Микро- и нанокомпозитные защитные покрытия на основе Ti-AI-N/Ni-Cr-B-Si-Fe, их структура и свойства

© А.Д. Погребняк,^{1,2} А.А. Дробышевская,^{1,2} В.М. Береснев,^{1,2} М.К. Кылышканов,³ Г.В. Кирик,^{2,4} С.Н. Дуб,⁵ Ф.Ф. Комаров,⁶ А.П. Шипиленко,^{1,2} Ю.Ж. Тулеушев⁷

¹ Институт металлофизики Г.В. Курдюмова НАН Украины, 40021 Сумы, Украина e-mail: alex@i.ua ² Сумской государственный университет, Сумской институт модификации поверхности, 40007 Сумы. Украина e-mail: apogrebnjak@simp.sumy.ua ³ Восточно-Казахстанский государственный технический университет, 070000 Усть-Каменогорск, Казахстан ⁴Концерн "Укрросметалл", 40020 Сумы, Украина ⁵ Институт сверхтвердых материалов НАН Украины, 04074 Киев, Украина ⁶ Белорусский государственный университет, 220030 Минск, Белоруссия ⁷ Институт ядерной физики республики Казахстан, 050032 Алматы, Казахстан

(Поступило в Редакцию 24 июля 2008 г. В окончательной редакции 19 июля 2010 г.)

Получен и исследован новый тип нанокомпозитного покрытия на основе Ti-Al-N/Ni-Cr-B-Si-Fe толщиной 70-90 μ m, созданный с помощью комбинации магнетронного распыления и плазменно-детонационной технологии. Обнаружено формирование фаз Ti₃AlN + Ti₂Al₂N₂ и фаз, образованных в результате взаимодействия плазмы с толстым покрытием Al₃Ti + Ni₃Ti. Установлено, что фаза TiAlN является нанодисперсной с размерами зерен 18–24 nm, а другие фазы имеют большой размер зерен — от 35 до 90 nm. Для покрытия из Ti-Al-N значение модуля упругости составляет около $E = 342 \pm 1$ GPa, а среднее значение твердости $H = 20.8 \pm 1.8$ GPa. Скорость коррозии данного покрытия очень мала и составляет 4.8 µg/year, т. е. примерно на 3 порядка меньше, чем для нержавеющей стали (подложки). Исследования износа по схеме цилиндр-поверхность показали высокую стойкость и высокое значение адгезии между толстым и тонким покрытиями.

Введение

11:12

Область исследования наноструктурных объектов является быстроразвивающейся в современном материаловедении. Сверхтонкая дисперсная структура обеспечивает существенное улучшение, а в отдельных случаях коренное изменение свойств материала [1,2]. Исследования сверхмелкозернистых материалов показали, что уменьшение размеров кристаллов ниже некоторой пороговой величины может приводить к значительному изменению свойств. Размерные эффекты проявляются в том случае, когда средний размер кристаллических зерен не превышает 100 nm, и наиболее отчетливо наблюдаются, когда он приближается к 10 nm, а межкристаллитная (межзеренная) прослойка, состоящая, как правило, из аморфной фазы (нитридов, оксидов, карбидов и др.), составляет единицы нанометров [1-5]. С физической точки зрения, переход к наносостоянию связан с появлением размерных эффектов, под которыми следует понимать комплекс явлений, связанных с изменением свойств вещества вследствие совпадения размера блока микроструктуры и некоторой критической длины, характеризующей эти явления (длину свободного пробега электронов и фононов, толщину стенки доменов, критического радиуса дислокационной петли и др.) [4–9].

Нанокомпозитные покрытия можно разделить на твердые (< 40 GPa) и супертвердые (> 40 GPa), полученные с помощью химического парофазового осаждения (CVD), физического парофазового осаждения (PVD), магнетронного распыления и ионно-ассистирующих методов осаждения [7–13].

Однако по своему составу, структуре и способу нанесения эти покрытия, нанесенные вакуумно-дуговыми методами, не являются комбинированными, и их обычная толщина составляет от 2.5 до 6 μ m. В некоторых работах было показано, что комбинированные и гибридные покрытия на основе Al₂O₃/Cr/TiN и Al₂O₃/TiN после обработки электронным пучком улучшают некоторые служебные характеристики, такие как износ, адгезия, стойкость к коррозии и жаропрочность до 950°C при образовании γ -фазы и, возможно, повышение жаропрочности до 2000°C при формировании α -фазы Al₂O₃. Под гибридными покрытиями понимаются такие покрытия, которые состоят из слоев металла, керамики, металлокерамики, например на основе $Al_2O_3Cr/Ti-N$ или $Ti-N/Al_2O_3$. В работах [13–17] было обнаружено, что нанесение покрытий Ni–Cr (Fe, Si, B) на сталь улучшает твердость, износ, стойкость к коррозии и адгезию, особенно в результате последующего оплавления покрытия электронным пучком или плазменной струей.

Из работ [15-17] известно, что Сг в никелевых сплавах, а Мо — в никель-молибденовых сплавах тормозят растворение никелевой основы, хотя Cr обеспечивает, а Мо — затрудняет ее пассивность. Именно поэтому Ni-Cr-сплавы устойчивы в кислотных средах, даже в смеси кислот. Поэтому для толстого покрытия был выбран порошок ПГ-19Н-01, состоящий из Ni, Cr, B, Si, Fe. Получаемое при этом толстое покрытие толщиной не менее 70 µm обладает более высокой твердостью (до 6.8 GPa) и заметно меньшим модулем упругости $E = 193 \pm 6 \,\text{GPz}$, чем у подложки (стали). В качестве второго, тонкого, покрытия, сформированного путем магнетронного распыления, был выбран Ti-Alкомпозит, обладающий более высокими механическими характеристиками [11], чем толстое покрытие из Ni-Cr-B-Si-Fe. Поэтому представляет несомненный интерес создание нового типа комбинированных покрытий, созданных как плазменно-детонационной технологией (Ni-Cr-B-Si-Fe), так и распылением сплавной мишени магнетрона и осаждением покрытия (Ti-Al-N) с наноразмерными зернами и улучшенными физикомеханическими характеристиками. Таким образом, целью данной работы было получение нанокомпозитных защитных покрытий толщиной от 80 до 90 µm и исследование их структуры и физико-механических свойств.

Методика приготовления образцов и методы анализа

Из прутков нержавеющей стали 12 × 18Т путем прокатки получали образцы размером 2 × 20 × 20 mm, которые затем отжигали для снятия наклепа и дефектности. Затем на образцы были нанесены покрытия из порошка ПГ-19Н-01 с типичными размерами частиц 29-68 µm следующего состава: Ni — основа; $Cr \sim 8-14\%$; Si $\sim 2.5-3.2\%$; B $\sim 2\%$; Fe $\sim 5\%$. С помощью плазмотрона "Импульс-6" было нанесено покрытие толщиной от 90 до 120 µm (фракция порошка $\sim 29-68\,\mu m$, расход порошка $\sim 22.5\,g/min$). При этом частота следования импульсов составляла 4 Hz, емкость конденсаторных батарей 800 µF, расстояние до образцов — 60 mm, скорость перемещения образцов — 380 mm/min. В качестве расходуемого электрода был использован W. Перед напылением поверхность образцов обрабатывалась абразивной струей с последующим оплавлением плазменной струей. Повторное оплавление поверхностного слоя покрытий проводилось плазменной струей без порошка. Частота следования импульсов в этом случае была — 3 Hz, емкость батарей — 800 µF, расстояние от среза сопла до образца — 45 mm, скорость перемещения — 300 mm/min. Часть образцов была оплавлена плазменной струей таким образом, чтобы оплавился слой покрытия из Ni–Cr–B–Si–Fe толщиной 40–60 μ m, а другая часть образцов осталась неоплавленной. Затем на половине образцов был прошлифован верхний слой для уменьшения шероховатости. Осаждение тонкого покрытия из Ti–Al–N осуществлялось на установке УВН-2M, где в качестве рабочих газов были использованы азот и аргон, с предварительным вакуумом в рабочей камере 10^{-3} Pa.

Использовалась комбинированная мишень: 44% Аl, 56% Ті по площади. Мощность разряда составляла 600 W. Мишень из Ti-Al предварительно очищалась разрядом в камере в среде аргона в течение 8 min. Для исследования элементного состава использовалось резерфордовское обратное рассеяние (РОР) ионов с энергией ионов ⁴He⁺ 2.35 и протонов 2.012 MeV (Дубна, ОИЯИ). Анализ морфологии и элементного состава проводился с помощью растрового электронного микроскопа РЭММА-103М с микроанализатором (EDS энергодисперсионным спектром и WDS — волновым дисперсионным спектром). Структура и фазовый состав исследовались на установке Advance 8 (XRD-анализ) со скользящим пучком от 0.5° [18]. С помощью спектрального электронного микроскопа LEO-1455R был проведен микроанализ по ширине шлифа (тонкого и толстого покрытия).

Проведены электрохимические коррозионные испытания в среде 1% NaCl с использованием PCI 4/300 потенциостат-гальваностата ZRA, электрохимического программного обеспечения ДС-105 и коррозионной ячейки. Были получены экспериментальные зависимости и кривые Тейфеля.

Часть испытаний проходила в 2%-ном водном растворе NaCl. При $T = 18^{\circ}$ С определялись скорость коррозии, коррозийные потенциалы и ток, коэффициенты Тейфеля. Все потенциалы представлены относительно каломелиевого электрода сравнения.

Испытания твердости проводились трехгранным индентором Берковича на нанотвердомере Nano Indentor-II, MTS Systems Corporation, Oak Ridge, TN USA [19]. В процессе испытаний с высокой точностью регистрировалась зависимость перемещения вершины индентора Берковича от нагрузки. Точность измерения глубины отпечатка составляла ± 0.04 nm, нагрузки на индентор — ± 75 nN. Испытания проводились при постоянной скорости внедрения индентора 5 nm/s. На каждом образце наносилось по 5 отпечатков на расстоянии $30\,\mu$ m друг от друга.

Чтобы уменьшить различие в температуре образца и индентора, образец до начала испытаний помещался в прибор на 12 h. Температура в помещении поддерживалась постоянной с точностью до $\pm 0.5^{\circ}$ С. Испытания не начинались, если скорость теплового расширения стержня индентора была выше 0.05 nm/s. Во время разгрузки для каждого испытания скорость теплового расширения индентора измерялась еще раз, и в результате вносилась

Рис. 1. a — изображение поверхности нанокомпозитного, комбинированного покрытия, полученного с помощью растровой электронной микроскопии. Стрелкой с цифрой обозначен участок, на котором проводили энергодисперсионный микроанализ; b — рентгеновский энергодисперсионный спектр, полученный из участка поверхности покрытия, обозначенного на рис. 1, a, где AI = 28.9, Ti = 20.19, Cr = 13.77, Fe = 1.15, Ni = 35.98 wt.%.

соответствующая поправка. После окончания испытаний твердость определялась по глубине отпечатка под нагрузкой, а модуль упругости — из анализа кривой разгрузки [19,20].

Результаты и обсуждение

На рис. 1, а представлено изображение участка поверхности TiAlN. На поверхности имеются участки "капельной" фракции, которые образовались при разлете плазмы при магнетронном распылении, но количество капель значительно меньше, чем при дуговом разряде. Точкой I на рисунке обозначен участок, в котором проводился энергодисперсный и волновой анализ. Как видно, в поверхностном слое обнаружены Al, Ti и Ni (следы): на рис. 1, b (результаты анализа, полученные с помощью EDS) приведены результаты количественного анализа, из которого видно, что концентрация Al меняется от 44.15 до 44.54%, Ti — от 52.127 до 54.3%, а концентрация Ni находится в пределах 1.055—1.706%.

Рис. 1, *b* отображает результаты интегрального и локального анализа. Результаты дают примерно одинаковую картину концентрации Si (от 0.587 до 0.564%), Ti (от 39 до 41,867%), Cr (от 56.797 до 59.390%) и Ni (от толстого покрытия) — 0.82–0.98%. На рис. 2 представлены спектры обратного рассеяния ионов гелия ⁴He⁺ (рис. 2, *a*) и водорода (рис. 2, *b*), измеренные на образцах Ti–Al–N/Ni–Ce–B–Si–Fe(W). Из рисунка видно, что в тонком покрытии имеются все элементы Al, Ti, Ni, O. Как видно из анализа спектров резерфордовского обратного рассеяния, в спектре образовалась "полочка", которая свидетельствует о взаимодействии Ti и Al и об образовании соединения Ti₅₀Al₅₀; если следовать работе [21] и формуле

$$\frac{N_{\rm Ti}}{N_{\rm Al}} = \frac{H_{\rm Al}\sigma_{\rm Al}}{H_{\rm Ti}\sigma_{\rm Ti}} \cong \frac{H_{\rm Ti}}{H_{\rm Al}} \left(\frac{Z_{\rm Al}}{Z_{\rm Ti}}\right)^2,\tag{1}$$

где N_{Ti} и N_{Al} — процентное отношение концентрации Ti и Al, H_{Ti} и H_{Al} — амплитуда сигнала от Ti и Al соответственно, Z_{Ti} и Z_{Al} — атомные номера, равные 22 для Ti и 13 для Al, σ_{Ti} и σ_{Al} — сечение рассеяния на атомах Ti и Al можно оценить стехиометрию соединения.

Здесь, согласно [21], пренебрегаем различием торможения вдоль обратной траектории для частиц, рассеянных на атомах Ті и Аl. Выход рассеянных частиц

Рис. 2. Энергетические спектры РОР протонов с энергией 2.012 MeV (*a*) и ионов He⁺ с энергией 2.035 MeV (*b*) от комбинированного покрытия Ti–Al–N/Ni–Cr–B–Si–Fe(W). Стрелками обозначены кинематические границы элементов, сплошная линия — расчетные данные, кривая из точек экспериментальные данные.

на этих элементах в соединениях приближенно равен произведению амплитуды сигнала на его ширину ΔE . Тогда можно заменить (1) для двух элементов, равномерно распределенных внутри слоя (или пленки), более точным отношением (2):

$$\frac{N_{\rm Ti}}{N_{\rm Al}} \cong \frac{H_{\rm Al} \Delta E_{\rm Al} \sigma_{\rm Ti}}{H_{\rm Ti} \Delta E_{\rm Ti} \sigma_{\rm Al}}.$$
 (2)

Погрешность определения стехиометрии будет около 5%.

Вблизи поверхности и в покрытии также присутствуют азот и кислород, концентрация которых составляет 10 и 12 at.% соответственно, однако кислород находится на поверхности.

Из анализа энергетических спектров также следует, что наряду с Ті и Al возможно также образование такого соединения, как ТіN, небольшая ступенька вблизи кинематической границы N. Часть кислорода провзаимодействовала с Al с образованием окисла Al₂O₃. На рис. 3 представлено изображение поперечного шлифа тонкого — из Ti-Al-N и толстого — из Ni-Cr-B-Si-Fe(W) покрытия. В покрытии по глубине среза с помощью EDS был проведен микроанализ (табл. 1, 2) (результаты которого приведены на рис. 4). Из приведенных спектров следует, что в тонком покрытии присутствуют только Ti и Al. A на межфазной границе тонкая пленка-покрытие обнаружены Ti, Al, Ni, Cr, Fe и в отдельных местах Si. В толстом покрытии обнаружены Ni, Cr, Fe, Si, причем содержание Ni состаляет около 45%, остальное другие примеси, перечисленные выше.

На рис. 5 представлены фрагменты рентгенограммы, снятой с поверхности наноструктурированного композитного защитного покрытия Ti-Al-N/Ni-Cr-B-Si-Fe. В табл. 2 представлены результаты расчетов, из которых следует, что в покрытии формируются следующие фазы: TiAlN, $Ti_3AlN + Ti_3Al_2N_2$. Кроме того, обнаружены фазы, образованные в результате взаимодействия плазмы с поверхностью толстого покрытия $Al_5Ti_3 + Ni_3Ti$ (они характеризуют переходный слой "тонкое покрытие-толстое покрытие"). Установлено, что фаза TiAlN является нанодисперсной, со средними размерами зерен 18-24 nm, согласно оценке Дебая-Шеррера, а другие фазы и соединения имеют размер зерен от 35 до 90 nm.

Твердость *H* и модуль упругости *E* определялись с помощью нанотвердомера (Nano Indentor-II) по методике Оливера и Фара [20].

Величина упругого восстановления *W_e* поверхностного слоя рассчитывалась по кривым "нагружение—разгрузка" по формуле:

$$W_e = \frac{H_{\max} - h_r}{h_{\max}},\tag{3}$$

где h_{max} — максимальная глубина проникновения, h_r — остаточная глубина после снятия нагрузки.

Рис. 3. Изображение сечения покрытия и подложки, полученного под углом $12-15^{\circ}$. Показаны границы тонкого и толстого покрытий, а также обозначены точки рентгеновского микроанализа, в которых проводился интегральный анализ.

Глубина, nm	Концентрация элемента at.%						
	W	Fe(Ni)	Ti	Al	0	Ν	С
62.5	0.31	0.94	14.03	23.38	15.07	28.62	17.65
125.0	0.31	0.96	14.10	23.49	15.34	28.39	17.42
325.0	0.31	1.10	14.09	23.48	15.30	29.23	16.48
625.0	0.28	1.03	13.69	22.82	15.27	31.24	15.66
1025.0	0.27	1.01	13.72	22.86	15.21	32.16	14.77
1525.0	0.27	0.99	13.67	22.79	16.44	31.31	14.52
2025.0	0.26	0.96	13.55	22.58	19.30	28.50	14.86
2525.0	0.27	0.98	13.89	23.14	23.70	23.53	14.49
3525.0	0.28	1.02	13.71	22.84	24.37	23.69	14.09
12525.0	0.34	97.51	0	0	0	0	2.15

Таблица 1. Распределение элементов по глубине покрытия TiAlN

Рис. 4. Результаты энергодисперсионного анализа концентрации элементов в wt.% (проведены в точках 1-3, указанных на рис. 3). a - Al = 43.44, Ti = 49.96, Cr = 6.60%; b - Al = 28.91, Ti = 20.19, Cr = 13, Fe = 1.15, Ni = 36%; c - Si = 3.74, Cr = 13.45, Fe = 1.91, Ni = 80.89%.

Угол 2 <i>Q</i> , deg	Площадь, µm ²	Интен- сивность, а.u.	Полуши- рина, deg	Межплос- костность, Å	Относительная интенсивность, а.u.	Фаза	HKL
37.980	14.968	21	1.3800	2.3690	18.92	TiAlN + Ti ₃ AlN	111 + 111
41.980	26.071	32	1.5782	2.1521	28.83	$Ti_3Al_2N_2$	111
42.680	18.965	26	1.4000	2.1184	23.42	Ni ₃ Ti	201
44.246	82.279	111	1.4247	2.0470	100.00	FeNi ₃ + TiAlN + Ti ₃ AlN	111 + 200 + 200
45.160	21.326	37	1.1250	2.0077	33.33	Al ₅ Ti ₃	002
45.480	28.416	35	1.5500	1.9943	31.53	Al ₅ Ti ₃	440
45.960	12.911	41	0.6071	1.9746	36.94	Al ₂ Ti	020
46.700	22.142	37	1.1574	1.9450	33.33	Ni ₃ Ti	202
47.760	20.934	23	1.7750	1.9043	20.72	Ni _{0.3} Ti _{0.7} N	101
48.640	23.613	25	1.8389	1.8719	22.52	Ni ₃ Ti	104
50.960	14.651	23	1.2500	1.7920	20.72	Ni ₃ (AlTi)	
51.600	31.208	33	1.8305	1.7712	29.73	FeNi ₃	200
52.880	5.639	14	0.7800	1.7313	12.61	Ni ₃ Ti	203
54.160	4.663	9	0.9900	1.6934	8.11	Al ₅ Ti ₃	322
54.840	1.667	11	0.3050	1.6740	9.91	Al ₅ Ti ₃	611
56.160	5.384	10	1.0500	1.6377	9.01	Al ₅ Ti ₃	402

Таблица 2. Основные фазы: FeNi₃ (подложка), TiAlN или Ti₃AlN + Ti₃Al₂N₂ (основное покрытие), Al₅Ti₃ + Ni₃Ti (фазы, образованные в результате взаимодействия покрытия и подложки или характеризующие переходной слой покрытие-подложка)

Таблица 3. Значения твердости и модуля упругости

Материал покрытия	E, GPa	H, GPa
Ti-N-Al Ni-Cr-B-Si-Fe Ni-Cr-B-Si-Fe (оплавление	342 ± 1 193 ± 6 217 ± 7	$\begin{array}{c} 20.8 \pm 1.8 \\ 6.8 \pm 1.1 \\ 6.1 \pm 0.2 \end{array}$
плазменной струей) Подложка Ni Cr	 229 ± 11	$\stackrel{-}{1.78\pm0.14}$

Было получено, что модуль упругости нанокомпозитного тонкого покрытия из Ti-Al-N имеет значение $E \sim 342 \pm 1$ GPa (где E — среднее значение) при среднем значении твердости $H = 20.8 \pm 1.8$ GPa (см. рис. 6 и табл. 3). В табл. 3 представлены также значения твердости H = 6.8 GPa для толстого покрытия из Ni-Cr-B-Si-Fe после осаждения плазменной струей (без оплавления) на подложку из нержавеющей стали и модуля упругости $E = 193 \pm 6$ GPa.

В следующей строке табл. 3 представлены результаты твердости H = 6.1 GPa и модуля упругости $E = 217 \pm 7$ GPa для толстого покрытия после оплавления плазменной струей и для подложки из нержавеющей стали: $H = 1.78 \pm 0.14$ GPa и модуль упругости равен $E = 228 \pm 11$ GPa.

Как видно из этих результатов, в толстом покрытии после оплавления уменьшилось значение твердости, однако оно стало более равномерным по поверхности покрытия. Полученные нами в этих экспериментах значения твердости значительно меньше, чем известные из литературы, где твердость Ti-Al-N достигает 32–36 [18]. По-видимому, это уменьшение значений твердости связано с достаточно большим размером нанозерен, 18–24 и 35–90 nm, а также высоким содержанием примесей кислорода и углерода и присутствием никеля. Для оценки стойкости к упругой деформации разрушения используют величину отношения твердости к модулю упругости H/E, называемую индексом пластичности материала, а для оценки сопротивления материала пластической деформации — параметр H^3/E^2 [22]. Отсюда следует, что для повышения стойкости к упругой деформации разрушения и уменьшения пластической деформации материала должен обладать высокой твердостью при низком модуле упругости. Хорошо извест-

Рис. 5. Фрагменты дифрактограмм, снятых с комбинированного защитного покрытия Ti-Al-N/Ni-Cr-B-Si-Fe(W) со стороны тонкого покрытия.

Рис. 6. Кривые нагружения-разгрузки, полученные для образца Ti-Al-N/Ni-Cr-B-Si-Fe(W).

Рис. 7. Кривые Тейфеля, полученные в 2%-ном растворе NaCl для образцов с комбинированным покрытием из Ti_{1-x} – Al_x –N/Ni–Cr–B–Si–Fe(W) с разным соотношением концентрации элементов: a — Ti_{25} – Al_{25} – N_{50} , b — N_{40} – Al_{30} – Ti_{30} .

но [3], что у керамических и металлокерамических материалов значения H^3/E^2 обычно не превышают 0.2 GPa, а значение этого параметра в TiNi из-за эффектов памяти формулы (ЭПФ) на порядок меньше [3]. Полученный в данной работе класс нанокомпозитных комбинированных покрытий имеет значение параметра H^3/E^2 в

интервале 0.067-0.068. Для многих материалов высокие значения H/E указывают на то, что материал обладает высокой износостойкостью; если этот материал имеет модуль упругости, близкий к модулю Юнга материала подложки, то это может свидетельствовать о высоких механических характеристиках при работе в условиях абразивного, эрозионного и ударного износа [23–25].

По-видимому, изменения механических характеристик связаны с изменением размера зерна и стехиометрией верхнего покрытия, полученного с помощью распыления магнетроном.

Коррозийные испытания показали, что скорость коррозии в Ti-Al-N/Ni-Cr-B-Si-Fe составляет 4.8 µg/year (см. рис. 7, *a*), что на 3 порядка меньше, чем для нержавеющей стали (подложка), или на 2 порядка меньше, чем для Ti-Cr-N-покрытия.

На рис. 7 представлены результаты коррозийных испытаний и кривые Тейфеля для образцов с наноструктурированным композитным покрытием Ti-Al-N/Ni-Cr-B-Si-F (табл. 4, 5).

В системе коррозии имеют место две противостоящих реакции. Уравнение Тейфеля для анодной и катодной реакции в системе коррозии [25]:

$$I = I_{\rm corr} \left(e^{2.303(E - E_{\rm corr})} / \beta_a - e^{2.303(E - E_{\rm corr})} / \beta_c \right), \qquad (4)$$

где: I — взвешенный ток ячейки, A; I_{corr} — ток коррозии, A; E_{corr} — потенциал коррозии, V; β_a — бета-коэффициент анодной реакции, V/decade; β_c — бета-коэффициент катодной реакции, V/decade.

Таблица 4. Результаты расчета кривой Тейфеля, представленной на рис. 7, *а*

Параметр	Значение
$egin{array}{c} eta_a & & & & & & & & & & & & & & & & & & $	$1 \cdot 10^{15}$ V/decade 6011 $\cdot 10^{-4}$ V/decade 5.27 μ m -260 mV 20.90 μ m/yr 2 448
χ^2	2.448

Таблица 5. Результаты расчета кривой Тейфеля, представленной на рис. 7, *b*

Параметр	Значение
β_a	$1318 \cdot 10^{-4} V/decade$
eta_c	$1854 \cdot 10^{-4}$ V/decade
Icorr	1.21 <i>µ</i> A
$E_{ m corr}$	$-41.9\mathrm{mV}$
Скорость коррозии	$4.13\mu m/yr$
χ^2	5.928

.

Выводы

В комбинированном нанокомпозитном покрытии обнаружено формирование фаз TiAlN, $Ti_3AlN +$ + Ti₃Al₂N₂, Al₃Ti + Ni₃Ti с размерами зерен 18-24 nm для TiAlN; другие фазы имеют несколько большие размеры зерен — 35-90 nm. Твердость покрытия, определенная ИЗ кривых нагружения-разгрузки, составила $H = 20.8 \pm 1.8$ GPa при достаточно высоком значении модуля упругости $E = 342 \pm 18$ GPa. Обнаружено уменьшение износа при истирании цилиндра по плоскости в нанокомпозитном покрытии Ti-Al-N/Ni-Cr-B-Si-Fe, а коррозионная стойкость в солевом растворе резко возрастает (на три порядка выше, чем стойкость подложки из нержавеющей стали).

Работа финансировалась в рамках проекта МНТЦ К-1198 и проекта НАН Украины "Нанотехнологии, наноматериалы и нанопокрытия".

Авторы благодарят за помощь в исследованиях А.П. Кобзева (Дубна, ОИЯИ), О.П. Кульментьеву (Сумской институт модификации поверхности), а также Углова В.В. (Белорусский государственный университет) за помощь в измерении фазового состава покрытия. Кроме того, авторы признательны сотрудникам института сварки О.Е. Патона НАН Украины Ю.Н. Тюрину и О.В. Колисниченко.

Список литературы

- [1] Nanostructured Coating / Ed. by A. Gavaleiro, J.T. De Hosson. Berlin: Springer-Verlag, 2006. 648 p.
- Nanosructured Thin Films and Nanodispersion Strengherred [2] Coatings / Ed. by A.A. Voevodin, D.V. Shtansky, E.A. Levashov, J.J. Moore. Dordrecht: Kluger Academic, 2004. 322 p.
- [3] Левашов Е.А., Штанский Д.В. // Усп. химии. 2007. Т. 76. № 5. C. 501–509.
- [4] Решетняк Е.Н., Стрельницкий В.Е. // Харьковская нанотехнологическая ассамблея. Т. 1. Наноструктурные материалы. Харьков, 2007. С. 6-16.
- [5] Штанский Д.В., Петржик М.И., Башкова И.А. и др. // ФТТ. 2006. Т. 48. Вып. 7. С. 1231-1238.
- [6] Morris D.G. // Mat. Sci. Foundation. Vol. 2. Trans. Tech. publication LVD. 1998. P. 1-84.
- [7] Валиев Р.З., Александров И.В. Наноструктурные материалы, полученные интенсивной пластической деформацией. М.: Логос, 2000. 271 с.
- [8] Носкова Н.И., Мулюков А.Р. Субмикрокристаллические и нанокристаллические металлы и сплавы. Екатеринбург: УрО РАН, 2003. 278 с.
- [9] Veprek S. // J. Vac. Sci. Tech. 1999. Vol. A17. N 6. P. 2401-2420.
- [10] Андриевский Р.А., Спивак И.И. Прочность тугоплавких соединений и материалов на их основе. Челябинск: Металлургия, 1983. 386 с.
- [11] Береснев В.М., Погребняк А.Д., Азаренков Н.А. и др. // Усп. физ. металлов. 2007. Т. 8. № 3. С.171-246.

- [12] Береснев В.М., Погребняк А.Д., Азаренков Н.А. и др. // Физическая инженерия поверхности. 2007. № 1-2. С. 4-27.
- [13] Кадыржанов К.К., Комаров Ф.Ф., Погребняк А.Д. и др. Ионно-лучевая и ионно-плазменная обработка материалов. М.: МГУ, 2005.640 с.
- [14] Погребняк А.Д., Тюрин Ю.Н. // УФН. 2005. Т. 175. С. 515-543
- [15] Погребняк А.Д., Василюк В.В., Алониева Д.Л. и др. // Трение и износ. 2004. Т. 25. Вып. 1. С. 71-78.
- [16] Погребняк А.Д., Рузимов Ш.М., Понарядов В.В. и др. // Письма в ЖТФ. 2004. Т. 30. Вып. 4. С. 79-86.
- [17] Pogrebnjak A.D., Ruzimov Sh., Alontseva D.L. et al. // Vacuum. 2007. Vol. 81. N 6. P. 1241-1253.
- [18] Азаренков Н.А., Береснев В.М., Погребняк А.Д. Структура и свойства защитных покрытий и модифицированных слоев материалов. Харьков: Харьковский национальный ун-т, 2007. 560 с.
- [19] Дуб С.Н., Новиков Н.В. // Сверхтвердые материалы. 2004. № 6. C. 16-33.
- [20] Oliver W.C., Pharr G.M. // J. Mater. Res. 1992. Vol. 7. N 6. P. 1564-1586.
- [21] Фельдман Л., Майер Д. Основы анализа поверхности и тонких пленок. М.: Мир, 1989. 342 с.
- [22] Tsui T.Y., Pharr G.M., Oliver W.C., Bhatia C.S., White R.L., Anders S., Anders A., Brown I. // Mater. Res. Soc. Symp. Proc. 1996. Vol. 386. P. 447.
- [23] Leyland A., Matthews A. // Wear. 2000. Vol. 246. P. 1.
- [24] Погребняк А.Д., Шпак А.П., Азаренков Н.А., Береснев В.М. // УФН. 2009. Т. 179. № 1. С. 35-64.
- [25] Pogrebnjak A.D., Danilionok M.M., Uglov V.V. et al. // Vacuum. 2009. Vol. 83. P. 235-239.