Влияние плоскостной анизотропии на декремент затухания свободных колебаний намагниченности в пленках ферритов-гранатов

© Ю.А. Дурасова, Е.И. Ильяшенко, О.С. Колотов, А.В. Матюнин, В.А. Погожев

Московский государственный университет им. М.В. Ломоносова, 119992 Москва, Россия e-mail: PhysPhak@mail.ru

(Поступило в Редакцию 12 марта 2008 г.)

Рассматриваются результаты экспериментального исследования свободных колебаний намагниченности в пленках ферритов-гранатов с плоскостной анизотропией. Показано, что декремент затухания свободных колебаний увеличивается с ростом эффективного поля анизотропии H_{Kp} .

PACS: 74.25.Ha, 75.30.Gw, 75.60.Jk, 75.70.-l, 75.75.+a, 76.60.Jx

Введение

05:11:12

Исследование свободных колебаний намагниченности позволяет определять важные параметры магнитных материалов, оказывающих существенное влияние на характер и скорость переходных процессов. Однако до настоящего времени свободные колебания в основном изучались в тонких пленках Fe—Ni с одноосной анизотропией [1–7]. В работе [8] впервые исследовались колебания в пленках ферритов-гранатов с плоскостной анизотропией, возбуждаемые под действием импульсного магнитного поля H_P , прикладываемого перпендикулярно исходному направлению намагниченности и лежащего в плоскости пленок.

Подобно случаю Fe-Ni-пленок [1], для анализа поведения намагниченности использовалось линеаризованное уравнение Ландау-Лифшица. Его решение дает довольно громоздкое выражение для напряжения продольного индукционного сигнала $E_P(t)$ (отражающего изменение составляющей намагниченности M_P , параллельной полю H_P). Однако если в процессе колебаний величина угла φ между мгновенным и исходным направлениями намагниченности не превышает $10-15^\circ$, а затухание колебаний невелико, то изменение сигнала, как и для Fe-Ni-пленок [1], может быть записано в простом виде

$$E_P(t) = Ce^{-\delta \cdot t} \cos 2\pi f t, \qquad (1)$$

где C — коэффициент пропорциональности, зависящий от намагниченности насыщения M_S и чувствительности установки, f — частота колебаний:

$$f = \frac{1}{2\pi} \sqrt{\gamma^2 H_{\Sigma} (H_{K2} + H_0) - \delta^2},$$
 (2)

 γ — гиромагнитное отношение, H_{Σ} — эффективное поле, учитывающие действие сил, удерживающих намагниченность в плоскости пленки и равное $4\pi M_S + H_{Kp}$, H_{Kp} — эффективное поле плоскостной анизотропии, H_{K2} — эффективное поле двухосной анизотропии, всегда проявляющееся в плоскости реальных пленок ферритов-

гранатов [8,9], *H*₀ — постоянное магнитное поле, прикладываемое в плоскости пленки вдоль одной из осей легкого намагничивания (ОЛН).

Из анализа, проведенного в работе [8], следует, что декремент затухания δ свободных колебаний должен зависеть от плоскостной анизотропии:

$$\delta = \frac{a\lambda}{2},\tag{3}$$

где a — значение эффективного поля H_{Σ} , нормированное к намагниченности насыщения M_S :

$$a = \frac{H_{\Sigma}}{M_S} = \frac{4\pi M_S + H_{Kp}}{M_S},\tag{4}$$

λ — постоянная затухания Ландау–Лифшица.

Опыт показывает [8–10], что свободные колебания в пленках ферритов-гранатов затухают существенно медленнее, чем в Fe–Ni-пленках, и в общем случае удается зарегистрировать до 10–12 периодов. Оценки, основанные на применении экспериментальных значений δ в выражении (3), показывают [8], что λ в пленках ферритов-гранатов должна быть до 25–50 раз меньше, чем в Fe–Ni-пленках. Однако справедливость выражения (3) не проверялась экспериментально. Здесь сделана попытка показать, что величина δ действительно растет с увеличением параметра *a*.

Методика эксперимента

Основная трудность в проведении намеченных исследований связана с тем обстоятельством, что изменение реального сигнала не всегда соответствует выражению (1). Это несоответствие может быть обусловлено двумя основными причинами: неравномерностью вершины импульса, инициирующего исследуемый процесс, и наличием биений. Чтобы уменьшить влияние первого фактора, для возбуждения свободных колебаний использовались импульсы с длительностью $t_{\rm im}$, не превышающей периода колебаний T. Биения возникают в результате сложения двух мод колебаний, наблюдаемых соответственно на основной частоте f и на побочной f_s . В зависимости от пленки величина $f - f_s$ может изменяться в пределах 100-200 MHz.

Нам не удалось выяснить причины возникновения побочной моды. Не исключено, что она обусловлена неоднородностью пленок, например, наличием в пленке области с резко отличающимися значениями параметров, определяющих частоту колебаний. Чтобы уменьшить ошибку в определении величины декремента затухания, для проводимых здесь исследований были выбраны пленки, сигналы с которых для моментов времени $\geq 2t_{\rm im}$, — когда напряженность инициирующего магнитного поля близка к нулю, — достаточно хорошо (с точностью не хуже 5%) аппроксимируются выражением (1). Для таких пленок ошибка определения декремента затухания не превышает 15%.

Исследования выполнены на универсальной индукционной установке с полосой пропускания канала регистрации сигнала 1.5 GHz. Для возбуждения свободных колебаний использовались источники импульсов и короткозамкнутый отрезок полосковой линии, позволяющие получать короткие импульсы с длительностью фронта $t_f \leq 0.3$ ns, общей длительностью (измеренной на полувысоте) $t_{\rm im} \approx 0.7-0.8$ ns и амплитудой в пределах от 3–4 до 8–10 Ое. Исходное состояние насыщения задавалось с помощью установочного магнитного поля H_0 , ориентированного вдоль одной из ОЛН. Поле H_P направлялось вдоль другой ОЛН (перпендикулярной первой).

Нам удалось получить набор из четырех пленок, позволяющих перекрыть существенный диапазон изменения параметра *a*. Состав пленок — $(LiBi)_3$ (FeCa)₅O₁₂, намагниченность насыщения $M_S = 16$ G. Остальные параметры приведены в таблице. Вместо эффективного поля H_{Kp} удобнее использовать указанные выше значения H_{Σ} и *a*.

Величина H_{Σ} определялась двумя методами. Первый из них [10] основан на анализе зависимости квадрата частоты колебаний от напряженности установочного поля H_0 . При этом использовалось выражение (2), в котором с учетом реальных свойств исследуемых пленок величина δ^2 полагалась близкой к нулю. Измеренное таким образом значение H_{Σ} обозначено в таблице как H_{Σ}^{IN} . Кроме того, значение H_{Σ} (обозначенное в таблице как H_{Σ}^{MO}) определялось с помощью магнитооптической установки — путем анализа зависимости угла выхода вектора намагниченности из плоскости пленки от напряженности постоянного магнитного поля, прикладываемого вдоль нормали к ее поверхности [11,12]. Из таблицы видно, что оба метода дают близкие значения эффективного поля H_{Σ} .

В таблице также приведены: толщина пленок d, значения параметра a (с учетом результатов применения двух методов измерения поля H_{Σ}), а также значения эффективного поля двухосной анизотропии H_{K2} . Последняя величина также определялась путем анализа экспериментальной зависимости квадрата частоты колебаний от установочного поля — по точке пересечения

Пленка №	d, μm	H_{Σ}^{IN} , kOe	H_{Σ}^{MO} , kOe	H_{K2} , Oe	а	$\delta \cdot 10^8$, Hz
1	1.8	0.57	0.56	67	35	0.9
2	6	0.8	0.82	50	56	1.25
3	2.8	1.0	1.1	55	75	1.6
4	4.0	1.36	1.4	62	85	2.0

прямой, аппроксимирующей эту зависимость, с осью абсцисс [8,10]. Для удобства используемая в таблице нумерация пленок выбрана так, что с возрастанием их номера увеличиваются значения H_{Σ} и *a*.

Результаты и их обсуждение

На рис. 1 приведен пример сигнала, отражающего свободные колебания намагниченности. Штрихами нанесены значения напряжения сигнала, полученные путем применения выражения (1) для $\delta = 2 \cdot 10^8$ Hz. Видно, что выражение (1) достаточно хорошо аппроксимирует реальный сигнал. Значения декремента затухания δ , определенные таким образом для всех пленок, указаны в таблице.

На рис. 2 эти значения нанесены с указанием ошибки эксперимента. Для каждого экспериментального результата указан номер пленки, для которой он получен. По оси абсцисс соответственно отложены величины параметра *a*. Здесь же нанесена контрольная точка *k*, соответствующая минимально возможным значениям параметра *a* (= 4π) и декремента затухания δ (= $2\pi\lambda$) (соответствующих пленкам с $H_{Kp} = 0$). Видно, что точка *k* и экспериментальные точки лежат вблизи аппроксимирующей прямой, получающейся для значения постоянной затухания Ландау–Лифшица $\lambda = 4.5 \cdot 10^6$ Hz.

Рис. 1. Пример сигнала, отражающего свободные колебания намагниченвности — сплошная линия. Штриховая линия — расчетные значения напряжения сигнала для $\delta = 2 \cdot 10^8$ Hz. Пленка № 4. Сигнал наблюдался для момента времени $t > 2t_{\rm im}$, когда напряженность импульсного магнитного поля можно считать равной нулю.

Рис. 2. Зависимость декремента затухания свободных колебаний намагниченности δ от параметра *a*.

Таким образом, наличие плоскостной анизотропии является важным фактором, оказывающим существенное влияние на скорость затухания свободных колебаний. Известно [5,13], что эти колебания имеют магнитостатическую природу, поскольку связаны с выходом вектора намагниченности из плоскости пленки и возникновением размагничивающего поля. Последнее обладает инерционностью и характеризуется эффективной кинетической энергией [13]. Подобные колебания возникают и при нелинейных переходных процессах, связанных с однородным вращением намагниченности, — например, при 90° импульсном намагничивании [2,5], — в том числе и в обсуждаемых здесь пленках ферритовгранатов [14,15].

Еще в 1956 г. Кикучи [16] отмечал, что возникновение колебаний намагниченности может существенно ограничивать быстродействие технических устройств на магнетиках. Реально с этой проблемой столкнулись совсем недавно при попытке создания устройств на Fe-Ni-пленках с длительностью переходных процессов ≤ 1 ns [17]. Один из путей повышения быстродействия связан с применением апериодических переходных процессов. В материалах с плоскостной анизотропией это может быть обеспечено путем соответствующего повышения эффективного поля плоскостной анизотропии.

В качестве примера материала с высоким значением H_{Kp} следует отметить монокристаллы бората железа [18]. Возможно, по этой причине в них не наблюдается интересующих нас здесь колебаний намагниченности, возникающих при длительности переходных процессов ≤ 1 ns [19].

Список литературы

- [1] Wolf P. // Z. Physik. 1060. Vol. 160. N 2. S. 310.
- [2] Hearn B.R. // J. Electron. Contr. 1964. Vol. 16. N 1. P. 16.
- [3] Matsumoto G., Sato T., Iida S. // Jpn. J. Phys. Soc. 1966. Vol. 21. N 2. P. 23.
- [4] Suezawa Y, Humphrey F.B. // IEEE Trans. Magnet. 1972.
 Vol. Mag-8. N 2. P. 319.

- [5] Колотов О.С., Погожев В.А., Телеснин Р.В. // УФН. 1974.
 Т. 113. Вып. 4. С. 569.
 - [6] Hubert W.K., Stankievicz A., Freeman M.R. // Phys. Rev. Lett. 1997. Vol. 79. N 6. P. 1134.
 - [7] Choi B.C., Ballentine G.F., Belov M., Hiebert W.K., Freeman M.R. // J. Appl. Phys. 2001. Vol. 89. N 11. P. 717.
 - [8] Ильичева Е.Н., Ильяшенко Е.И., Колотов О.С. и др. // ФТТ. 2003. Т. 45. Вып. 6. С. 1037.
 - [9] Ильичева Е.Н., Дурасова Ю.А., Колотов О.С., Рандошкин В.В. // Зав. лаб. Диагностика материалов. 2002. Т. 68. № 12. С. 44.
 - [10] Il'yashenko E.I., Il'iycheva E.N., Kolotov O.S., Matyunin A.V., Pogozhev V.A. // J. Optoel. Advan. Mater. 2004. Vol. 6. N 3. P. 931.
 - [11] Ильичева Е.Н., Дурасова Ю.А., Клушина А.В. и др. // Зав. лаб. Диагностика материалов. 2001. Т. 67. № 7. С. 278.
 - [12] Helseth L.E., Il'yashenko E.I., Bazilijevich M., Johansen T.H. // J. Appl. Phys. 2002. Vol. 92. P. 543.
 - [13] Фрумкин А.Л., Максимов С.А. // ФММ. 1976. Т. 41. Вып. 3. С. 499.
 - [14] Ильяшенко Е.И., Колотов О.С., Матюнин А.В. и др. // ФТТ. 2006. Т. 48. Вып. 2. С. 280.
 - [15] Ильяшенко Е.И., Колотов О.С., Матюнин А.В., Погожев В.А. // Изв. РАН. Сер. физ. 2007. Т. 71. № 11. С. 1570.
 - [16] Kikuchi R. // J. Appl. Phys. 1956. Vol. 27. N 11. P. 1352.
 - [17] Shumacher G.W., Chappert C., Sousa R.C. et al. // Phys. Rev. Lett. 2003. Vol. 90. N 1. P. 1.
 - [18] Diehl B., Jantz W., Noland B.I., Wettling J.W. // Current Topics in Mater Sci. 1984. Vol. 1 P. 241.
 - [19] Колотов О.С., Матюнин А.В. // ПТЭ. 2003. № 3. С. 88.