05;11

Эволюция дефектной субструктуры при больших пластических деформациях сплава V-4Ti-4Cr

© И.А. Дитенберг,^{1,2} А.Н. Тюменцев,^{1,2} К.В. Гриняев,² В.М. Чернов,³ М.М. Потапенко,³ А.В. Корзников⁴

¹ Институт физики прочности и материаловедения СО РАН,
 634021 Томск, Россия
 ² Томский государственный университет,
 634050 Томск, Россия
 ³ Высокотехнологический НИИ неорганических материалов им. акад. А.А. Бочвара
 123098 Москва, Россия
 ⁴ Институт проблем сверхпластичности металлов РАН,
 450001 Уфа, Россия
 e-mail: ditenberg i@mail.ru

(Поступило в Редакцию 10 августа 2010 г. В окончательной редакции 11 ноября 2010 г.)

Проведено электронно-микроскопическое исследование эволюции дефектной субструктуры сплава V-4Ti-4Cr в процессе его больших пластических деформаций кручением на наковальнях Бриджмена. В интервале значений истинной логарифмической деформации $e \approx 3-6.6$ обнаружены нанополосовые структурные состояния с дипольным и мультипольным характером разориентировок и размерами кристаллитов (или нанополос) от нескольких до нескольких десятков нанометров, формирующихся внутри субмикрокристаллов размером около 100 nm или (при $e \ge 6$) объединяющихся в мезополосы с выраженным вихревым характером распространения. Образование таких состояний связано с активизацией квазивязких (потоками неравновесных точечных дефектов в полях напряжений) механизмов деформации и переориентации кристаллической решетки, обеспечивающих возможность генерации и распространения нанодиполей частичных дисклинационной субструктуре, приводящих к групповому движению нанодиполей внутри мезополос.

Введение

Особенностью механического поведения малоактивируемых ванадиевых сплавов V-4Ti-4Cr является их высокая технологическая пластичность — способность к очень большим (практически неограниченным) величинам пластической деформации при комнатной температуре без каких-либо промежуточных отжигов. В [1] в процессе прокатки сплавов ванадия при комнатной температуре удалось достичь величины $\varepsilon \approx 99.7\%$, соответствующей истинной логарифмической деформации $e \approx 5.8$. При значениях $\varepsilon \geq 90\%$ ($e \geq 2.3$) в сплавах обнаружено формирование:

 микрополосовых наноструктурных состояний с размером (шириной) микрополос в десятые доли микрона с высокоугловыми границами,

— высокоэнергетических дефектных субструктур с высокой (до 20 deg/ μ m) кривизной кристаллической решетки, высокой плотностью частичных дисклинаций на границах микрополос и локальными внутренними напряжениями, достигающими значений $\sigma_{\rm loc} \approx E/30$.

Указанные особенности дефектной субструктуры объема и границ зерен в сплаве V-4Ti-4Cr изучены в [1] при величинах $e \approx 2-3$.

В настоящей работе проведено исследование таких особенностей и эволюции микроструктуры в более широком интервале значений истинной логарифмической деформации $e \leq 6.6$. Для достижения этих значений

деформации использован метод кручения на наковальнях Бриджмена при комнатной температуре.

Материалы и методика исследований

Работа выполнена с использованием сплава V– 4.36Cr–4.21Ti–0.013C–0.011N–0.02O (wt.%) [2]. Образцы в форме дисков толщиной h = 0.2 mm и диаметром 8 mm деформировали кручением в открытых бойках под давлением ~ 7 GPa при числе оборотов диска N = 1 и 5. Толщина образцов в процессе деформации (h_k) составляла около 0.15 mm. Величины сдвиговой ($\gamma \approx 2\pi NR/h_k$) и истинной логарифмической ($e \approx \ln \gamma$) деформации в зависимости от расстояния от центра деформируемого диска (R = 0.5-3.5 mm) изменяются при этом в следующих пределах: от $\gamma \approx 21$ ($e \approx 3$) при R = 0.5 mm до $\gamma \approx 146$ ($e \approx 5$) при R = 3.5 mm в случае одного оборота, и от $\gamma \approx 314$ ($e \approx 5.7$) при R = 1.5 mm до $\gamma \approx 733$ ($e \approx 6.6$) при R = 3.5 mm после 5 оборотов диска.

Электронно-микроскопическое исследование проведено в сечениях, параллельном и перпендикулярном плоскости наковален, на просвечивающем электронном микроскопе СМ30 при ускоряющем напряжении 300 kV. Фольгу для исследований поулчали методом струйной электрополировки на приборе "МИКРОН" в 20%-ном растворе серной кислоты в метаноле. Для получения образцов в сечениях, нормальных плоскости наковальни,

Рис. 1. a — микрострукутра сплава V-4Ti-4Cr после деформации кручением в наковальнях Бриджмена на I этапе деформации ($e \approx 3$). Сечение, перпендикулярное плоскости наковален. b — схема дефектной субструктуры субмикрокристалла с высокой кривизной кристаллической решетки и границами с переменными векторами разориентации.

на образец размером $5 \times 2 \times 0.15$ mm электролитическим способом осаждали слой меди толщиной ≈ 3 mm. Плоские образцы в указанных выше сечениях отрезали на электроискровом станке и механически шлифовали до толщины около $100\,\mu$ m. Дальнейшее утонение проводили двусторонним распылением ионами аргона с энергией 5 kV до появления отверстия.

Для изучения структурных состояний с высокой кривизной кристаллической решетки применяли специальные методы электронно-микроскопического анализа высоких непрерывных разориентировок [3–5], позволяющие измерить характерную для объемных образцов кривизну плоскостей кристаллической решетки, нормальных плоскости фольги.

Результаты исследования

Электронно-микроскопическое исследование эволюции микроструктуры в сечениях, параллельных и перпендикулярных плоскости наковален, показало, что в интервале $e \approx 3-6.6$ можно выявить несколько этапов деформации, приводящих к формированию трех основных типов структурных состояний.

I этап ($e \leq 3$)

На этом этапе наблюдается субструктура, качественно аналогичная формирующейся в процессе прокатки сплава при комнатной температуре при значениях $e \approx 2-3$ [1]. Такая субструктура обнаружена при минимальной изученной в настоящей работе величине $e \approx 3$ (рис. 1) и может быть классифицировна как субмикрокристаллическая (СМК) с заметной анизотропией размеров субмикрокристаллов с высокоугловыми границами разориентации, которая хорошо проявляется на микрофотографиях, полученных в сечениях, перпендикулярных плоскости наковален. Как следует из

Журнал технической физики, 2011, том 81, вып. 6

рис. 1, *a*, размеры субмикрокристаллов в направлении оси кручения (перпендикулярном плоскости наковален) не превышают ≈ 100 nm, что в несколько раз меньше, чем в направлениях, параллельных плоскости наковален, в которых эти размеры находятся в интервале 250–400 nm.

При обсуждении подобной анизотропии СМК структуры при кручении меди на наковальнях Бриджмена в [3] было высказано предположение, что она является следствием формирования СМК состояний с участием полос локализации деформации (ПЛД) с периориентацией (в том числе на большие — десятки градусов — углы) кристаллической решетки. Такие полосы должны распространяться в направлениях максимальных сдвиговых напряжений. При кручении на наковальнях Бриджмена эти направления лежат в плоскостях, параллельных или примерно параллельных плоскости наковален. Поэтому ПЛД (и их границы) параллельны этой плоскости, что и определяет повышенную плотность этих границ в направлении оси кручения и, как результат, обсуждаемую здесь анизотропию.

Важной особенностью дефектной субструктуры на I этапе деформации, как и в случае деформации прокаткой [1], является высокая плотность субмикрокристаллов с высокими (до 30 deg/ μ m) непрерывными разориентировками или высокой кривизной кристаллической решетки и высокой плотностью границ с переменными векторами разориентации, моделируемыми скоплениями непрерывно распределенных частичных дисклинаций одного знака. Этот тип субструктуры обнаружен к настоящему времени в широком классе СМК материалов (меди [3], никеле [4], Ni₃A1 [5] и др.). В [1] такое структурное состояние изучено в исследуемом в данной работе ванадиевом сплаве. Поэтому в настоящей работе приведены только схема такого состояния (рис. 1, *b*) и несколько наиболее важных результатов:

 источником неоднородных напряжений, приводящих к формированию субструктур с высокой кривизной

Рис. 2. Светлопольное (*a*) и темнопольные (*b*-*d*) электронно-микроскопические изображения дефектной субструктуры субмикрокристалла сплава V-4Ti-4Cr после деформации кручением на наковальнях Бриджмена на II этапе деформации ($e \approx 4$). Сечение, перпендикулярное плоскости наковален. φ — угол наклона образца в гониометре (deg). *e* — схема дефектной субструктуры с дипльным характером разориентировок.

кристаллической решетки, могут быть как дислокационные ансамбли с высокой избыточной плотностью дислокаций одного знака, так и скопления непрерывно распределенных частичных дисклинаций в границах с переменными векторами разориентации;

— при кривизне кристаллической решетки десятки deg/ μ m величина этих локальных напряженй достигает значений $\sigma_{\rm loc} \approx E/30 - E/50~(E$ — модуль Юнга);

— важную роль в процессе фрагментации кристаллической решетки при формировании СМК структуры играет дислокационно-дисклинационный механизм переориентации кристаллической решетки, включающий формирование указанных выше субструктур с высокой избыточной плотностью дислокаций одного знака и их последующие коллективные перестройки в локализованные границы разориентации.

II этап ($e \approx 3-6$)

Структурные изменения, обнаруживаемые на II этапе деформации, заключаются в изменении дефектной субструктуры внутри субмикрокристаллов. На светлопольных электронно-микроскопических изображениях (рис. 2, a) это проявляется в формировании периодического полосчатого или пятнистого дифракционного контраста. Пример анализа природы такого контраста в процессе темнопольного исследования разориентировок приведен на рис. 2, b-d.

Представленные на микрофотографиях (рис. 2) периодический характер темнопольного электронномикроскопического контраста особенности его изменения в процессе наклона образца в гониометре, а также наличие характерных полосовых (рис. 2, c, сечение $A-A_1$) и петлевых (обведена кружком на рис. 2, b) конфигураций контуров экстенкции свидетельствуют о формировании разориентированной структуры с дипольным или мультипольным характером периориентации кристаллической решетки. Размеры областей когерентного электронного рассеяния, характеризующие размеры переориентированных фрагментов (ширину наноплос или радиус нанопетель переориентации) находятся в пределах от 2-3 nm (стрелки *I* на рис. 2, *b* и *c*) до 10 nm. Углы разориентации между нанофрагментами дипольной или мультипольной субструктуры, как правило, не превышают нескольких градусов.

В процессе исследовния поведения контуров экстинкции при изменении ориентации образца обнаружены различные варианты переориентации кристалической решетки внутри и между фрагментами нанодипольной или наномультипольной субструктуры:

непрерывное изменение ориентации кристаллической решетки с высокими локальными градиентами ориентации или кривизной кристаллической решетки, обнаруживаемое по непрерывному перемещению контуров экстинкции при изменении ориентации фольги;

— дискретные (малоугловые) границы разориентации, выявляемые по остановке этих контуров в процессе наклона образцов в гониометре. Одна из таких границ показана на рис. 1, *b* и *c* стрелками 2.

Таким образом, на этапе II деформации при значениях $e \approx 3-6$ наблюдается трансформация внутренней структуры субмикрозерен размером около 100 nm с кривизной кристаллической решетки десятки deg/µm в наноструктурные состояния с размерами кристаллитов в несколько нанометров, дипольным, или мультипольным характером малоугловых разориентировок и необычно высокими (сотни deg/µm) значениями градиентов ориентации. Эти градиенты формируются как за счет дискретных границ разориентации, так и структурного состояния с высокими непрерывными разориентировками или высокой кривизной кристаллической решетки — χ_{ij} .

Схематически фрагмент такого состояния представлен на рис. 2, е. Этот рисунок иллюстрирует, в частности, тот факт, что при высокой составляющей непрерывной компоненты изменения ориентации между фрагментами дипольной или мультипольной структуры размером менее 10 nm, разориентированными на $1-2 \deg$, кривизна кристаллической решетки может достигать значений $\chi_{ii} \ge 100-200 \text{ deg}/\mu m$, что на порядок выше, чем внутри субмикрокристаллов на I этапе деформации (рис. 1, *b*). В настоящей работе экспериментально не удалось выделить в этом состоянии относительную долю дискретной и непрерывной компонент градиента ориентации и дать оценку кривизны кристаллической решетки. Однако представленное на рис. 2, е структурное состояние с необычно высокими (deg/µm) значениями кривизны кристаллической решетки обнаружено в нанокристаллах нанокомпозитных сверхтвердых покрытий на основе нитрида титана [6]. Важным фактором формирования такого состояния является масштабный фактор — на порядок более мелкие (по сравнению с СМК структурой, см. рис. 1) размеры фрагментов дипольной или мультипольной структуры. Действительно, если дефектами, приводящими к формированию высокой кривизны кристаллической решетки, являются скопления зернограничных частичных дисклинаций (рис. 1, b), при значении $\chi_{ij} \approx 200 \text{ deg}/\mu m$ в границу субмикрокристалла размером 0.1 µm необходимо вставить скопление частичных дисклинаций одного знака с суммарным вектором Франка $\Omega = 20 \deg$. Величина локального напряжения в голове такого скопления ($\sigma_{\rm loc} \approx E\Omega/2\pi \approx E/20$ [7]) достигает теоретической прочности кристалла. Для реализации того же значения кривизны в нанокристалле размером 5 nm в его границу достаточно ввести аналогичное скопление с вектором Франка $\Omega = 1 \deg$, которое не является источником сколько-нибудь значительных внутренних напряжений $\sigma_{\rm loc} \approx E/360$. Сильная зависимость энергии дисклинаций от размеров содержащих их кристаллитов приводит и к достаточно низкой запасенной энергии деформации. Кроме того, значительное снижение этой энергии обеспечивается дипольным или мультипольным характером обсуждаемого здесь структурного состояния.

По мере увеличения степени деформации доля субмикрозерен с представленным на рис. 2 структурным состоянием возрастает и при величине $e \approx 6$ это типичное состояние внутренней структуры субмикрокристаллов.

III этап ($e \ge 6$)

Этот этап деформации выделен в связи с формированием качественно нового типа субструктуры (рис. 3) полос деформации с переориентацией кристаллической решетки длиной несколько микрометров шириной около 1 μ m (мезополосы). Они представляют собой пачки разориентированных нанополос размером (шириной) от нескольких до нескольких десятков нанометров (показаны на рис. 3, *a* стрелками), которые распространяются в некристаллографических направлениях, формируя ярковыраженные вихревые структуры вплоть до образования петлевых конфигураций размером до нескольких микрометров (рис. 3, *c*, *d*).

При электронно-микроскопическом исследовании структуры на этапе III деформации обнаружены следующие особенности внутренней структуры мезополос:

— периодическое изменение темнопольного электронно-микроскопического контраста (рис. 3, d), что свидетельствует о дипольном характере нанополосовой разориентированной структуры. Темнопольный анализ разориентировок выявил при этом как малоугловые, так и большеугловые границы разориентации между фрагментами дипольной структуры;

— как следует из темнопольных микрофотографий (рис. 3), нанополосы часто фрагментируются на равноосные кристаллиты размером около 10 (показаны стрелками на рис. 3, *d*) и менее нанометров. В результате

Рис. 3. Пачки нанополос деформации и переориентации кристаллической решетки в сплаве V-4Ti-4Cr после кручения на наковальнях Бриджмена до величины $e \approx 6.6$. a-c — светлопольные электронно-микроскопические изображения; d — изображение в темном поле.

такой фрагментации внутри мезополос формируются относительно крупные (размером до 100 nm) области (выделена на рис. 3, *d* кружком), в которых наблюдается нанокристаллическая структура с равноосными нанокристаллами размера не более 10 nm;

 внутри мезополос обнаруживаются области с высокой плотностью пор (светлые точки на светлопольном изображении 3, b).

Обсуждение результатов

Как следует из представленных выше результатов, общей особенностью структурных изменений на II и III этапах деформации является образование разориентированных наноструктур дипольного типа. Различие между этими этапами заключается в том, что на II этапе процессы, ответственные за формирование этих наноструктур, локализованы в пределах отдельных субмикрокристаллов, появившихся на I этапе деформации; на III этапе эти процессы протекают в мезополосах на порядок более высокого масштабного уровня.

В связи с дипольным характером обсуждаемых здесь разориентированных наноструктур рассмотрим возможность их формирования с привлечением известного дисклинационного механизма деформации и переориентации кристалла путем образования и продвижения диполей частичных дисклинаций [8–10]. Традиционно этот механизм связывается с коллективными явлениями в дисклокационной подсистеме [8–10]. Считается, что движение диполя через кристалл является следствием формирования в дислокационной структуре крутящих моментов и их релаксации путем разделения дислокационных мультиполей на две подсистемы дислокаций противоположных знаков, формирующих дислокационные стенки как границы полос переориентации. При этом существует некоторый критический размер плеча диполя (Δ), меньше которого такой механизм деформации становится невозможным. Как показано в [8,9], этот размер близок к $\Delta \approx 100$ nm. При $\Delta < 100$ nm в пространстве перед диполем для его продвижения не хватит имеющихся дислокаций.

В настоящей работе характерные размеры (ширина) нанополос разориентированной дипольной структуры и соответстующие им необходимые величины Δ изменяются в пределах от нескольких до нескольких десятков нанометров. Следовательно, дислокационная модель развития диполей частичных дисклинаций оказывается несостоятельной. Альтернативой этой модели является предложенная в [11,12] модель (типа модели Набарро-Хиринга), основанная на квазивязком механизме деформации и переориентации кристаллической решетки, определяемых потоками неравновесных точечных дефектов в полях высоких локальных градиентов (моментов) нормальных напряжений. Согласно модели [11,12], в полосе переориентации, образованной путем некристаллографического сдвига или движения диполя частичных дисклинаций, внутри полосы скорость сдвиговой деформации, контролируемой потоками неравновесных вакансий, определяется соотношениями:

$$\dot{\gamma} \approx \frac{\tau}{\eta_{\nu}}, \quad \eta_{\nu} = \frac{kTHL}{2nD_{\nu}\Omega}.$$
 (1)

Здесь τ — сдвиговая компонента напряжения; η_{ν} — коэффициент вязкости; k — постоянная Больцмана; T — температура; H и L — характерные размеры области переориентации; n и D_{ν} — концентрация и коэффициент диффузии вакансий; Ω — атомный объем.

Зависимость η_{ν} от *H* и *L* свидетельствует о важной роли размеров области переориентации в реализации квазивязкого механизма пластического течения в ней. Эти размеры определяют расстояния между зонами сжатия и растяжения и, чем они меньше, тем ниже эффективный коэффициент вязкости и выше скорость пластической деформации и переориентации кристаллической решетки.

Проведенные с использованием (1)оценки свидетельствуют том, что в исследованном 0 сплаве ванадия при комнатной температуре, величине $\tau \approx G/100 \ (G \approx 52 \, \text{GPa} \ [13] - \text{модуль сдвига сплава}),$ коэффициенте диффузии вакансии $D_V \approx 5 \cdot 10^{-12} \,\mathrm{cm}^2/\mathrm{s}$ (принято соответствующее значение для ванадия $D_V = D_{V0} \exp(-E_V/kT), \quad D_{V0} = 2.5 \cdot 10^{-3} \,\mathrm{cm}^2/\mathrm{s}, \quad E_V =$ [14]) $= 0.48 \, \text{eV}$ И характерной для больших пластических деформаций концентрации неравновесных вакансий $n \approx 10^{-3} - 10^{-4}$, в обнаруживаемых в данной работе нанополосах, с характерными размерами $H \approx 3 \,\mathrm{nm}$ и $L \approx 50 \,\mathrm{nm}$, скорость пластической деформации достигает значений $\dot{\gamma} \approx 10^{-1} - 10^{-2} \, {
m s}^{-1}$, достаточных для формирования таких нанополос.

Характерной особенностью этапа III деформации является развитие коллективных эффектов в системе нанодиполей частичных дисклинаций. В [9] эти эффекты предсказаны на основе анализа парного взаимодействия диполей и показано, что зарождение нового диполя энергетически более выгодно на некотором характерном расстоянии, определяющем более высокую вероятность совметного движения группы диполей, продвигающихся с формированием некоторого фронта. Результатом такого группового движения нанодиполей является формирование пачек нанополос, представленных на рис. 3.

В [8,9] установлена экивалентность (с точностью до структуры ядра) диполей частичных дисклинаций и краевых дислокаций с вектором Бюргерса $\mathbf{b} = 2\Delta\Omega$ (Δ — размер плеча диполя, Ω — вектор Франка) и показано, что при этом для описания пластической деформации при развитии полос переориентации могут быть использованы соотношения теории дислокаций, в которых плотность дислокаций заменена на плотность дисклинационных диполей.

Для обсуждения результатов настоящей работы существенно, что сдвиги, носителями которых являются диполи частичных дисклинаций, осуществляются в некристаллографических направлениях, которые контролируются исключительно характером локальных напряжений в зонах продвижения диполей. Естественным следствием этой ситуации, а также представленного выше квазивязкого механизма движения диполей является обнаруженный в настоящей работе (рис. 3) вихревой характер развития пачек нанополос переориентации, являющийся результатом формирования неоднородных (моментных) напряжений в зоне группового движения диполей.

Представленные выше результаты свидетельствуют о важной роли дисклинационных механизмов деформации и переориентации кристаллической решетки при формировании субмикро- и нанокристаллических состояний и позволяют выделить следующие важные особенности реализации этих механизмов на разных этапах эволюции дефектной субструктуры.

На этапе I деформации развитие субструктур дисклинационного типа (частичных дислокаций и их диполей) как носителей переориентации при образовании границ субмикрокристаллов размера в десятые доли микрометра представляет собой коллективное явление в создающих крутящие моменты дислокационных ансамблях с высокой избычточной плотностью дислокаций одного знака.

На этапе II деформации важной особенностью является активизация квазивязких механизмов деформации и переориентации кристаллической решетки, обеспечивающих возможность формирования и распространения нанодиполей частичных дисклинаций и как следствие формирование внутри субмикрокристаллов размером около 100 nm разориентированных субструктур дипольного и мультипольного типа с размерами кристаллитов менее 10 nm.

На этапе III деформации развиваются коллективные эффекты в дисклинационной субструктуре, приводящие к групповому движению нанодиполей и формированию мезополос вихревого типа, представляющих собой пачки нанополос и области равноосных нанокристаллов размером от нескольких до нескольких десятков нанометров с дипольным характером разориентировок.

Работа выполнена при частичной финансовой поддержке грантов Российского фонда фундаментальных исследований (№ 09-03-99007-р_офи), Федерального агентства РФ по образованию (ГК № П2544) и президента РФ (МК-658.2009.8). Исследования проведены с использованием оборудования Томского материаловедческого центра коллективного пользования при Томском государственном университете.

Список литературы

- [1] Тюменцев А.Н., Пинжин Ю.П., Овчинников С.В. и др. // Перспективные материалы. 2006. № 1. С. 5–19.
- [2] Потапенко М.М., Шиков А.К., Чернов В.М. и др. // Вопросы атомной науки и техники. Сер. "Материаловедение и новые материалы". 2005. Вып. 1(64). С. 340–347.
- [3] Тюменцев А.Н., Дитенберг И.А., Пинжин Ю.П. и др. // ФММ. 2003. Т. 96. № 4. С. 33–43.

- [4] Тюменцев А.Н., Пинжин Ю.П., Коротаев А.Д. и др. // ФММ. 1998. Т. 86. Вып. 6. С. 110–120.
- [5] Тюменцев А.Н., Третьяк М.В., Пинжин Ю.П. и др. // ФММ. 2000. Т. 90. № 5. С. 44–54.
- [6] Овчинников С.В., Пинжин Ю.П., Коротаев А.Д., Мошков В.Ю., Тюменцев А.Н. // Изв. вузов. Физика. 2009. № 9/2. С. 35–40.
- [7] Лихачев В.А., Хайров Р.Ю. Введение в теорию дисклинаций. Л.: Изд-во ЛГУ, 1975. 184 с.
- [8] Владимиров В.И. Физическая природа разрушения металлов. М.: Металлургия, 1984. 280 с.
- [9] Владимиров В.И., Романов А.Е. Дисклинации в кристаллах. Л.: Наука, 1986. 224 с.
- [10] Рыбин В.В. Большие пластические деформации и разрушение металлов. М.: Металлургия, 1986. 224 с.
- [11] Коротаев А.Д., Тюменцев А.Н., Суховаров В.Ф. Дисперсное упрочнение тугоплавких металлов. Новосибирск: Наука, 1982. 211 с.
- [12] Коротаев А.Д., Тюменцев А.Н., Гончиков В.Ч., Олемской А.И. // Изв. вузов. Физика. 1991. № 3. С. 81–92.
- [13] Кардашев Б.К., Чернов В.М. // ФТТ. 2008. Т. 50. Вып. 5. С. 829–825.
- [14] Романов В.А., Сивак А.Б., Чернов В.М. // Всеросс. науч. конф. "Материалы ядерной техники: инновационные ядерные технологии" (МАЯТ-2007). М.: ВНИИНМ, 2007. С. 60.