамические свойства индивидуальных веществ / Под ред. В.П. Глушко. М.: Наука, 1979. Т. II. кн. 2, 340 с.: 1982. Т. IV. кн. 2. 560 с.
- [28] Barin I. Thermochemical Data of Pure Substance, 3<sup>rd</sup> ed. Weinheim; VCH, 1995. 1880 p.
- [29] *Гусев А.И., Курлов А.С.* // Неорган. матер. 2009. Т. 45. № 1. С. 38–45.
- [30] *Бутягин П.Ю.* // Механохимический синтез в неорганической химии / Под ред. Е.Г. Авакумова. Новосибирск: Наука, 1991. С. 32–52.
- [31] Warren B.E. X-Ray Diffraction. NY: Dower Publications, 1990. 381 p.
- [32] Williason G.K., Hall W.H. // Acta Metal. 1953. Vol. 1. N 1. P. 22–31.