10,04,05

Ab initio исследование магнитных и сегнетоэлектрических свойств двойных перовскитов LaPbMeSbO₆ (Me = Mn, Fe, Co, Ni)

© В.С. Жандун, В.И. Зиненко

Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия E-mail: jvc@iph.krasn.ru

(Поступила в Редакцию 5 ноября 2014 г.)

Приводятся результаты *ab initio* расчетов сегнетоэлектрических и магнитных свойств недавно синтезированных двойных перовскитов LaPb*Me*SbO₆ ($Me^{2+} = Mn^{2+}$, Fe²⁺, Co²⁺, Ni²⁺). Рассмотрены упорядоченные двойные перовскиты со слоистым упорядочением катионов *A* и *A'* и шахматным упорядочением катионов *B* и *B'*. Расчет динамики решетки показал наличие нестабильностей в фононных спектрах высокосимметричной фазы данных соединений. Конденсация нестабильных мод приводит к полярной стабильной фазе *P*2₁. Значение спонтанной поляризации в этой фазе оказалось равным ~ $30 \,\mu$ C/cm². Основное магнитное состояние является антиферромагнитным с антипараллельным направлением магнитных моментов в соседних плоскостях вдоль направления [001]. Температуры Нееля оценивались в приближении среднего поля. Наличие сегнетоэлектрического и магнитного параметров порядка позволяет предположить, что исследованные двойные перовскиты с одновременным упорядочением катионов являются потенциальными мультиферроиками.

Работа поддержана грантом РФФИ (№ 12-02-00025-а) и грантом Президента РФ "Ведущие научные школы" (НШ-924-2014.2). Расчеты проводились с использованием компьютерных ресурсов Курчатовского института.

1. Введение

Двойные перовскиты с общей формулой AA'BB'O₆ в последнее время вызывают значительный интерес изза разнообразия физических свойств, которые зависят как от химического состава катионов А, А', В и В', так и от типов упорядочения катионов в структуре. В последнее время появилось множество экспериментальных и теоретических работ, посвященных исследованию соединений, принадлежащих семейству двойных перовскитов [1-5]. В недавней работе [2] авторы синтезировали новые двойные перовскиты LaPbMeSbO₆, где $Me^{2+} = Mn^{2+}$, Co²⁺ и Ni²⁺. Рентгеновский дифракционный анализ полученных соединений показал, что элементарная ячейка исследуемых образцов обладает моноклинной пространственной группой симметрии P2₁/n, катионы La и Pb полностью разупорядочены, а катионы Me^{2+} и Sb упорядочены в структуре каменной соли. Все образцы претерпевают антиферромагнитный фазовый переход при температуре Нееля $T_{\rm N}=8,\ 10$ и 17 K для $Me^{2+} = Mn^{2+}$, Co²⁺ и Ni²⁺ соответственно.

В настоящей работе приводятся результаты *ab initio* расчета сегнетоэлектрических, электронных и магнитных свойств полностью упорядоченных двойных перовскитов LaPb*Me*SbO₆, где $Me^{2+} = Mn^{2+}$, Fe²⁺, Co²⁺ и Ni²⁺. Мы полагаем, что упорядочение катионов в позиции *A* должно приводить к появлению сегнетоэлектрических свойств в исследуемых соединениях, но при этом не должно оказывать большого влияния на магнитные свойства.

2. Метод расчета

Расчеты проведены в рамках теории функционала плотности с использованием PBE-GGA обменнокорреляционных функционалов, реализованных в пакете VASP [6,7]. В расчете был использован метод GGA + U в приближении Дударева [8], где величина U' = U - J (U — хаббардовское отталкивание на одном узле, J — внутриатомный хундовский обмен) варьировалась для разных соединений исходя из условия лучшего совпадения рассчитанных температур

Рис. 1. Структура высокосимметричной фазы *Р4/mmn*.

Параметры решетки	LaPbMnSbO ₆	LaPbFeSbO ₆	LaPbCoSbO ₆	LaPbNiSbO ₆
a	5.78	5.78	5.67	5.67
c	8.24	8.06	8.24	8.09

Таблица 1. Оптимизированные параметры решетки (Å) в высокосимметричной фазе

Таблица 2. Оптимизированные координаты ионов в высокосимметричной фазе

Атом	WP	LaPbMnSbO ₆	LaPbFeSbO ₆	LaPbCoSbO ₆	LaPbNiSbO ₆
La	2a	0.7500 0.2500 0.0000	0.750 0.250 0.000	0.750 0.250 0.000	0.750 0.250 0.000
Pb	2b	0.7500 0.2500 0.5000	0.750 0.250 0.500	0.750 0.250 0.500	0.750 0.250 0.500
Me^{2+}	2c	0.2500 0.2500 0.2564	0.250 0.250 0.255	0.250 0.250 0.252	0.250 0.250 0.251
Sb	2c	0.2500 0.2500 0.7558	0.250 0.250 0.754	0.250 0.250 0.752	0.250 0.250 0.751
O_1	8 <i>j</i>	0.4927 0.4927 0.7715	0.492 0.492 0.770	0.497 0.497 0.770	0.496 0.496 0.769
O ₂	2c	0.2500 0.2500 -0.0027	0.250 0.250 0.002	0.250 0.250 -0.005	0.250 0.250 -0.001
O ₃	2c	0.2500 0.2500 0.5140	0.250 0.250 0.507	0.250 0.250 0.512	0.250 0.250 0.506

Примечание. WP — позиции Уайкоффа.

Нееля с экспериментальными ($U'_{Mn} = 5 \,\text{eV}$, $U'_{Fe} = 4 \,\text{eV}$, $U'_{C_0} = 3 \text{ eV}, U'_{N_i} = 2 \text{ eV}$). Все расчеты были сделаны с учетом спиновой поляризации. Для структурных расчетов использовалась суперъячейка $\sqrt{2}a \times \sqrt{2}a \times 2a$ (где а — параметр решетки перовскита), содержащая 20 атомов (рис. 1). Для расчета обменных констант в низкосимметричной фазе использовалась суперьячейка $2a \times 2a \times 2a$, содержащая 40 атомов, а для учета взаимодействия вторых соседей суперъячейка $4a \times 2a \times 2a$, содержащая 80 атомов. Сетка Монкхорста-Пака выбиралась равной 6 × 6 × 6. Оптимизация параметров решетки и координат ионов проводилась до тех пор, пока остаточные силы на ионах не становились меньше 0.02 eV/Å. Обменные константы гамильтониана Гейзенберга были рассчитаны из разности энергий между тремя магнитными конфигурациями.

3. Результаты и обсуждение

Как упоминалось во Введении, экспериментальные образцы обладают моноклинной группой симметрии P2₁/n, при этом катионы La и Pb разупорядочены, а катионы Me^{2+} и Sb упорядочены в структуре каменной соли (шахматное упорядочение). В настоящей работе исследованы двойные перовскиты LaPbMeSbO₆ с одновременным упорядочением как катионов А, так и катионов В. Как известно из некоторых работ [9,10], в двойных перовскитах с гетеровалентным замещением наиболее реализуемым случаем является слоистое упорядочение катионов А и А' вместе с шахматным упорядочением катионов B и B' и, что немаловажно, такой тип упорядочения может привести к полярной низкосимметричной фазе. Следует отметить, что мы выполнили расчеты экспериментально полученных частично упорядоченных структур, используя приближение виртуального кристалла в модели поляризуемых ионов [11]. Расчет динамики решетки показал, что все соединения имеют нестабильные моды в симметричных точках Г и Х зоны Бриллюэна и наибольшие по величине неустойчивости связаны с "поворотом" кислородных октаэдров (например, для LaPbMnSbO₆ соответствующие частоты нестабильных мод $\omega_{\Gamma} = 140i$, $\omega_X = 135i$).

Рис. 2. Рассчитанные полная и парциальные плотности состояний в высокосимметричной фазе. *a* — LaPbMnSbO₆, *b* — LaPbFeSbO₆, *c* — LaPbCoSbO₆, *d* — LaPbNiSbO₆. *I* — полная плотность состояний, *2* — *d*-состояния *Me*, *3* — *p*-состояния кислорода. Нуль на шкале энергий соответствует энергии Ферми.

Конденсация этих мод действительно приводит к неполярному основному состоянию, обладающему группой симметрии $P2_1/n$, в соответствии с экспериментом.

Начнем с рассмотрения структурного перехода в исследуемых двойных перовскитах. Высокосимметричная неполярная фаза со слоистым упорядочением катионов А и шахматным упорядочением катионов В обладает тетрагональной группой симметрии Р4/тт. Будем предполагать, что все структурные переходы, в том числе сегнетоэлектрический фазовый переход, происходят в парамагнитной фазе, в связи с тем, что экспериментальные температуры Нееля (см. Введение) достаточно малы. Расчет электронной плотности состояний в высокосимметричной фазе без учета спиновой поляризации показал, что все рассматриваемые соединения являются металлами. Поэтому далее мы приводим результаты расчета структуры и динамики решетки с учетом спиновой поляризации при антиферромагнитном упорядочении магнитных моментов Me^{2+} $(Me^{2+} = Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+}).$

Полная оптимизация геометрии решетки в высокосимметричной тетрагональной фазе приводит лишь к небольшим смещениям ионов кислорода по свободным координатам. Оптимизированные параметры решетки и атомные координаты приведены в табл. 1 и 2 соответственно.

На рис. 2 приведены полная и парциальные плотности электронных состояний (DOS) в зависимости от энергии. Нулевой энергии соответствует энергия Ферми, вычисленная для каждого соединения. Результат спин-поляризованного расчета показывает, что в высокосимметричной тетрагональной фазе все соединения являются диэлектриками с шириной запрещенной зоны около 1.5-1.8 eV. Валентная зона преимущественно занята *d*-электронами Me^{2+} и *p*-электронами O^{2-} . Большой пик в зоне проводимости связан с незанятыми f-состояниями La. Для всех соединений наблюдается резкий пик в валентной зоне вблизи энергии Ферми, связанный с t_{2g}-состояниями Me²⁺. Особенно ярко этот пик проявляется в соединении LaPbMnSbO₆. Для соединений с Fe, Co и Ni он постепенно уменьшается и смещается в глубь валентной зоны. Незанятые е состояния расположены вблизи уровня Ферми в зоне проводимости.

В оптимизированной структуре был проведен расчет динамики решетки. Частоты колебаний в центре зоны Бриллюэна приведены в табл. 3. Как видно из табл. 3, все соединения имеют нестабильные моды в центре

Таблица 3. Частоты колебаний (cm^{-1}) в центре зоны Бриллюэна для высокосимметричной фазы (нестабильные моды обозначены индексом *i*; вырожденность моды указана в скобках)

LaPbMnSbO ₆	LaPbFeSbO ₆	LaPbCoSbO ₆	LaPbNiSbO ₆
152.9 <i>i</i>	148.2 <i>i</i>	143.2i(2)	136.2i(2)
134.3(2)	144.6i(2)	138.6 <i>i</i>	127.6 <i>i</i>
116.1i(2)	108i(2)	94.2i(2)	89.2i(2)
62.0i(2)	54.9i(2)	38.1i(2)	30.1i(2)
54.7 <i>i</i>	47.1 <i>i</i>	47.0 <i>i</i>	34.0 <i>i</i>
32.2	42.2	24.4	21.4
35.2	46.1	38.0	35.0
49.4	52.3(2)	45.2	47.2
65.7(2)	62.7	55.2(2)	51.2(2)
77.9	73.0	64.1	61.1
85.8(2)	76.0(2)	76.4(2)	76.4(2)
95.8	79.5	79.4	73.4
141.3(2)	139.1(2)	135.7(2)	126.7(2)
147.0	143.6	138.8(2)	128.8(2)
151.2(2)	150.9(2)	153.7	154.7
165.4	194	183.1	178.1
178.2	198.8(2)	199.0(2)	201.0(2)
183.9(2)	205.3(2)	209.8(2)	212.8(2)
198.2(2)	208.8	212.8	215.8
229.3	224.3(2)	214.3(2)	218.3(2)
234.5(2)	232.0	222.0	221.0
262.9	233.2(2)	230.2(2)	225.2(2)
274.3(2)	239.4(2)	238.4(2)	246.4(2)
299.6(2)	251.2	251.2	260.2
303.1(2)	290.9(2)	287.9(2)	263.9(2)
319.4	305.3(2)	303.3(2)	314.3(2)
330.0(2)	320.5	325.5(2)	341.5(2)
341.4	333.9(2)	361.9	387.9
375.1(2)	369.6(2)	374.6(2)	391.6(2)
581.9(2)	373.1	418.1(2)	448.1(2)
405.2	399.4(2)	569.4	573.4
456.2	424.0	577.0	582.0
516.8(2)	572.9(2)	579.9(2)	594.9(2)
594.2(2)	588.2(2)	588.2(2)	601.2(2)
607.6	657.2	637.2	646.2
610.5(2)	660.8	642.8	654.8
614.2	662.2(2)	667.2(2)	685.2(2)
631.2(2)	663.6(2)	668.6(2)	674.6(2)
664.3	702.5	672.5	695.5
685.2	720.2	739.2	749.2
711.0	740.0	745.0	751.0

зоны Бриллюэна. Наиболее неустойчивые моды колебаний связаны с поворотом (мода A_{1u}), с наклоном (мода E_g) кислородных октаэдров и с полярным искажением структуры (мода E_u). Частоты соответствующих мод приведены в табл. 4. Следует отметить, что наибольшие смещения в собственном векторе моды E_u испытывают ионы свинца и кислорода. Например, *x*-компонента собственного вектора полярной моды для соединения LaPbMnSbO₆ в тетрагональной фазе с двумя молекулами в ячейке имеет вид (-0.008, -0.008, 0.1, 0.1, 0.03, 0.03, 0.01, 0.01, -0.03, -0.03, -0.03, -0.03, -0.07, -0.68, -0.03, -0.03, -0.03, -0.03, -0.03, -0.07, -0.68).

Следуя [12], с помощью кристаллографического сервера Бильбао [13,14] мы получили, что конденсация любых двух из трех нестабильных мод приводит к моноклинной фазе с полярной группой симметрии $P2_1$. Структура низкосимметричной фазы была полностью оптимизирована, и полученные параметры решетки и атомные координаты приведены в табл. 5 и 6 соответственно.

Параметры решетки оказались близки к параметрам, полученным в работе [15], где изучались родственные соединения BaLaXSbO₆ (X = Mn, Co и Ni). Расчет динамики решетки показал отсутствие нестабильных мод в фононных спектрах низкосимметричной моноклинной фазы для всех соединений. Таким образом, данная моноклинная фаза является основным состоянием для двойных перовскитов с рассматриваемым типом упорядочения катионов. Следует отметить, что в экспериментально исследуемых структурах катионы А и А' разупорядочены, что соответствует структуре двойного перовскита $A_2BB'O_6$. Как известно, во многих соединениях с данной структурой низкосимметричная стабильная фаза имеет неполярную группу симметрии P2₁/n [16,17], связанную с поворотом кислородных октаэдров, и это искажение подавляет сегнетоэлектрические свойства, что и наблюдается экспериментально. Следует отметить, что в исследуемых соединениях антиферродисторсионные искажения сами по себе также приводят к подавлению сегнетоэлектрической неустойчивости (например, в фазе, в которой искажения связаны только с "поворотом" октаэдров В'О6, вычисленное значение частоты неустойчивой полярной моды равно $73 \, \mathrm{cm}^{-1}$), но совместное действие мод, связанных с поворотом и наклоном кислородных октаэдров, "вытягивает" спонтанную поляризацию, которая появляется как вторичный параметр порядка.

Полные и парциальные плотности электронных состояний в низкосимметричной фазе с антиферромагнитным упорядочением магнитных моментов показаны на рис. 3. Искажение структуры приводит к небольшому увеличению ширины запрещенной зоны (до 2 eV) по сравнению с высокосимметричной фазой. Пик в плотности состояний, связанный с *d*-электронами Me^{2+} вблизи края валентной зоны, уменьшается. При этом усиливается гибридизация между *p*-состояниями O и *d*-состояниями Me^{2+} вблизи уровня Ферми.

Величина спонтанной поляризации в низкосимметричной полярной фазе была рассчитана по формуле

$$P_{\alpha} = \sum_{k,\beta} Z_{k,\alpha,\beta}^* \Delta u_{k,\beta},\tag{1}$$

где $Z_{k,\alpha,\beta}^*$ — вычисленные эффективные заряды Борна в неполярной фазе (табл. 7), $\Delta u_{k,\beta}$ — разница между координатами ионов в полярной и неполярной фазах. Рассчитанная поляризация ориентирована вдоль

Таблица	4.	Частоты	наиболее	нестабильных	мод	колебаний	(cm^{-1})	¹) в	тетрагональной	фазе	(нестабильные	моды	обозначены
индексом і)												

Нестабильная мода	LaPbMnSbO ₆	LaPbFeSbO ₆	LaPbCoSbO ₆	LaPbNiSbO ₆
$E_u \ E_g \ A_{1u}$	116 <i>i</i>	108 <i>i</i>	94 <i>i</i>	89 <i>i</i>
	134 <i>i</i>	144 <i>i</i>	143 <i>i</i>	136 <i>i</i>
	152 <i>i</i>	148 <i>i</i>	138 <i>i</i>	127 <i>i</i>

Таблица 5. Оптимизированные параметры решетки (Å) в низкосимметричной фазе

Параметр решетки	LaPbMnSbO ₆	LaPbFeSbO ₆	LaPbCoSbO ₆	LaPbNiSbO ₆
а	5.81	5.78	5.78	5.7
b	5.79	5.69	5.73	5.67
С	8.3	8.11	8.3	8.17

Атом	WP	LaPbMnSbO ₆	LaPbFeSbO ₆	LaPbCoSbO ₆	LaPbNiSbO ₆
La	2a	0.75547 0.54068 0.49893	0.75280 0.53233 -0.0013	0.75372 0.53559 -0.0011	0.25374 0.53274 0.49883
Pb	2a	0.74282 0.53395 -0.0023	0.74208 0.51315 0.49890	0.74325 0.51826 0.49833	0.24250 0.52317 -0.0019
Me	2a	0.75272 0.01313 0.24411	0.75136 0.00561 0.75100	0.75135 0.00917 0.74669	0.25101 0.00788 0.24876
Sb	2a	0.74805 0.00122 0.74601	0.75109 0.00297 0.25151	0.75037 0.00228 0.24965	0.25016 0.00234 0.75015
O1	2a	0.53677 0.69381 0.22892	0.53367 0.70826 0.73105	0.53334 0.70455 0.73020	0.03489 0.70568 0.23163
O ₂	2 <i>a</i>	-0.0155 0.28919 0.31310	-0.0183 0.28081 0.80370	-0.0193 0.28286 0.80497	0.48169 0.28078 0.30453
O3	2a	0.04285 0.76900 0.30296	0.03034 0.77190 0.79913	0.03782 0.76767 0.80140	0.53174 0.77091 0.29863
O_4	2a	0.43948 0.20768 0.23287	0.45259 0.21291 0.73402	0.44326 0.21319 0.73180	-0.0488 0.21089 0.23489
O ₅	2a	0.33324 0.48255 0.49306	0.32088 0.49262 -0.0039	0.32534 0.48696 -0.0028	0.82093 0.49083 0.49514
O_6	2a	0.18712 0.47335 0.01681	0.1869 0.48400 0.50663	0.1860 0.48402 0.50743	0.6911 0.47933 0.00891

Таблица 6. Оптимизированные координаты ионов в низкосимметричной фазе

Примечание. WP — позиции Уайкоффа.

Рис. 3. Рассчитанные полная и парциальные плотности состояний в низкосимметричной фазе. *a* — LaPbMnSbO₆, *b* — LaPbFeSbO₆, *c* — LaPbCoSbO₆, *d* — LaPbNiSbO₆. *1*–3 — то же, что на рис. 2. Нуль на шкале энергий соответствует энергии Ферми.

Таблица 7. Вычисленные величины эффективных зарядов Борна (единицы заряда электрона) и спонтанной поляризации (µC/cm²)

Параметр	LaPbMnSbO ₆	LaPbFeSbO ₆	LaPbCoSbO ₆	LaPbNiSbO ₆
Z_{La}	4.50	4.52	4.46	4.47
Z_{Pb}	3.92	3.90	3.95	3.95
Z_{Me}	2.50	2.24	2.3	2.48
Z_{Sb}	4.25	4.3	4.45	4.46
Z_{O_1}	-2.54	-2.54	-2.56	-2.61
Z_{O_2}	-2.27	-2.19	-2.22	-2.27
Z_{O_3}	-2.68	-2.61	-2.67	-2.75
P	30	28	26	25

Таблица 8. Рассчитанные энергии различных магнитных конфигураций (eV) и величины магнитных моментов ионов Me^{2+} (в магнетонах Бора)

Параметр	LaPbMnSbO ₆	LaPbFeSbO ₆	LaPbCoSbO ₆	LaPbNiSbO ₆
E_F	138.6542	134.0642	130.1041	128.2900
E_{AF1}	138.6713	134.0883	130.1362	128.3335
E_{AF2}	138.6684	134.0855	130.1324	128.3284
μ	4.6	3.7	2.6	1.7

направления [100], а полученные значения спонтанной поляризации приведены в табл. 7. Как видно, значение спонтанной поляризации сравнимо с поляризацией такого типичного сегнетоэлектрика, как BaTiO₃.

Наличие магнитных ионов в структуре ведет к появлению магнитного упорядочения наряду с электрической поляризацией. Взаимодействия, ответственные за магнитное состояние низкосимметричной фазы, могут быть оценены с помощью межатомных обменных констант J с использованием вычисленных полных энергий различных магнитных конфигураций. Магнитные катионы $Me^{2+} = Mn^{2+}$, Fe²⁺, Co²⁺, Ni²⁺ упорядочены в ГЦК-решетке; следовательно, каждый атом имеет две-

Рис. 4. Два типа антиферромагнитного упорядочения магнитных моментов в ГЦК-решетке, используемые для расчетов обменных констант: *а* и *b* — *AF*1- и *AF*2-конфигурации соответственно (см. текст). Темные и светлые шары отвечают антипараллельным направлениям магнитных моментов.

надцать ближайших соседей и шесть вторых соседей. В случае антиферромагнитного упорядочения удобно разделить гранецентрированную решетку на восемь подрешеток [18]. При этом каждый атом имеет по два ближайших соседа от шести подрешеток и шесть вторых соседей из оставшейся одной подрешетки. Для определения обменных констант между ближайшими и вторыми соседями необходимо рассмотреть три магнитные конфигурации: две антиферромагнитные (AF1 и AF2) и ферромагнитную (F). Антиферромагнитные конфигурации, используемые для расчетов, приведены на рис. 4, а рассчитанные энергии конфигураций представлены в табл. 8.

Первый тип антиферромагнитного упорядочения (соседние плоскости вдоль оси *z* имеют антипараллельные направления спинов) является наиболее выгодным для всех соединений. Магнитные моменты для этого типа магнитного упорядочения приведены в табл. 8.

Расчет величин констант обменного взаимодействия J_1 и J_2 (между ближайшими соседями и вторыми соседями соответственно) проводился с использованием классического гамильтониана Гейзенберга в виде

$$H = -\frac{1}{2} \sum_{i,j} J_{ij} \mathbf{S}_i \mathbf{S}_j, \qquad (2)$$

где J_{ij} — константа обменного взаимодействия между *i*-м и *j*-м узлами, а S_i и S_j — эффективные значения спина на *i*-м и *j*-м узлах соответственно.

Соответствующие уравнения, используемые для определения обменных констант, имеют вид

$$\begin{cases} E_F = -48J_1 - 24J_2 + E_0, \\ E_{AF1} = 16J_1 - 24J_2 + E_0, \\ E_{AF2} = 16J_1 - 8J_2 + E_0, \end{cases}$$
(3)

где E_0 — энергия парамагнитной фазы, а F, AF1 и AF2 — энергии ферромагнитной и антиферромагнитных конфигураций (в соответствии с рис. 4). Рассчитанные значения приведены в табл. 9. Константа J_1 способствует антиферромагнитному упорядочению магнитных моментов, а константа J_2 — ферромагнитному, но ее величина примерно на порядок меньше, чем J_1 .

Оценки температур Нееля и Кюри–Вейсса были сделаны в рамках приближения среднего поля. Полученные температуры Нееля, приведенные в табл. 10, оказались примерно в 2 раза больше, чем экспериментальные, но в приближении среднего поля такое согласие представляется удовлетворительным. Следует отметить, что в недавней работе [19] авторы оценили температуру Нееля двойного перовскита La₂NiTiO₆ с шахматным упорядочением катионов Ni и Ti. Полученное значение $T_{\rm N} = 50 \,{\rm K}$ (экспериментальное значение 25 K) хорошо согласуется с результатом настоящей работы. Кроме того, в результате расчета было получено экспериментально наблюдаемое увеличение температуры антиферромагнитного фазового перехода при изменении

Таблица 9. Величины констант обменного взаимодействия (eV)

Обменная константа	LaPbMnSbO ₆	LaPbFeSbO ₆	LaPbCoSbO ₆	LaPbNiSbO ₆
$egin{array}{c} J_1 \ J_2 \end{array}$	0.0001 -0.00005	$0.0012 \\ -0.0001$	0.0015 -0.00014	$0.002 \\ -0.0002$

Таблица 10. Рассчитанные и экспериментальные [2] температуры Нееля и Кюри-Вейсса (К)

Температура	LaPbMnSbO ₆	LaPbFeSbO ₆	LaPbCoSbO ₆	LaPbNiSbO ₆
$T_{\rm N}({\rm calc.})$	18	21	24	37
$T_{\rm CW}({\rm calc.})$	-84	-86	-96	-124
$T_{\rm N}({\rm exp.})$	8	—	10	17
$T_{\rm CW}({\rm exp.})$	-57	-	-62	-119

состава от Mn^{2+} к Ni²⁺. Полученные температуры Кюри–Вейсса оказались также близки к экспериментальным значениям. Низкие значения температур Нееля связаны, по-видимому, со сложным косвенным обменом Me-O-Sb-O-Me в рассматриваемых соединениях.

4. Заключение

В рамках теории функционала плотности, реализованной в пакете VASP, проведено теоретическое исследование сегнетоэлектрических и магнитных свойств двойных перовскитов LaPbMeSbO₆ ($Me^{2+} = Mn^{2+}$, Fe²⁺, Co²⁺, Ni²⁺). Рассмотрен случай слоистого упорядочения катионов А и шахматного упорядочения катионов В. Результаты расчета плотности электронных состояний с учетом спиновой поляризации свидетельствуют о том, что все соединения являются диэлектриками. В спектре колебаний решетки высокосимметричной тетрагональной фазы присутствуют нестабильности, связанные с полярными и антиферродисторсионными искажениями решетки. Конденсация наиболее нестабильных мод приводит к низкосимметричной полярной фазе, в которой оценена величина спонтанной поляризации. Расчет различных магнитных конфигураций в низкосимметричной фазе показал, что в основном магнитном состоянии магнитные моменты имеют антиферромагнитное упорядочение с противоположными направлениями спинов в соседних плоскостях вдоль направления [001]. Результаты расчета температур Нееля и Кюри-Вейсса находятся в удовлетворительном согласии с экспериментальными данными. Полученные температуры малы в связи со сложным путем обмена между магнитными ионами. Таким образом, можно предположить, что упорядочение катионов A' и B' в двойных перовскитах LaPbMeSbO₆ приводит к сосуществованию магнитного и сегнетоэлектрического параметров порядка в этих соединениях.

Список литературы

- D. Serrate, J.M. De Teresa, M.R. Ibarra. J. Phys.: Cond. Matter 19, 023 201 (2007).
- [2] D.G. Franco, R.E. Carbonio, G. Nieva. IEEE Trans. Magn. 49, 4594 (2013).
- [3] G. Vaitheeswaran, V. Kanchana, A. Delin. Appl. Phys. Lett. 86, 032 513 (2005).
- [4] D. Stoeffler, C. Etz. J. Phys.: Cond. Matter 18, 11 291(2006).
- [5] S. Gong, P. Chen, B.G. Liu. J. Magn. Magn. Mater. 349, 74 (2014).
- [6] G Kresse, J. Furthmuller. Phys. Rev. B 54, 11169 (1996).
- [7] J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996).
- [8] S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton. Phys. Rev. B 57, 1505 (1998).
- [9] G. King, P.M. Woodward. J. Mater. Chem. 20, 5785 (2010).
- [10] T. Fukushima, A. Stroppa, S. Picozza, J.M. Perez-Mato. arXiv:1104.5099v1 [cond-mat.mtr-sci]r
- [11] Е.Г. Максимов, В.И. Зиненко, Н.Г. Замкова. УФН 174, 1145 (2004).
- [12] N.G. Zamkova, V.S. Zhandun, V.I. Zinenko. Phys. Status Solidi B 250, 1888 (2013).
- [13] D. Oronbegoa, C. Capillas, M.I. Aroyo, J.M. Perez-Mato. J. Appl. Cryst. A 42, 820 (2009).
- [14] J.M. Perez-Mato, D. Orobengoa, M.I. Aroyo. Acta Cryst. A 66, 558 (2010).
- [15] M.C. Blanco, J.M. De Paoli, S. Ceppi, G. Tirao, V.M. Nassif, J. Guimpel, R.E. Carbonio. J. Alloys Comp. 606, 139 (2014).
- [16] W. Prellier, V. Smolyaninova, A. Biswas, C. Galley, R.L. Greene, K. Ramesha, J. Gopalakrishnan. J. Phys.: Cond. Matter 12, 965 (2000).
- [17] L.T. Corredor, D.A. Landínez Téllez, J.L. Pimentel, Jr. P. Pureur, J. Roa-Rojas. J. Mod. Phys. 2, 154 (2011).
- [18] Дж. Смарт. Эффективное поле в теории магнетизма. Мир, М. (1968). 271 с.
- [19] M. Karolak, M. Edelmann, G. Sangiovanni. arXiv:1407.2255v1 [cond-mat.mtr]