05;07;12

Экспериментальное моделирование и теоретический анализ термодеформации пластин диэлектрических материалов при субмикросекундных длительностях радиационного нагрева

© Н.В. Вовненко, Б.А. Зимин, Ю.В. Судьенков

Санкт-Петербургский государственный университет, 198504 Петергоф, Санкт-Петербург, Россия e-mail: vovnenko@list.ru

(Поступило в Редакцию 7 июня 2010 г. В окончательной редакции 11 ноября 2010 г.)

Представлены результаты исследований формирования деформаций изгиба пластин диэлектриков при воздействии объемных и поверхностных источников термонапряжений субмикросекундной длительности. Воздействие таких источников моделировалось при лазерном облучении пластин цветных стекол с различными коэффициентами оптического поглощения. Такая методика моделирования термомеханических процессов радиационного воздействия на диэлектрические материалы позволила получить качественную и количественную картину различия термоупругой реакции пластин на действие импульсных источников термонапряжений с различными пространственными параметрами. Показано, что для объемных источников термонапряжений процесс термодеформации пластин из диэлектрических материалов предсталяет собой совокупность квазигармонических волновых процессов растяжения-сжатия и протекающего одновременно квазистатического прогиба пластины. При воздействии поверхностных источников термонапряжений субмикросекундной длительности механизм деформации пластин складывается из термодеформации тонкого поверхностного слоя и импульсного волнового процесса, приводящего к изгибу пластины в процессе реверберации имульсов между поверхностями пластины. Представленные приближенные модели анализа термодеформаций при импульсных тепловых возмущениях позволяют прогнозировать величины изгиба в зависимости от дозы поглощенной энергии при воздействии как объемных, так и поверхностных источников термонапряжений.

Для импульсных радиационных воздействий на материалы или элементы конструкций в широком диапазоне изменения их природы и характеристик наиболее характерными являются термомеханические явления, обусловленные термализацией зоны энерговклада, возникновением тепловых полей и напряжений, определяющих термодиффузионные процессы, эволюцию структуры, а также возможность разрушения. В этой связи существенный научный и практический интерес представляют исследования процессов формирования деформаций изгиба, определяющих параметры колебательных и волновых процессов, формирующихся в пластинах в зависимости от тех или иных граничных условий закрепления.

Лазерные источники являются наиболее гибким инструментом для моделирования и исследования динамики термомеханических явлений в лабораторных условиях. Выбрав для этих целей диэлектрические материалы с одинаковыми упругими и тепловыми свойствами, но различными коэффициентами оптического поглощения, например цветные стекла, можно исследовать термомеханические процессы, характерные как для поверхностных, так и объемных тепловых источников.

Экспериментальные методы и результаты

В экспериментах в качестве модельных образцов были выбраны цветные светофильтры с различными коэф-

фициентами оптического поглощения для $\lambda = 1.06 \,\mu$ m (табл. 1). Воздействие осуществлялось лазером на YAG-Nd с $\lambda = 1.06 \,\mu$ m, $E \approx 25 \,\text{mJ/cm}^2$ и длительностью излучения $t_{0.5} = 12 \,\text{ns.}$

На рис. 1 приведена схема эксперимента (a), временной профиль импульса излучения (b) и распределение интенсивности лазерного излучения по глубине образцов в зависимости от коэффициента оптического поглощения (c).

Смещение поверхности образцов в центре зоны лазерного воздействия регистрировалось лазерным интерферометром Майкельсона с фотоэлектронным счетом полос и стабилизацией рабочей точки. Чувствитель-

Таблица 1. Коэффициенты оптического поглощения и марки исследуемых образцов цветных стекол

Марка	α , cm ⁻¹
CC-9	0.5
OC-5	1.05
ЖЗС-4	1.55
ФС-6	3.2
C3C-17	4.0
ФС-7	6.4
C3C-15	7.25
ФС-1	11.7
C3C-5	14.5
C3C-22	200

Рис. 1. *а* — схема экперимента; *b* — временной профиль импульса излучения, *e* — распределение интенсивности лазерного излучения по глубине образцов в зависимости от коэффициента оптического поглощения.

ность интерферометра была ≤ 1 nm при временном разрешении ≤ 3 ns. Измерялось смещение облучаемой поверхности образцов с размерами $(2-6) \times 40 \times 40$ mm в центре зоны облучения диаметром ~ 12 mm, равной диаметру опоры.

Очевидно, что при быстром равномерном прогреве объема в пластине будут возникать колебания растяжения-сжатия, обусловленные тепловым расширением нагретого объема и упругой реакцией материала пластины, в то же время при наличии неравномерного нагрева толщины пластин градиент внутренних напряжений будет приводить к их изгибу. Так как поглощение радиационного излучения, и в частности лазерного, в сплошных средах подчиняется закону Бугера $I = I_0 \exp(-\alpha z)$ (рис. 1, *c*), то при таких воздействиях динамика термоупругой реакции пластин из поглощающих материалов будет определяться совокупностью

колебаний растяжения–сжатия и деформацией изгиба. На рис. 2 приведена схема дейстия эквивалентных нагрузок на пластину при равномерном (рис. 2, a) и неравномерном распределении температуры по толщине пластины (рис. 2, b).

На рис. З представлены временные зависимости перемещения облучаемых поверхностей стекол с различным коэффициентом поглощения. Для образца с малым коэффициентом поглощения (СС-9, $\alpha = 0.5 \,\mathrm{cm^{-1}}$), т.е. при почти равномерном прогреве образца, перемещение определяется практически только процессом растяжения-сжатия с периодом основной моды колебаний $t_p = 2H/c_l$, где H — толщина образца, c_l — продольная скорость звука. С увеличением α (ФС-6, $\alpha = 3.2 \,\mathrm{cm^{-1}}$) становится заметен вклад изгиба пластин

Рис. 2. *а* — схема эквивалентных нагрузок на пластину при равномерном, *b* — неравномерном распределении температуры по толщине пластины.

Рис. 3. Зависимости перемещения облучаемой поверхности от времени для образцов с различным коэффициентом поглощения: I - CC-9 ($\alpha = 0.5 \text{ cm}^{-1}$); $2 - \Phi\text{C-6}$ (3.2 cm^{-1}); 3 - C3C-15 (7.2 cm^{-1}); 4 - C3C-5 (14.5 cm^{-1}).

Журнал технической физики, 2011, том 81, вып. 7

навстречу лазерному лучу. Толщина образцов для представленных на рис. 3 зависимостей равнялась 3 mm.

Приведенные на рис. 4 результаты демонстрируют связь периода колебаний с толщиной образца и увеличение изгиба с уменьшением толщины.

Следует отметить, что с ростом поглощения существенно изменяется спектр колебаний растяжениесжатие, что обусловлено возрастающей неравномерностью нагрева пластины, определяющей неравномерность механических напряжений, и соответственно увеличением вклада волн различных поляризаций в процесс перемещения поверхности. Эти изменения и характеризуют переход от объемного теплового источника напряжений к поверхностному.

На рис. 5, a представлены зависимости перемещения поверхности для образцов с большими значениями α и при значительно большем времени регистрации процесса движения, а на рис. 5, b — увеличенный фрагмент этих зависимостей.

Наблюдается существенное изменение характера процесса движения облучаемой поверхности с увеличением коэффициента поглощения от значения $\alpha = 14.5$ к 200 сm⁻¹. Квазигармонические колебания на основной моде вырождаются в реверберацию коротких импульсов напряжений с тем же периодом $t_p = 2H/c_l$, а процесс изгиба начинается только после прихода отраженного от свободной поверхности импульса напряжения (рис. 5, *b*). Начальное движение поверхности (выделено жирным пунктиром на рис. 5, *b*) обусловлено термодеформацией прогретого тонкого слоя с толщиной $\delta \approx 1/\alpha = 50 \, \mu$ m.

Таким образом, экспериментальные результаты показывают, что деформации пластин при действии объемных источников термонапряжений субмикросекундной длительности ($\alpha H < 1$) складываются из квазигармонической реакции растяжение–сжатие и квазистатического изгиба, начинающегося одновременно с действием источника.

Деформация пластин при действии поверхностных источников термонапряжений ($\alpha H \gg 1$) вначале определяется термодеформацией тонкого поверхностного слоя

Рис. 4. Зависимости перемещения поверхности от времени для образцов с различной толщиной, но одинаковым коэффициентом поглощения $\alpha = 7.2 \text{ cm}^{-1}$: I - h = 1.9; 2 - 3.8 mm.

Рис. 5. a — зависимости перемещения облучаемых поверхностей стекол от времени: I — C3C-22 (α = 200 cm⁻¹); 2 — C3C-5 (14.5 cm⁻¹); 3 — C3C-15 (7.2 cm⁻¹); b — увеличенный фрагмент зависимости.

 $(\delta \approx 1/\alpha)$, а в дальнейшем — импульсным волновым процессом, приводящим, в конечном итоге, к изгибу пластины.

Теоретический анализ полученных экспериментальных результатов может быть весьма полезен для получения адекватных оценок термодеформаций как оптических элементов, так и элементов конструкций и микроэлектроники, подверженных импульсному радиационному воздействию.

Анализ деформации пластин при действии объемных источников тепла

Известно, что термомеханические процессы в материалах при воздействии потоков энергии, в частности лазерного излучения, описываются системой уравнений теории упругости и уравнением теплопроводности [1,2]:

$$\mathbf{L}\,\mathbf{u} = (3\lambda + 2\mu)\alpha_T \nabla T + \rho \,\frac{\partial^2 \mathbf{u}}{\partial t^2},\tag{1}$$

$$\frac{\partial T}{\partial t} = \chi \nabla^2 T + \frac{A_0 f(t) e^{-\alpha z}}{t_0},\tag{2}$$

где λ, μ — константы Ламе, ρ — плотность, χ — коэффициент температуропроводности, α — коэффициент оптического поглощения (для данного материала

Журнал технической физики, 2011, том 81, вып. 7

величина постоянная), u — вектор перемещения, T — температура, $A_0 = \alpha I_0 / \rho c_p$, t_0 — время длительности импульса, I_0 — поглощенная часть интенсивности лазерного импульса, его зависимость от времени описывается функцией f(t), c_p — удельная теплоемкость материала при постоянном давлении, α_T — температурный коэффициент линейного расширения, ∇^2 — оператор Лапласа, L — оператор Ламе [2].

Однако точное решение системы уравенний динамической термоупругости существует только для очень немногих простых задач в одномерной постановке [2–4], в этой связи анализ конкретных задач требует выбора разумного приближения и сравнения полученных решений с экспериментальными данными.

Для анализа результатов проведенных экспериментов будем рассматривать осесимметричную задачу для пластины толщиной H = 2h, малой по сравнению с радиусом облучения ($2h/R \approx 0.1$), свободно опертой по контуру облучения, диаметр которого существенно меньше размеров пластины.

Отметим также, что при временах наблюдения, меньших прихода в точку измерения волн с боковых граней пластины, их влиянием можно пренебречь.

Перейдем в уравении (2) к безразмерным цилиндрическим (r, θ, z) координатам

$$\eta = \frac{r}{R}, \quad \xi = \frac{z}{h}, \quad \tau = \frac{t}{t_0}.$$

Срединная плоскость пластины z = 0. Учитывая, что температура *T* не зависит от угла θ , запишем:

$$\frac{\partial T}{\partial \tau} = \frac{t_0 \chi}{h^2} \left(\frac{h^2}{R^2} \frac{\partial^2}{\partial \eta^2} + \frac{h^2}{R^2} \frac{1}{\eta} \frac{\partial}{\partial \eta} + \frac{\partial^2}{\partial \xi^2} \right) T + A_0 f(\tau) e^{\alpha h(\xi - 1)}.$$
(3)

Решение уравнения (3) ищем в виде $T = g(\tau)e^{\alpha h(\xi-1)}$ и с учетом малости значения $(h/R)^2$ получим для $g(\tau)$ уравнение:

$$\frac{dg}{d\tau} = \chi \alpha^2 t_0 g(\tau) + A_0 f(\tau). \tag{4}$$

Для стекол с малым значением коэффициента оптического поглощения ($\alpha h < 1$) $\chi \alpha^2 t_0 \ll 1$ — малый параметр ($\chi < 0.01 \text{ cm}^2$ /s, $\alpha \approx 0.5 - 14 \text{ cm}^{-1}$, $t_0 = 2 \cdot 10^{-8} \text{ s}$), вследствие этого из (4) получим:

$$g(\tau) = A_0 \int_0^\tau f(t) dt.$$
 (5)

Тогда для изменения температуры и значений температур на поверхностях пластины получаем:

$$T(z,t) = A_0 g(\tau) e^{\alpha(z-h)}; \quad T^+_{\xi=1} = A_0 g(\tau);$$
$$T^-_{\xi=-1} = A_0 g(\tau) e^{-2\alpha h}.$$
(6)

Вследствие того что силовая и температурная деформации рассматриваются как независимые, на поверхностях пластины можно записать:

$$z = h \quad \sigma_z^+ = (3\lambda + 2\mu)\alpha_T T^+,$$

$$z = -h \quad \sigma_z^- = (3\lambda + 2\mu)\alpha_T T^-.$$
(7)

Далее, используя разложение нагрузки на симметричную и кососимметричную части и введя

$$\sigma_1 = rac{1}{2} \left(\sigma_z^+ - \sigma_z^-
ight)$$
 и $\sigma_2 = rac{1}{2} \left(\sigma_z^+ + \sigma_z^-
ight),$

решение уравнения (1) с условием (7) можно представить в виде суммы решений двух задач — А и В (рис. 2)

A:
$$z = \pm h \sigma_z = \sigma_2$$
 — задача растяжения-сжатия слоя, (8a)

B:
$$z = \pm h \ \sigma_z = \pm \sigma_1$$
 — задача изгиба. (86)

Для нахождения решения задачи А запишем проекцию уравнения (1) на ось z в цилиндрической системе координат (r, θ, z) :

$$\mu \nabla^2 u_z + (\lambda + \mu) \frac{\partial}{\partial z} \left[\frac{1}{2} \frac{\partial}{\partial r} (r u_r) + \frac{1}{2} \frac{\partial u_\theta}{\partial \theta} + \frac{\partial u_z}{\partial z} \right]$$
$$= \rho \frac{\partial^2 u_z}{\partial t^2} + (3\lambda + 2\mu) \alpha_T \frac{\partial T}{\partial z}, \tag{9}$$

где u_r , u_{θ} , u_z — перемещения по соответствующим координатам.

С учетом осесимметрии задачи ($\partial u_{\theta}/\partial \theta = 0$), пренебрегая влиянием перемещения в радиальном направлении и принимая во внимание, что измерение перемещений производится в центре поверхности пластины, для задачи А получим уравнение:

$$\frac{\partial^2 u_z}{\partial z^2} - \frac{1}{c_L^2} \frac{\partial^2 u_z}{\partial t^2} = \beta \frac{\partial T}{\partial z},\tag{10}$$

где

$$eta = rac{3\lambda+2\mu}{2\mu+\lambda}\,lpha_T, \quad c_L^2 = rac{\lambda+2\mu}{
ho}$$

— скорость продольной волны.

Для объемных тепловых источников, т.е. малых значений $\alpha h \ll 1$, выражение (6) для T(z, t) упрощается и значения температур поверхностей будут равны:

$$T^{+} = A_0 g(\tau) e^{-\alpha h} (1 + \alpha h),$$

$$T^{-} = A_0 g(\tau) e^{-\alpha h} (1 - \alpha h).$$
(11)

Вследствие симметричности задачи A и учитывая, что смещение серединной поверхности отсутствует $(u|_{z=0} = 0)$, граничные условия для уравнения (10) запишутся в виде:

$$z = \pm h \ \sigma_z = (\lambda + 2\mu) \frac{\partial u}{\partial z} - (3\lambda + 2\mu)\alpha_T A_0 g(\tau) e^{-\alpha h} = 0.$$
(12)

Журнал технической физики, 2011, том 81, вып. 7

Решение уравнения (10) с граничными условиями (12) можно искать в виде разложения в ряд Фурье по собственным функциям $X_n(z)$ соответствующей задачи Штурма–Лиувилля [5]:

$$u = \sum_{n=1}^{\infty} X_n(z) (A_n \cos \omega_n t + B_n \sin \omega_n t) + \upsilon_s, \qquad (13)$$

где $\omega_n = \pi n c_L/4h$ — частоты колебаний, υ_s — квазистатическое перемещение поверхности, несущественное для регистрации динамического поля перемещений.

Анализ рис. 3 показывает, что основной вклад в измеренное перемещение поверхности при малых коэффициентах поглощения дает основная мода колебаний:

$$\omega_1 = \frac{\pi c_L}{4h}.$$

Задача В — задача симметричного изгиба. Динамика изгиба пластин описывается уравнением [2]:

$$D\nabla^2 \nabla^2 W + \rho 2h \frac{\partial^2 W}{\partial t^2} = q - (1+\nu)\alpha D\nabla^2 \psi, \qquad (14)$$

где *W* — величина изгиба,

$$D = \frac{E(2h)^3}{12(1-\nu^2)}$$

— цилиндрическая жесткость, *v* — коэффициент Пуассона,

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r},$$

q — внешняя нагрузка, ψ — определяется как [2]

$$\psi = \frac{12}{(2h)^3} \int_{-h}^{h} zT(r,z,t)dz.$$

Так как ψ от *r* не зависит, то $\nabla^2 \psi = 0$. Внешняя нагрузка *q* для задачи В рассчитывается исходя из (86) и (10):

$$q = (3\lambda + 2\mu)\alpha_T A_0 g(t) e^{-\alpha h} \alpha h.$$
 (15)

Граничные условия для свободно опертой пластинки:

$$W|_{r=R} = 0 \quad M_r|_{r=R} = 0,$$
 (16)

где *R* — радиус опирания, *M_r* — изгибающий момент в направлении *r*.

Представим величину изгиба *W* в виде суммы квазистатической *W_s* и динамической составляющей *W_d* [3]:

$$W = W_s + W_d. \tag{17}$$

W_s удовлетворяет граничным условиям (16) и уравнению:

$$D\nabla^2 \nabla^2 W_s = q. \tag{18}$$

Для динамической составляющей W_d из (14), (15) и условия $\nabla^2 \psi = 0$ получим уравнение:

$$\nabla^2 \nabla^2 W_d + \frac{\rho 2h}{D} \frac{\partial^2 W_d}{\partial t^2} = -\frac{\rho 2h}{D} \frac{\partial^2 W_s}{\partial t^2}.$$
 (19)

Журнал технической физики, 2011, том 81, вып. 7

Таблица 2. Экспериментальные и расчетные значения смещения поверхности для образцов с различными коэффициентами оптического поглощения

α , cm ⁻¹	1.5	3.2	4.0	7.2	14.5
$W_{\rm max}, {\rm nm}$	2.5	4.9	6.0	9.0	13.9
Эксперимент W _{max} , nm	2.5	4.5	5.5	9.5	15.5
Расчет					

W_d удовлетворяет однородным краевым условиям:

$$W_d|_{r=R} = 0 \quad M_r|_{r=R} = 0.$$
 (20)

Для квазистатического перемещения $\partial^2 W_s / \partial t^2 = 0$. С учетом этого из уравнения (19) и однородных краевых условий следует, что динамический изгиб равен нулю ($W_d = 0$). Решение уравнения (18) при краевых условиях (16) имеет вид [6]:

$$W_s = \frac{q(R^2 - r^2)}{64D} \left(\frac{5 + \nu}{1 + \nu}R^2 - r^2\right).$$
 (21)

Величина изгиба в центре области нагрева (при r = 0) будет равна

$$W_{s(\max)} = \frac{qR^4}{64D} \left(\frac{5+\nu}{1+\nu}\right),\tag{22}$$

где q определяется из (15).

В табл. 2 представлено сравнение результатов расчета по (22) с результатами измерений. Наблюдается достаточно хорошее соответствие результатов.

Таким образом, предложенная модель описания деформации пластин из нетеплопроводящих материалов под действием импульсных объемных источников термонапряжений удовлетворительно описывает результаты экспериментов.

Анализ деформации пластин при действии поверхностных источников тепла

При больших коэффициентах оптического поглощения, когда размер области действия теплового источника много меньше толщины пластины и время его действия существенно меньше времени пробега упругой волны по толщине, ситуация может быть описана решением плоской динамической задачи термоупругости для полупространства, но только до момента прихода упругой волны к не облучаемой поверхности пластины.

При выходе импульса напряжений на тыльную поверхность пластины на границах области возмущения начинают действовать изгибные моменты [7], обусловленные граничными условиями опирания и увеличивающимся, при каждом переотражении импульса (рис. 5), вкладом сдвиговых волн. В этой связи получение точного

Рис. 6. *а* — фрагмент зависимости перемещения облучаемой поверхности образца СЗС-22; *b* — соответствующая ей зависимость скорости смещения поверхности.

решения изгиба пластин при действии поверхностных источников термонапряжений представляет весьма существенные трудности.

Однако с позиций законов сохранения можно утверждать, что подавляющая часть энергии термически возбужденной упругой волны напряжений в конечном итоге будет преобразована в энергию изгиба пластины.

Запишем закон сохранения энергии в виде

$$V_p = U_p, \tag{23}$$

где V_p — энергия изгиба пластины, U_p — энергия упругой волны, возбуждаемой поверхностным источником в объеме пластины, и далее, исходя из закона сохранения, оценим прогиб пластин, наблюдаемый в эксперименте.

Энергия изгиба пластины в цилиндрических координатах может быть записана в виде [6]:

$$V_{p} = \frac{D}{2} \int_{0}^{2\pi} \int_{0}^{R} \left[\left(\frac{\partial^{2} W}{\partial r^{2}} \right)^{2} + \frac{1}{r^{2}} \left(\frac{\partial W}{\partial r} \right)^{2} + \frac{2\nu}{r} \left(\frac{\partial W}{\partial r} \right) \left(\frac{\partial^{2} W}{\partial r^{2}} \right) \right] r dr d\varphi, \qquad (24)$$

где W — величина изгиба, $D = \frac{EH^3}{12(1-\nu^2)}$ — изгибная жесткость, E — модуль Юнга материала, ν — коэффициент Пуассона, H — толщина пластины.

Для пластины с опиранием по радиусу *R* величина изгиба равна [6]:

$$W = \frac{b(R^2 - r^2)}{64D} \left[\frac{5 + \nu}{1 + \nu} R^2 - r^2 \right],$$
 (25)

где *b* — неопределенный множитель. Вычислив (24), получим для энергии изгиба:

$$V_p = \frac{\pi b^2 R^6}{16^2 D} \frac{2}{3} \frac{(7+\nu)}{1+\nu}.$$
 (26)

Используя закон сохранения (23), а также (25), (26), для расчета величины изгиба в центре пластины r = 0 получим:

$$W = \frac{R}{4} \left(\frac{5+\nu}{1+\nu} \right) \sqrt{\frac{3U_p(1+\nu)}{2\pi(7+\nu)D}}.$$
 (27)

На рис. 6, а представлен фрагмент зависимости смещения облучаемой поверхности образца C3C-22 (рис. 5, b), соответствующий приходу упругого импульса отраженного от тыльной поверхности пластины, а на рис. 6, b — соответствующий импульс скорости смещения поверхности.

В пренебрежении затуханием в стекле параметры этого импульса можно принять за исходные в процессе формирования изгиба. Отметим также, что параметры упругого импульса, возбуждаемого лазерным излучением в диэлектриках, могут быть рассчитаны по соотношениям, представленным в работах [1,8].

Тогда для энергии U_p плоской упругой волны площадью *S*, в приближении синусоидальной формы импульса (рис. 6, *b*), можно записать в виде [9]:

$$U_p = \frac{1}{2} \rho c_L t_p S \left[\frac{1}{4} \left(\frac{\partial u}{\partial t} \right)_0^2 \right], \qquad (28)$$

где $(\partial u/\partial t)_0$ — амплитуда скорости смещения поверхности.

Расчет прогиба в центре пластины по (27), (28), с учетом данных для образца C3C-22 (E = 64 GPa, $\rho =$ $= 2.4 \cdot 10^3$ kg · m³, $c_L = 5.8 \cdot 10^3$ m/s, $\nu = 0.28$, R == 0.006 m, H = 0.006 m и ($\partial u / \partial t$)₀ = 0.061 m/s), дает значение $W \approx 19.5$ nm. В эксперименте значение изгиба составляет -18 nm (рис. 5), т.е. наблюдается весьма хорошее соответствие оценки, полученной из закона сохранения и экспериментальных данных.

Заключение

Таким образом, лазерная методика моделирования термомеханических процессов радиационного воздействия на диэлектрические материалы позволяет получить качественную и количественную картину различия термоупругой реакции пластин на действия импульсных источников термонапряжений с различными пространственными параметрами.

Показано, что для объемных источников термонапряжений процесс термодеформации пластин из диэлектрических материалов представляет собой совокупность квазигармонических волновых процессов растяжения сжатия и протекающего одновременно квазистатического изгиба пластины.

При воздействии поверхностных источников термонапряжений $(h/\delta \gg 1)$ субмикросекундной длительности механизм деформации пластин складывается из термодеформации тонкого поверхностного слоя $(\delta \approx 1/\alpha)$ и импульсного волнового процесса, приводящего к изгибу пластины в результате реверберации импульсов между поверхностями пластины.

Представленные приближенные модели анализа термодеформаций при импульсных тепловых возмущениях позволяют прогнозировать величины изгиба в зависимости от дозы поглощенной энергии при воздействии как объемных, так и поверхностных источников термонапряжений.

Список литературы

- [1] Гусев В.Э., Карабутов А.А. Лазерная оптоакустика. М.: Наука, 1991. 304 с.
- [2] Паркус Г. Неустановившиеся температурные напряжения. М.: Гос. изд. физ.-мат., 1963. 252 с.
- [3] Коваленко А.Д. Термоупругость. Киев: Вища школа, 1975. 216 с.
- [4] Данилевская В.И. // ПММ. 1950. Т. XIV. 316 с.
- [5] Ладыженская О.А. Краевые задачи математической физики. М.: Наука, 1973. 407 с.
- [6] Тимошенко С.П. Пластины и оболочки. М.: Гостехиздат, 1948. 460 с.
- [7] Орлов А.М., Скворцов А.А., Литвиненко О.В. // ЖТФ. 2003.
 Т. 73. Вып. 6. с. 76.
- [8] Вовненко Н.В., Зимин Б.А., Судьенков Ю.В. // Вестн. СПбГУ. 2008. Сер. 1. Вып. 4. С. 110.
- [9] Бабешко В.А., Глушков Е.В., Зинченко Ж.Ф. Динамика неоднородных линейно-упругих сред. М.: Наука, 1989. 343 с.