01;06 О влиянии формы включений на проводимость двумерных моделей композитов

© Б.Я. Балагуров

Институт биохимической физики им. Н.М. Эмануэля РАН, 119334 Москва, Россия e-mail: balagurov@deom.chph.ras.ru, byabalagurov@mail.ru

(Поступило в Редакцию 20 сентября 2010 г.)

Рассмотрена проводимость ряда двумерных моделей композитов со случайно расположенными и хаотически ориентированными диэлектрическими включениями различной формы. Получены точные аналитические выражения для эффективной проводимости σ_e при малой концентрации включений *N*. Проведено сравнение с результатами соответствующего компьютерного эксперимента.

Введение

В стандартной теории протекания [1,2] основное внимание уделяется случайно-неоднородным системам. В подобных неупорядоченных бинарных средах (композитах) присутствуют включения разнообразных форм и размеров. Это обстоятельство не позволяет определить вклад конкретного включения в эффективную проводимость σ_e такой среды. В то же время для композитов с одинаковыми включениями величина σ_e явным образом зависит от их формы уже при малой концентрации N. Форма включений влияет и на порог протекания — критическую концентрацию, при которой происходит фазовый переход металл-диэлектрик. Поэтому изучение зависимости эффективной проводимости композитов от формы включений представляет как теоретический, так и практическией интерес.

В ряде работ [3-8] с помощью компьютерных и модельных экспериментов исследовалась эффективная проводимость σ_e композитов с включениями различных фиксированных форм. Тем самым выяснялась зависимость величины σ_e от формы включений как при малых, так и при произвольных концентрациях, в том числе и влияние на порог протекания. Наиболее подробное изучение этой проблемы в двумерном случае, по-видимому, проведено в работе [8], где исследованы одиннадцать моделей композитов с различными типами включений. Соответствующее рассмотрение в [8] ведется численными (компьютерными) методами даже при малой концентрации включений N, когда возможен, в принципе, аналитический подход [9,10].

В настоящей работе определяется влияние формы диэлектрических включений на проводимость двумерных систем при малой концентрации N, когда можно ограничиться линейным по N приближением. Как отмечалось в [9,10], в этом приближении эффективная проводимость σ_e выражается через тензор дипольной поляризуемости $\hat{\Lambda}$ отдельного включения. В то же время обтекание электрическим током непроводящего включения аналогично обтеканию идеальной жидкостью непроницаемого препятствия той же формы. Поэтому для определения величины $\hat{\Lambda}$ могут быть применены те же методы, что и в гидродинамике идеальной жидкости.

В рассматриваемом в работе двумерном случае для вычисления тензора $\hat{\Lambda}$ использован подход, основанный на применении теории функций комплексных переменных [11]. Для определения комплексного потенциала задачи об обтекании включения заданной формы применен метод конформных отображений, позволяющий вычислить тензор $\hat{\Lambda}$ для диэлектрических (или идеально проводящих) включений. В работе дано точное решение этой задачи для ряда включений разной формы и найдены соответствующие поляризуемости в аналитическом виде. Сравнение с [8] показало удовлетворительное согласие полученных теоретических результатов с данными компьютерного эксперимента.

1. Линейное по концентрации приближение

Рассмотрим изотропный бинарный композит, состоящий из матрицы проводимости σ_1 и включений проводимости σ_2 . Для вычисления эффективной проводимости σ_e такой среды при малой концентрации включений N воспользуемся методом, изложенным в книге [12]. Усреднение вектора $\mathbf{j} - \sigma_1 \mathbf{E}$ приводит к соотношению

$$(\sigma_e - \sigma_1) \langle \mathbf{E} \rangle = -N(\sigma_1 - \sigma_2) \int\limits_{v} \mathbf{E} \, dV.$$
 (1)

Здесь **ј** — плотность тока, **E** — напряженность электрического поля, $\langle \mathbf{E} \rangle$ — среднее по объему (площади в двумерном случае) образца, N — размерная концентрация (число включений в единице объема или соответственно площади образца). Эффективная проводимость определяется обычным образом — из соотношения $\langle \mathbf{j} \rangle = \sigma_e \langle \mathbf{E} \rangle$. Интеграл в равенстве (1), взятый по объему (площади) включения v, может быть выражен через его дипольный момент **p**.

Для этого рассмотрим аналогичную задачу о макроскопическом теле с диэлектрической проницаемостью ε , помещенном во внешнее электрическое поле напряженности **E**₀. Дипольный момент **p** этого тела равен интегралу по его объему v от вектора поляризации Р:

$$\mathbf{p} = \int_{v} \mathbf{P} \, dV = \frac{1}{4\pi} \int_{v} (\mathbf{D} - \mathbf{E}) \, dV = \frac{\varepsilon - 1}{4\pi} \int_{v} \mathbf{E} \, dV, \quad (2)$$

где $\mathbf{D} = \varepsilon \mathbf{E}$ — вектор электрической индукции. С другой стороны, дипольный момент выражается через \mathbf{E}_0 следующим образом:

$$\mathbf{p} = \hat{\Lambda} \mathbf{E}_0, \quad \hat{\Lambda} = \begin{pmatrix} \Lambda_{xx} & \Lambda_{xy} \\ \Lambda_{xy} & \Lambda_{yy} \end{pmatrix}, \quad (3)$$

где $\hat{\Lambda} = \hat{\Lambda}(\varepsilon)$ — симметричный тензор дипольной поляризуемости тела, имеющей в двумерном случае размерность площади.

Для задачи о проводимости искомое соотношение следует из (2), (3) при замене $\varepsilon \to \sigma_2/\sigma_1$. В результате равенство (1) принимает вид

$$(\sigma_e - \sigma_1) \langle \mathbf{E} \rangle = 4\pi \sigma_1 N \Lambda \mathbf{E}_0.$$
 (4)

В линейном по концентрации приближении в (4) следует положить $\langle \mathbf{E} \rangle = \mathbf{E}_0$, так что для достаточно симметричных включений, тензор $\hat{\Lambda}$ которых сводится к скаляру Λ , из (4) находим (см., например, [9,10])

$$\sigma_e = \sigma_1 (1 + 4\pi N\Lambda). \tag{5}$$

Если $\hat{\Lambda}$ не сводится к скаляру, а включения хаотически ориентированы, то тензор $\hat{\Lambda}$ следует усреднить по углам. В результате вместо (5) в рассматриваемом двумерном случае будем иметь

$$\sigma_e = \sigma_1 (1 + 2\pi N \operatorname{Sp} \hat{\Lambda}). \tag{6}$$

Здесь Sp $\hat{\Lambda}$ — след (шпур) тензора $\hat{\Lambda}$.

Для диэлектрических (d) включений Sp $\Lambda < 0$ (см. ниже формулу (21)), так что поправка к единице в (5) и (6) отрицательна. Поэтому, следуя [8], запишем выражение для соответствующей безразмерной эффективной проводимости $f_d = \sigma_e^{(d)} / \sigma_1$ в виде

$$f_d = 1 - \frac{N}{N_I},\tag{7}$$

где в рассматриваемом двумерном случае

$$N_I = \frac{1}{2\pi |\mathrm{Sp}\,\hat{\Lambda}_d|}.\tag{8}$$

Величина N_I — характерная для данного типа включения константа, определяющая начальный участок зависимости функции f_d от концентрации N. Для ряда фигур константа N_I вычислялась в работе [8] компьютерными методами.

Отметим, что, как показано ниже, в двумерном случае для одинаковых по форме и размеру диэлектрических и идеально проводящих (s) включений $\operatorname{Sp} \hat{\Lambda}_s = -\operatorname{Sp} \hat{\Lambda}_d > 0$. Поэтому линейная по концентрации поправка в эффективной проводимости $\sigma_e^{(s)}$ положительна. Соответствующая безразмерная эффективная проводимость имеет вид $f_s = 1 + N/N_I$ с той же, что и в (7), (8), величиной N_I . По этой причине в дальнейшем ограничимся рассмотрением только непроводящих включений.

2. Комплексный потенциал

Вдали от включения, помещенного во внешнее однородное электрическое поле напряженности E_0 , потенциал $\varphi(\mathbf{r})$ в рассматриваемом двумерном случае имеет вид

$$r \to \infty$$
: $\varphi(\mathbf{r}) \simeq -(\mathbf{E}_0 \mathbf{r}) + 2\frac{(\mathbf{pr})}{r^2} + \dots$, (9)

где **р** — дипольный момент, определенный в (2), (3). Вычислив $E_x = -\partial \varphi / \partial x$ и $E_y = -\partial \varphi / \partial y$ с использованием (9), найдем асимптотику производной комплексного потенциала $d\Phi(z)/dz = -E_x + iE_y$ (где z = x + iy), откуда получим ($z \to \infty$)

$$\Phi(z) \simeq -(E_{0x} - iE_{0y})z + 2\frac{\Lambda_{xx}E_{0x} + i\Lambda_{xy}(E_{0x} - iE_{0y}) + i\Lambda_{yy}E_{0y}}{z} + \dots$$
(10)

В случае кругового включения может быть найдено точное выражение для комплексного потенциала, справедливое при всех z. В частности, для круга единичного радиуса в пределе $\sigma_2 = 0$ и $\sigma_2 = \infty$ имеем

$$|z| \ge 1$$
: $\Phi(z) = -(u_{0x} - iu_{0y})z - \lambda \frac{u_{0x} + iu_{0y}}{z},$ (11)

где $\lambda = 1$ для диэлектрического включения и $\lambda = -1$ — для идеально проводящего. В (11) $\mathbf{u}_0 = (u_{0x}, u_{0y})$ — напряженность внешнего однородного электрического поля.

Обозначим через w = w(z) функцию, конформно отображающую внешность исходного включения на внешность круга единичного радиуса. Асимптотическое выражение для w(z) имеет вид

$$z \to \infty$$
: $w(z) \simeq \frac{z}{C} + \frac{D}{z} + \dots$, (12)

где константы *С* и *D*, вообще говоря, комплексные:

$$C = C' + iC'', \quad D = D' + iD''.$$
 (13)

В разложении (12) опущено несущественное в дальнейшем постоянное слагаемое.

Согласно (12), преобразование w = w(z) асимптотически является линейным. Следовательно, в комплексной плоскости w, как и в плоскости z, поле на бесконечности однородно. Поэтому соответствующий комплексный потенциал этой задачи в плоскости w имеет вид (11) с заменой $z \to w$:

$$|w| \ge 1$$
: $\Phi(w) = -(u_{0x} - iu_{0y})w - \lambda \frac{u_{0x} + iu_{0y}}{w}$. (14)

Искомый комплексный потенциал $\Phi(z)$ следует из (14) при подстановке функции w = w(z).

Потенциал однородного поля в плоскости z должен иметь вид — $(E_{0x} - iE_{0y})z$ так что из (14) и (12) следует

$$u_{0x} - iu_{0y} = C(E_{0x} - iE_{0y}).$$
(15)

Журнал технической физики, 2011, том 81, вып. 5

$$\Lambda_{xx} = -\frac{1}{2} \left\{ \lambda |C|^2 + C'D' - C''D'' \right\},$$
 (16)

$$\Lambda_{yy} = -\frac{1}{2} \left\{ \lambda |C|^2 - C'D' + C''D'' \right\}, \qquad (17)$$

$$\Lambda_{xy} = -\frac{1}{2} \{ C'D'' + C''D' \}.$$
(18)

Сравнение выражений (16)–(18) для диэлектрического включения при $\lambda = 1$ и идеально проводящего при $\lambda = -1$ показывает, что

$$\Lambda_{xx}^{(s)} = -\Lambda_{yy}^{(d)}, \quad \Lambda_{yy}^{(s)} = -\Lambda_{xx}^{(d)}, \quad \Lambda_{xy}^{(s)} = \Lambda_{xy}^{(d)}$$
(19)

$$\operatorname{Sp}\hat{\Lambda}_s = -\operatorname{Sp}\hat{\Lambda}_d. \tag{20}$$

Выражения (16)–(18) и соотношения (19), (20) справедливы для двумерных включений произвольной формы.

Из (16)–(18) следует

$$\mathrm{Sp}\hat{\Lambda}_d = -|C|^2, \qquad (21)$$

так что для величины N_I, определенной согласно (8), получим

$$N_I = \frac{I}{2\pi |C|^2}.$$
 (22)

Таким образом, константа N₁ является чисто геометрической характеристикой непроводящих включений.

3. "Бестелесные" фигуры

В этом разделе рассматриваются включения нулевой площади, образованные бесконечно тонкими непроницаемыми отрезками прямых — "царапинами".

1. Крестообразное включение

Фигура в виде "бестелесного" симметричного креста изображена на рис. 1 в комплексной плоскости z = x + iy. Конформное отображение внешности этого креста на внешность круга единичного радиуса (изображенного на рис. 1 в плоскости w = u + iv) дается функцией w = w(z), определяемой из соотношения

$$z = \frac{C}{w}\sqrt{w^4 - 2\cos 2\theta w^2 + 1},$$
(23)

являющегося частным случаем формулы Лахтина [11]. При этом точкам $z_A = a$, $z_B = 0$, $z_C = ib$, $z_D = 0$ отвечают $w_A = 1$, $w_B = e^{i\theta}$, $w_C = i$, $w_D = -e^{-i\theta}$ и т.д. Из соответствия точек находим

$$a = 2C\sin\theta, \quad b = 2C\cos\theta,$$
 (24)

так что для констант C и θ , входящих в равенство (23), имеем

$$C = \frac{1}{2}\sqrt{a^2 + b^2}, \quad \theta = \operatorname{arctg} \frac{a}{b}.$$
 (25)

1* Журнал технической физики, 2011, том 81, вып. 5

Рис. 1. Крестообразное включение в комплексной плоскости z = x + iy и круг единичного радиуса в плоскости w = u + iv.

При $b/a \le 1$ угол θ может меняться в диапазоне $\pi/4 \le \theta \le \pi/2$.

Сравнив асимптотику функции w(z) из (23) с (12), находим константу D:

$$D = C\cos 2\theta. \tag{26}$$

Из (16)-(18) получаем

$$\Lambda_{xx}^{(d)} = -C^2 \cos^2 \theta = 1/4 b^2,$$

$$\Lambda_{yy}^{(d)} = -C^2 \sin^2 \theta = 1/4 a^2$$
(27)

и $\Lambda_{xy}^{(d)} = 0$. Соответственно для величины N_I из (22) следует выражение

$$N_I = \frac{2}{\pi (a^2 + b^2)}.$$
 (28)

1а. В пределе $b \to 0$ ($\theta \to \pi/2$) крестик превращается в горизонтальную царапину длиной 2*a*. В этом случае конформное отображение дается функцией

$$w = \frac{1}{a} \left\{ z + \sqrt{z^2 - a^2} \right\}.$$
 (29)

Тензор дипольной поляризуемости принимает вид

$$\hat{\Lambda}_d = -\frac{a^1}{4} \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix}, \tag{30}$$

так что

$$T_I = \frac{2}{\pi a^2}.$$
 (31)

При a = 1 имеем

$$N_I = 0.6366..., N_I^G = 0.60.$$
 (32)

Здесь и далее через N_I^G обозначаем величину N_I , вычисленную в работе [8]. Так как в [8] положено a = 10, то соответствующие результаты из [8] следует умножать на 100.

N

16. При *b* = *a*/2 из (28) находим

$$N_I = \frac{8}{5\pi} \frac{1}{a^2},$$
 (33)

так что $N_I \simeq 0.5093$ при a = 1. В работе [8] рассмотрены две фигуры этого типа, однако отношения b/a для них не указаны. При a = 1 соответствующие результаты из [8] принимают вид $N_I^G = 0.47$ и 0.36.

1в. При b = a ($\theta = \pi/4$) имеем правильную четырехлучевую звезду с длиной луча *a*, для которой

$$z = \frac{a}{\sqrt{2}} \frac{\sqrt{w^4 + 1}}{w}, \ C = \frac{a}{\sqrt{2}}, \ \Lambda_d = -\frac{a^2}{4}, \ N_I = \frac{1}{\pi a^2},$$
(34)

так что

$$N_I = 0.3183..., N_I^G = 0.30.$$
 (35)

2. Углообразное включение

Вторая "бестелесная" фигура с длиной луча l и углом раствора $\gamma \pi$ изображена на рис. 2 в комплексной плоскости z. Конформное отображение на внешность единичного круга дается функцией w = w(z), определяемой из соотношения

$$z = \frac{C}{w} (w+i)^{2-\gamma} (w-i)^{\gamma},$$
 (36)

также являющегося частным случаем формулы Лахтина. Из соответствия точек $(z_A = l \exp\{i(1 - \gamma)\pi/2\} \rightarrow w_A = e^{i\theta}, z_B = 0 \rightarrow w_B = i, z_C = -l \exp\{-i(1 - \gamma)\pi/2\} \rightarrow w_C = -e^{-i\theta}, z_D = 0 \rightarrow w_D = -i$ и т.д.) получаем

$$l = 4C \cos^2\left(\frac{\pi}{4} - \frac{\theta}{2}\right) \left[\operatorname{tg}\left(\frac{\pi}{4} - \frac{\theta}{2}\right) \right]^{\gamma},$$
$$\sin\left(\frac{\pi}{4} - \frac{\theta}{2}\right) = \sqrt{\frac{\gamma}{2}}.$$
(37)

Отсюда следуют выражения для параметров отображения C и θ через геометрические характеристики фигуры:

$$C = \frac{l}{2(2-\gamma)} \left(\frac{2-\gamma}{\gamma}\right)^{\gamma/2}, \quad \theta = \arcsin(1-\gamma). \quad (38)$$

Из сравнения асимптотики w(z) из (36) с (12) находим

$$D = C(2\gamma^2 - 4\gamma + 1),$$
 (39)

Рис. 2. Углообразное включение в плоскости z и круг единичного радиуса в плоскости w.

так что

$$\Lambda_{xx}^{(d)} = -C^2 \sin^2 \theta, \quad \Lambda_{yy}^{(d)} = -C^2 \cos^2 \theta, \quad \Lambda_{xy}^{(d)} = 0.$$
 (40)

При l = a и $\gamma = 1$ исследуемая фигура превращается в горизонтальную царапину, рассматренную в пункте **1**а, с теми же значениями C, Λ_d и N_I . С другой стороны, при l = 2a и $\gamma = 0$ эта фигура превращается в вертикальную царапину длиной 2a с тем же значением N_I .

В работе [8] вычислялась проводимость модели с включениями в виде уголков с l = 2a и $\gamma = 1/2$, чему отвечают

$$C = \frac{2\sqrt[4]{3}}{3}a, \quad \theta = \frac{\pi}{6}, \quad N_I = \frac{3\sqrt{3}}{8\pi}\frac{1}{a^2}.$$
 (41)

Для таких включений при a = 1 получаем

$$N_I = 0.2067..., N_I^G = 0.20.$$
 (42)

4. Включение прямоугольной формы

Включение в виде прямоугольника длиной 2a и высотой 2b изображено на рис. З в плоскости z. Конформное отображение на внешность единичного круга дается функцией w = w(z), определяемой из интеграла

Рис. 3. Включение в форме прямоугольника в плоскости z и единичный круг в плоскости w.

Кристоффеля-Шварца [11], имеющего в данном случае вид

$$z = a + C \int_{1}^{\infty} \sqrt{t^4 - 2\cos 2\theta t^2 + 1} \, \frac{dt}{t^2}.$$
 (43)

Из соответствия точек ($z_A = a \rightarrow w_A = 1$, $z_B = a + ib \rightarrow w_B = e^{i\theta}$, $z_C = ib \rightarrow w_C = i$, $z_D = -a + ib \rightarrow w_D = -e^{-i\theta}$ и т.д.) находим

$$b = 2C \int_{0}^{\theta} \sqrt{\sin^2 \theta - \sin^2 \varphi} \, d\varphi, \qquad (44)$$

$$a = 2C \int_{\theta}^{\pi/2} \sqrt{\cos^2 \theta - \cos^2 \varphi} \, d\varphi.$$
 (45)

При $b/a \leq 1$ угол θ может изменяться в диапазоне $0 \leq \theta \leq \pi/4$.

Подстановки $\sin \varphi = x \sin \theta$ в (44) и $\cos \varphi = x \cos \theta$ в (45) позволяют выразить величины *b* и *a* через полные эллиптические интегралы

$$b = 2C[E(k) - {k'}^2 K(k)], \quad k = \sin\theta;$$
(46)

$$a = 2C[E(k') - k^2 K(k')], \quad k' = \cos\theta,$$
 (47)

где

$$K(k) = \int_{0}^{1} \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}},$$
$$E(k) = \int_{0}^{1} \sqrt{\frac{1-k^2x^2}{1-x^2}} \, dx.$$
(48)

Из асимптотики функции w(z) (43) находим

$$D = -C\cos 2\theta,\tag{49}$$

так что для составляющих тензора поляризуемости прямоугольника получаем

$$\Lambda_{xx}^{(d)} = -C^2 \sin^2 \theta, \quad \Lambda_{yy}^{(d)} = -C^2 \cos^2 \theta \tag{50}$$

и $\Lambda_{xy}^{(d)} = 0$. Для величины N_I справедливо выражение (22) с коэффициентом

$$C = \frac{a}{2[E(k') - k^2 K(k')]}.$$
(51)

Для определения параметра $k = \sin \theta$ было вычислено, с использованием выражений (46) и (47), отношение b/a как функции k. Полученная зависимость b/a от kпредставлена в графическом виде на рис. 4, что позволяет находить параметр k по заданному значению отношения сторон прямоугольника. В свою очередь, на рис. 5 представлена вычисленная зависимость величины C^2/a^2 от параметра k, что позволяет определять составляющие тензора $\hat{\Lambda}_d$, Sp $\hat{\Lambda}_d$ и тем самым константу N_I . Следует отметить, что найденное из рис. 4 значение параметра k можно рассматривать как ориентировочное, с последующим, при необходимости, уточнением численными методом. Аналогичное замечание относится и к определению величины C^2/a^2 .

Рис. 4. Отношение b/a сторон прямоугольника как функция параметра $k = \sin \theta$. При b/a = 0.5 параметр $k \simeq 0.59$.

Журнал технической физики, 2011, том 81, вып. 5

Рис. 5. Величина C^2/a^2 для прямоугольного включения как функция параметра $k = \sin \theta$. Параметру $k \simeq 0.59$ (при b/a = 0.5) отвечает $C^2/a^2 \simeq 0.77$.

При $b/a \rightarrow 0$ прямоугольник превращается в царапину, рассмотренную в предыдущем разделе. В этом предельном случае имеем k = 0 ($\theta = 0$), C = a/2, так что соответствующие формулы переходят в полученные ранее.

Квадрату со стороной 2*a* отвечает $\theta = \pi/4$ ($k = k' = 1/\sqrt{2}$). В этом случае из соотношения Лежандра [13]

$$K(k)E(k') + K(k')E(k) - K(k)K(k') = \frac{\pi}{2}$$
(52)

выражаем $E(1/\sqrt{2})$ через $K(1/\sqrt{2})$ и из (51) получаем

$$C = a \, \frac{2K(1/\sqrt{2})}{\pi}; \quad K(1/\sqrt{2}) = 1.85407\dots$$
 (53)

Для величины N_I при a = 1 находим

$$b/a = 1$$
: $N_I = 0.1142...$, $N_I^G = 0.11$. (54)

При b/a = 0.5 из рис. 4 следует $k \simeq 0.59$. Более точное значение $k \simeq 0.5886$, чему отвечает $C/a \simeq 0.8748$, так что при a = 1 имеем

$$b/a = 0.5: N_I \simeq 0.2080, N_I^G = 0.21.$$
 (55)

5. "Объемный" крест

Эта фигура изображена в плоскости z на рис. 6. Функция w(z) определяется с помощью интеграла Кристоффеля—Шварца, имеющего в данном случае вид

$$z = a + C \int_{1}^{w} \sqrt{\frac{(t^4 + 1)^2 - 4t^4 \cos^2 \theta}{t^4 + 1}} \frac{dt}{t^2}.$$
 (56)

Из соответствия точек $(z_A = a \rightarrow w_A = 1, z_B = a + ib \rightarrow w_B = e^{i\theta/2}, z_C = b + ib \rightarrow w_C = e^{i\pi/4}, z_D = b + ia \rightarrow w_D = ie^{-i\theta/2}, z_E = ia \rightarrow w_E = i$ и т.д.) находим

$$b = \frac{C}{\sqrt{2}} I_1(\theta), \quad I_1(\theta) = \int_0^\theta \sqrt{\frac{\sin^2 \theta - \sin^2 \varphi}{\cos \varphi}} \, d\varphi; \quad (57)$$

$$a - b = \frac{C}{\sqrt{2}} I_2(\theta), \quad I_2(\theta) = \int_{\theta}^{\pi/2} \sqrt{\frac{\cos^2 \theta - \cos^2 \varphi}{\cos \varphi}} \, d\varphi.$$
(58)

Так как $b \leq a$, то угол θ может изменяться в диапазоне $0 \leq \theta \leq \pi/2$.

На рис. 7 в графическом виде представлена вычисленная зависимость отношения b/a от угла θ . По этому графику определяется величина θ по заданному отношению b/a, после чего с помощью рис. 8 находится поляризуемость Λ .

При $b/a \to 0$ рассматриваемая фигура превращается в "бестелесный" крест. При этом $\theta \to 0$, так

Рис. 6. "Объемный" крест в плоскости *z* и единичный круг в плоскости *w*.

Журнал технической физики, 2011, том 81, вып. 5

Рис. 7. Отношение b/a для "объемного" креста как функция угла θ . При b/a = 0.5 угол $\theta \simeq 1.01$.

Рис. 8. Величина $|\Lambda|/a^2$ для "объемного" креста как функция угла θ . Углу $\theta \simeq 1.01$ (при b/a = 0.5) отвечает $|\Lambda|/a^2 \simeq 0.53$.

что $I_1(\theta) \sim \theta^2 \to 0$, $I_2(0) = 2$ и $C = a/\sqrt{2}$. Соотношение (56) при $\theta = 0$ с учетом равенства

$$\int \frac{t^4 - 1}{\sqrt{t^4 + 1}} \frac{dt}{t^2} = \frac{\sqrt{t^4 + 1}}{t}$$

принимает вид (34).

При $b = a \ (\theta = \pi/2)$ "объемный" крест превращается в квадрат со стороной 2*a*. При этом

$$I_1(\pi/2) = \frac{\pi}{\sqrt{2}K(1/\sqrt{2})}, \quad I_2(\pi/2) = 0,$$

Журнал технической физики, 2011, том 81, вып. 5

так что константа

$$C = a \frac{\sqrt{2}}{I_1(\pi/2)}$$

совпадает с (53).

При b = a/2 угол θ определяется из уравнения $I_1(\theta) = I_2(\theta)$, откуда находим $\theta \simeq 1.01384$, чему отвечает $I_1 \simeq 0.6867$. В этом случае

$$\frac{C}{a} = \frac{1}{\sqrt{2}I_1} \simeq 1.0297, \quad N_I \simeq \frac{0.1501}{a^2}$$
(59)

и при a = 1 получаем

$$b/a: N_I \simeq 0.1501, N_I^G = 0.15.$$
 (60)

Для сравнения с рассмотренными примерами приведем значение N_I для непроводящего круга радиуса R:

$$N_I = \frac{1}{2\pi R^2},\tag{61}$$

так что $N_I = 0.159...$ при R = 1. Соответствующее значение $N_I = 0.14$ из [8] заметно отличается от этого результата, что связано, по-видимому, с не вполне адекватным способом моделирования включений круговой формы на рассмотренной в [8] квадратной решетке.

Заключение

Проведенный в работе анализ обсуждаемой проблемы показывает удовлетворительное согласие теоретических выводов с результатами компьютерного эксперимента [8] в тех случаях, когда такое сравнение возможно. Использованный аналитический подход позволяет рассматривать включения довольно сложной формы и дает возможность вычислять соответствующие константы N_I с любой степенью точности. При этом величины N_I , в отличие от компьютерного подхода, определяются во всем диапазоне изменения входящих в задачу параметров. Так, например, для включения прямоугольной формы его поляризуемость (и следовательно, константа N_I) определена во всем интервале изменения отношения длин его сторон — от квадрата до царапины.

Отметим, что при всем многообразии возможных форм включений, рассмотренных в [8] и в настоящей работе, величина N_I заключена (при одинаковых размерах включений) в сравнительно узком диапазоне: $0.11 \leq N_I \leq 0.64$ при a = 1. Здесь наименьшая оценка N_I относится к квадрату со стороной 2a, а наибольшая — к царапине длиной 2a. Фактически этот интервал оказывается еще меньше, если принять во внимание следующее соображение. Для более корректного учета вкладов различных включений в сопротивление образца необходимо сравнивать константы N_I при одинаковых максимальных линейных размерах ("диаметрах") соответствующих включений. Поэтому рассмотрим величины N_I для различных включений, вписанных в круг радиуса R. Например для квадрата в этом случае величину a следует заменить на $R/\sqrt{2}$ и тогда константа N_I станет в два раза больше, чем в (54): $N_I = 0.2284...$ при R = 1.

При таком подходе наибольший вклад в сопротивление образца дают непроницаемые круговые включения, для которых константа N_I имеет наименьшее значение — см. (61). Максимальное значение N_I по-прежнему имеет для царапины длины, в данном случае 2R. Поэтому при таком сравнении константа N_I оказывается заключенной в пределах

$$\frac{1}{2\pi R^2} \le N_I \le \frac{2}{\pi R^2},\tag{62}$$

 $(0.16 \leq N_I \leq 0.64$ при R = 1), так что $N_I^{\text{max}}/N_I^{\text{min}} = 4$. При этом для включения любой формы, вписанного в круг радиуса R, величина N_I находится в диапазоне (62), размер которого уже не может быть увеличен.

Таким образом, при равных размерах включения различных форм вносят в сопротивление образца вклад одного порядка величины при одинаковых концентрациях N. При этом, однако, соответствующие безразмерные концентрации (доли занимаемой непроводящей компонентой площади) c = Ns, где s — площадь включения, могут существенно отличаться друг от друга, как например, для круговых включений и включений в виде эллипсов с малым отношением полуосей $b/a \ll 1$.

Эти утверждения, основанные на рассмотрении случая малых концентраций $N \ll N_I$, справедливы, по-видимому, и при немалых $N \sim N_I$, в том числе и вблизи порога протекания N_c . При этом величина N_I задает масштаб, в котором может изменяться размерная концентрация N: $0 \le N \le N_c$, причем $N_c \sim N_I$. Действительно, согласно результатам работы [8], для всех рассмотренных типов включений порог N_c составляет несколько единиц от N_I . В то же время соответствующий безразмерный порог $c_0 = N_c s$ может быть как весьма малым — для диэлектрических эллипсов с $b/a \ll 1$, так и близким к единице в случае таких же, но проводящих эллипсов в диэлектрической матрице.

Список литературы

- [1] Kirkpatrick S. // Rev. Mod. Phys. 1973. Vol. 45. N 4. P. 574.
- [2] Шкловский Б.И., Эфрос А.Л. // УФН. 1975. Т. 117. Вып. 3. С. 401.
- [3] Pike G.E., Seager C.H. // Phys. Rev. B. 1974. Vol. 10. N 4. P. 1421.
- Balberg I, Binenbaum N. // Phys. Rev. B. 1983. Vol. 28. N 7.
 P. 3799.
- [5] Dubson M.A., Garland J.C. // Phys. Rev. B. 1985. Vol. 32. N 11. P. 7621.
- [6] Xiu W., Thorpe M.F. // Phys. Rev. A. 1988. Vol. 38. N 5. P. 2650.
- [7] Tobochnik J., Dubson M.A., Wilson M.L., Thorpe M.F. // Phys. Rev. A. 1989. Vol. 40. N 9. P. 5370.
- [8] Garboszi E.J., Thorpe M.F., De Vris M.S., Day A.R. // Phys. Rev. A. 1991. Vol. 43. N 12. P. 6473.
- [9] Балагуров Б.Я. // ЖТФ. 1982. Т. 52. Вып. 5. С. 850.
- [10] Балагуров Б.Я. // ЖЭТФ. 2010. Т. 137. Вып. 2. С. 301.

- [11] Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1965. 716 с.
- [12] Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1992. 662 с.
- [13] Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Физматгиз, 1962. 1100 с.