05;12 Диффузия натрия, калия, кальция, марганца, радона в туфе и клиноптилолите при выщелачивании

© Н.П. Дикий, А.Н. Довбня, Ю.В. Ляшко, Д.В. Медведев, Е.П. Медведева, В.Л. Уваров, К.В. Ачкасов

Национальный научный центр Харьковский физико-технический институт, 61108 Харьков, Украина e-mail: ndikiy@kipt.kharkov.ua

(Поступило в Редакцию 26 сентября 2010 г. В окончательной редакции 8 ноября 2010 г.)

Ядерно-физические методы были использованы для определения коэффициентов диффузии Na, Ca, Mn, K и ²²²Rn в клиноптилолите (Сокирницкое месторождение) и исходном и облученном γ -квантами с $E_{\rm max} = 23$ MeV до дозы 10⁷ Gy туфе (Юкка Маунти, Невада) при температуре выщелачивания 37°C. Обнаружена существенная разница в коэффициентах диффузии натрия и калия в клиноптилолите, значения которых составляют $4 \cdot 10^{-17}$ и $2 \cdot 10^{-20}$ m²/s соответственно, что свидетельствует о влиянии аквакомплексов на процессы переноса катионов. Определены коэффициенты диффузии радона в изучаемых материалах, которые для клиноптилолита составляют $2.5 \cdot 10^{-12}$ m²/s.

Введение

Захоронение отработанного ядерного топлива предполагает использование комбинированной защиты, что позволило бы надежно изолировать радиоактивные отходы (РАО) в долговременных хранилищах [1]. Одной из составляющих частей этой защиты являются природные сорбционные материалы, которые позволяют предотвращать поступление радиоактивных изотопов в биосферу при экстремальных ситуациях. Сорбционные свойства таких материалов интенсивно исследуются [2]. Применение широко распространенного клиноптилолита экономически выгодно по сравнению с синтетическими сорбентами. Важной характеристикой сорбционных материалов является процесс выщелачивания подземными водами. Известно, что клиноптилолит имеет низкие скорости выщелачивания в нейтральных или щелочных условиях [3]. Использование ядерно-физических методов позволяет изучать предельно низкие значения скорости выщелачивания в условиях, которые реализуются при долговременном захоронении отработанного ядерного топлива.

В работе изучен процесс выщелачивания натрия, калия, кальция, марганца и радона из клиноптилолита и туфа как исходного, так и облученного *у*-квантами.

Методика

В качестве исходных материалов были использованы природный клиноптилолит $(Na,K)_4CaAl_6Si_{30}O_{72} \times 24H_2O$ Сокирницкого месторождения и туф из месторождения Юкка Маунти, Невада, США с глубины 21.5 m и содержанием клиноптилолита около 10 wt.%. Размер кристаллов клиноптилолита и образцов туфа составлял 0.1–0.3 mm. Границы изменения отношения Si/Al для клиноптилолита лежат в пределах 4.25–5.25.

Образцы клиноптилолита, весом 1 g, исходного и облученного туфа (в дозе 10^7 Gy), весом 2.35 и 1.5 g со-

ответственно, для активации были помещены в алюминиевые контейнеры. Параметры облучения тормозным излучением линейного ускорителя электронов (ЛУЭ) составили: $E_{\rm max} = 23$ MeV, $I = 700 \,\mu$ A. После совместной активации образцов и эталонов проведено измерение активности радиоизотопов, полученных в реакциях 23 Na $(\gamma, n)^{22}$ Na, 48 Ca $(\gamma, n)^{47}$ Ca $\rightarrow ^{47}$ Sc, 55 Mn $(\gamma, n)^{54}$ Mn, которое осуществляли Ge(Li)-детектором объемом 50 cm³ и энергетическим разрешением 3.2 keV по линии 1332 keV. Также было измерено выщелачивание калия и 222 Ra посредством регистрации излучения с энергией 1461 и 609 keV соответственно.

После облучения образцов было проведено выщелачивание в дистиллированной воде (объем 100 ml) при температуре 37°С в термостате. Выщелачивание проводилось последовательно в течение 55, 975, 1400, 4395 и 11 475 min. После определенного времени выщелачивания раствор сливался.

Известно, что клиноптилолит относится к микропористым алюмосиликатам, имеет субслоистое строение и двумерную систему каналов с апертурой 3.0×7.6 , 3.3×4.6 и 2.6×4.7 Å. Для исключения попадания мелких фрагментов клиноптилолита или туфа перед измерением содержания радиоактивных изотопов в нем раствор фильтровался.

Экспериментальная часть

Химический состав и содержание микроэлементов клиноптилолита, по данным Сокирницкого цеолитового завода МЧС Украины, приведены в табл. 1.

На рис. 1 и 2 приведены примеры *у*-спектров образца облученного туфа и раствора-выщелата после второго цикла (975 min). Заметно существенное уменьшение регистрируемых радионуклидов в растворе.

Использованием выражения для количества вещества *q*, прошедшего через единицу поверхности за

время t:

$$q = \frac{2}{\sqrt{\pi}} c_0 \sqrt{Dt},$$

где D — коэффициент диффузии, c_0 — концентрация изучаемого элемента в веществе, были рассчитаны коэффициент диффузии Na, Ca, Mn, K и ²²²Rn в клиноптилолите и образцах туфа (рис. 3–7).

Результаты и обсуждение

На рис. З видно, что коэффициент диффузии натрия в исходном и облученном образцах туфа имеет одинаковые значения, в динамике отмечается тенденция к уменьшению выщелачивания, в то время как в клиноптилолите коэффициенты диффузии натрия остаются высокими на протяжении всех циклов исследования. Процесс диффузии калия (рис. 4) в исследуемых образцах по характеру совпадает с предыдущим процессом диффузии для натрия. Значения коэффициентов диффузии кальция (рис. 5) в клиноптилолите и облученном туфе практически совпадают и отмечаются падением

Таблица 1. Химический состав и содержание микроэлементов (МЕ) клиноптилолита

Химический состав, wt.%			ME, $\mu g/g$	
SiO ₂	Окись кремния	66.7	Mn	242
Al_2O_3	Окись алюминия	12.3	Zr	235
Fe ₂ O ₃	Окись железа	1.05	Ba	232
FeO	Закись железа	0.78	Rb	110
TiO ₂	Окись титана	0.18	Ce	52
MnO	Окись марганца	0.19	Zn	45
CaO	Окись кальция	2.10	Y	22
Na ₂ O	Окись натрия	2.06	Nb	22
MgO	Окись магния	1.07	Ga	20
P_2O_5	Окись фосфора	0.04	Th	12
K ₂ O	Окись калия	2.96		
SO_2	Окись серы	0.04		
F	Фтор	0.03		
H_2O	Вода	10.0		

Рис. 1. *у*-спектр образца облученного туфа после активации на ЛУЭ.

Рис. 2. *у*-спектр раствора-выщелата облученного туфа после активации на ЛУЭ, время выщелачивания 975 min.

Рис. 3. Коэффициент диффузии натрия в клиноптилолите, в исходном и облученном туфе.

в динамике выщелачивания, в то же время как в исходном туфе кривая коэффициентов диффузии кальция имеет иной угол наклона и более высокие значения с незначительным падением к концу последнего цикла. На рис. 6 представлены коэффициенты диффузии марганца, которые имеют сходный характер в исследуемых образцах. Аналогичные выводы можно сделать и в отношении коэффициентов диффузии радона (рис. 7).

Согласно имеющимся данным, аквакомплексы, содержащиеся в полостях клиноптилолита в процессе выщелачивания, препятствуют движению катионов [4]. Существует и противоположное мнение, что процесс гидратации приводит к ослаблению электростатического взаимодействия катионов с каркасом и соответственно понижению барьеров миграции [5].

Полученный коэффициент диффузии натрия в клиноптилолите в процессе выщелачивания выходит на уровень $5 \cdot 10^{-17} \text{ m}^2/\text{s}$ и совпадает с результатами работы [3]. Коэффициент диффузии калия в клиноптилолите существенно ниже и достигает значения в конце процесса выщелачивания $2 \cdot 10^{-20} \text{ m}^2/\text{s}$. Полученные значения коэффициентов диффузии натрия и калия в большей сте-

пени свидетельствуют о доминирующем влиянии аквакомплексов, содержащихся в полостях клиноптилолита, на движение катионов [4]. Необходимо отметить существенное влияние водной среды в процессах выщелачивания, так как практически все ионы в клиноптилолите находятся в комплексах, которые включают различное количество воды. Например, ионы натрия и кальция в клиноптилолите входят в комплексы с 5 молекулами воды, ион калия — с 3 молекулами воды, NH₄⁺ с 4 молекулами воды и т.п. Ионные радиусы натрия и калия составляют 0.098 и 0.133 nm соответственно. Так как гидратационный радиус ионов обратно пропорционален его кристаллографическому радиусу [6], то гидратационный радиус калия будет меньше (0.33 nm), чем у натрия (0.357 nm), что совпадает с усиленной ионнообменной диффузией калия с натрием и соответственно с более сильной связью аквакомплексов калия с поверхностью каналов.

Рис. 4. Коэффициент диффузии калия в клиноптилолите, в исходном и облученном туфе.

Рис. 5. Коэффициент диффузии кальция в клиноптилолите, в исходном и облученном туфе.

Рис. 6. Коэффициент диффузии марганца в клиноптилолите, в исходном и облученном туфе.

Рис. 7. Коэффициент диффузии радона в клиноптилолите, в исходном и облученном туфе.

Отметим высокое значение коэффициентов диффузии радона в клиноптилолите: на уровне 10^{-11} m²/s. Атомы радона в клиноптилолите находятся в нейтральном состоянии, поэтому в больших полостях цеолита движение газа определяется его столкновениями со стенками каналов (течение Кнудсена). Пористость туфа несколько меньше, чем клиноптилолита, что обусловливает более низкий коэффициент диффузии радона в туфе.

В состав туфа входит значительное число минералов (табл. 2) [6], поэтому влияние каркасных минералов на диффузию исследуемых элементов меньше.

Коэффициенты диффузии Na, Ca, Mn, K и ²²²Rn в туфе существенно меньше, чем в клиноптилолите, что в большей степени соответствует конфигурационной диффузии.

Отметим более высокие коэффициенты диффузии кальция как в клиноптилолите, так и в туфе. Коэффициент диффузии стронция в клиноптилолите составляет

$(1Na,K)_4CaAI_6SI_{30}O_{72} \times 24H_2O$			
Морденит			
$(0.5Ca, Na, K)_{1.8}Al_{1.8}Si_{10.2}O_{24}nH_2O$			
Анальцим			
$Na_{0.86}Al_{0.86}Si_{2.14}O_6nH_2O$			
Монтмориллонит			
$(0.5Ca,Na)_{1.1}(Mg,Fe)_{0.9}Al_{3.3}Si_{7.8}O_{20}(OH)_4nH_2O$			
Иллит			
$K_{1.9}(Mg,Fe)_{0.9}Al_{4.1}Si_7O_{20}(OH)_4$			
Каолин			
$Al_4Si_4O_{10}(OH)_8$			
К — полевой шпат			
KAlSi ₃ O ₈			
Альбит			
NaAlSi ₃ O ₈			
Кальцит			
CaCO ₃			

Таблица 2. Фазовый состав туфа Юкка Маунти, Невада

около 10^{-22} m²/s [7], поэтому можно предположить, что коэффициент диффузии кальция должен незначительно отличаться от этого значения. Гидратационные радиусы кальция и стронция практически равны. Высокий коэффициент диффузии кальция, по-видимому, может объясняться присутствием в клиноптилолите и туфе минерала CaCO₃ с незначительным включением магния [6], а именно он и гидролизуется в процессе выщелачивания.

В результате облучения у-квантами в туфах появляются участки, различающиеся по структурно-фазовому состоянию [8]. Согласно имеющимся данным, 60-85 vol.% основной массы представлено сгустковокрупнозернистым веществом, переполненным непрозрачной рудной (оксидной) вкрапленностью (величиной до 0.02 mm). В отдельных участках рудное вещество представлено в виде псевдоморфоз по пепловым частицам. В основной массе отмечено также появление кристаллических новообразований полевых шпатов (до 0.075 × 0.1 mm). С увеличенидозы облучения увеличивается и число участем ков мозаично- и вееровидно-погасающих полевошпатовых агрегатов (до 20-25%), оптические константы которых $(N_g'=1.540\pm0.003;~N_p'=1.530\pm0.003;$ $\Delta=0.010\pm0.001;~Z=\pm;~\angle<3-10;~M=+)$ свидетельствуют о присутствии альбит-олигоклаза.

Коэффициенты диффузии различных элементов в облученном туфе (доза облучения 10⁷ Gy) при более поздних циклах выщелачивания выше, чем в исходном туфе. Увеличение коэффициентов диффузии в облученном туфе, по-видимому, следует объяснять проявлением новообразованных продуктов пелитов — частиц осадочных пород, размер которых не превышает 0.01 mm. Они появляются на поверхности зерен полевых шпатов, облученных *γ*-квантами и пакетов глинистого (вермикулитового) вещества в чешуйках цветной слюды, что приводит к образованию реакционно способной тонкодисперсной глинисто-слюдистой массы на поверхности большинства породообразующих минералов природных горных пород. Аналогичное увеличение диффузионной "проница-емости" происходит при радиационно-стимулированной переклисталлизации основной массы туфогенных пород [8].

Заключение

Определены коэффициенты диффузии Na, Ca, Mn, K и ²²²Rn в клиноптилолите, исходном и облученном туфе в процессе выщелачивания, которые представляют значительный научный и практический интерес.

Измерение γ -спектров исследуемых образцов дало возможность определить их элементный состав, что позволило судить о содержании различных радионуклидов, которые могут участвовать в процессе выщелачивания. Хотя в γ -спектрах отмечается значительное количество радионуклидов (Zr, Ni, Ce, Y, Rb, Ti и др.), в динамике выщелачивания эти элементы не обнаружены, по-видимому из-за их низкой скорости выщелачивания. В то же время Na, Ca, Mn, K и ²²²Rn имеют высокие коэффициенты диффузии при выщелачивании. Отметим, что диффузия этих элементов из облученного туфа происходит более интенсивно, по сравнению с диффузией из исходного туфа, что обусловлено появлением новых продуктов пелитизации на поверхности зерен.

Обнаружено, что значение коэффициентов диффузии радона в клиноптилолите, исходном и облученном туфах соответствует области течения газа Кнудсена.

Согласно полученным результатам, природные минералы (туф и клиноптилолит), обладающие высокой сорбционной способностью, могут быть использованы в качестве дополнительных инженерных барьеров для долговременных хранилиц РАО.

Список литературы

- Puig F., Dies J., Pablo J., Martinez-Esparza A. // J. Nucl. Mat. 2008. Vol. 376. P. 181–191.
- [2] Korkuna O., Leboda R., Skubiczewzka-Zieba J. et. al. // Microp. Mesop. Mat. 2006. Vol. 87. P. 243–254.
- [3] Petrakakis Y, Mylona E., Georgantas D., Grigoropoulau H. // Global NEST J. 2007. Vol. 9. P. 207–213.
- [4] Kalemen G., Schon G. // J. Mat. Sci. 1992. Vol. 27. P. 6036–6040.
- [5] Мороз Н.К., Сереткин Ю.В., Афанасьев И.С., Бакакин В.В. // Журн. струк. хим. 2002. Т. 43. С. 642–648.
- [6] Papelis C., Um W. // Report DOE/NV/13609-18. 2003.
 N 45 189. 47 p.
- [7] Karger J., Ruthven D.M. Diffusion in zeolites and other microporous solids. NY: John Wiley & Sons, Inc., 1992. 333 p.
- [8] Шевякова Э.П., Саенко С.Ю., Березняк Е.П. и др. // Вест. ХНУ. Сер. Ядра, частицы, поля. 2006. № 732. Вып. 2(30). С. 105-107.