07

Микроструктура, упругие и неупругие свойства частично графитизированных биоморфных углеродов

© Т.С. Орлова^{1,2}, Б.К. Кардашев¹, Б.И. Смирнов¹, А. Gutierrez-Pardo³, J. Ramirez-Rico³, J. Martinez-Fernandez³

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 ² Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, Санкт-Петербург, Россия
 ³ Dpto Fisica de la Materia Condensada–ICMS, Universidad de Sevilla, Sevilla, Spain

E-mail: orlova.t@mail.ioffe.ru, smir.bi@mail.ioffe.ru

(Поступила в Редакцию 15 сентября 2014 г.)

Исследованы микроструктурные характеристики и амплитудные зависимости модуля Юнга E и внутренного трения (логарифмического декремента δ) биоуглеродных матриц, полученных карбонизацией дерева бука при температурах $T_{carb} = 850-1600^{\circ}$ С в присутствии никельсодержащего катализатора. Методами рентгеноструктурного анализа и электронной микроскопии показано, что использование Ni-катализатора при карбонизации приводит к частичной графитизации биоуглеродов при $T_{carb} \ge 1000^{\circ}$ С: графитовая фаза формируется в виде глобул с размерами 50–100 nm при $T_{carb} = 1000^{\circ}$ С и 0.5–3.0 μ m при $T_{carb} = 1600^{\circ}$ С. Получены зависимости $E(T_{carb})$ и $\delta(T_{carb})$, на которых выявлены три характерные области изменения модуля Юнга и декремента с температурой карбонизации: E увеличивается и δ уменьшается в интервалах $T_{carb} < 1000^{\circ}$ С и $T_{carb} > 1300^{\circ}$ С, в интервале 1000 < $T_{carb} < 1300^{\circ}$ С происходит резкое падение E и рост δ . Обнаруженное поведение $E(T_{carb})$ и $\delta(T_{carb})$ для карбонизированных в присутствии никеля биоуглеродов коррелирует с эволюцией их микроструктуры. Наибольшие величины E получены для образцов с $T_{carb} = 1000^{\circ}$ С показали более высокую склонность к микропластичности, обусловленную наличием значительно большей по размерам и общему объему глобулярной фазы графита.

Работа выполнена при частичной поддержке РФФИ (грант № 14-03-00496), программы Президиума РАН (П-20). Часть работы также поддержана грантом N P09-TEP-5152 (the Junta de Andalucia, Spain).

1. Введение

Биоморфные углеродные матрицы, получаемые карбонизацией натурального дерева или прессованной микрофибры, являются перспективными материалами для различных практических приложений. Обладая природной открытой пористостью (до 75%), они могут служить матрицами для создания новых композитов типа биоС-металл, биоС-полимер, а также применяться для получения легких пористых биоморфных керамик SiC и композитов SiC/Si на их основе [1–3].

Различные пористые углероды традиционно используются в качестве материалов для электродов, что обусловлено их химической стойкостью к различным электролитам, широкой областью рабочих температур, легкостью изготовления из них электродов. Использование биоуглеродных материалов в качестве электродов для систем энергонакопителей (электрохимических конденсаторов) представляется перспективным, потому что они обладают большой площадью поверхности, высокой электропроводностью, взаимосвязанной пористой структурой, контролируемыми размерами пор, подходящими для ионов электролитов, и электрохимически устойчивой поверхностью [4,5]. Они не требуют связующих материалов для изготовления из них электродов, при этом в работе электрода задействуется весь углеродный каркас.

В последнее время особый интерес вызывают графитизированные биоуглеродные матрицы, получаемые также путем карбонизации натурального дерева только в присутствии катализаторов переходных металлов [6-8]. Благодаря сохранению природной пористости, присущей натуральному дереву, и высокой тепло- и электропроводности графита получение графитизированных биоуглеродных матриц представляет большой практический интерес. При обычном пиролизе (карбонизации) дерева невозможно получить графитизированный углерод даже при повышении температуры обработки до 3000°C [1,9]. В этом случае образуется так называемый турбостатический углерод, который состоит из разориентированных углеродных слоев, разделенных расстояниями, превышающими межплоскостное расстояние (3.354 Å) идеального графита [10]. Для улучшения упорядочения в структуре неграфитизирующихся углеродов используются катализаторы переходных металлов на основе железа, кобальта, никеля и меди, применение которых приводит к формированию графитизированного углерода уже при T_{carb} > 500°C [11–14]. Графитизация углеродов с помощью катализаторов переходных металлов хорошо показала себя в случае тонких пленок, аэрогелей, порошков целлюлозы. Графитизации объемных углеродов, карбонизированных из натурального дерева, посвящены лишь единичные работы [6-8]. В [6] при использовании при карбонизации дерева жидких катализаторов на основе никеля были созданы пористые углероды с содержанием графитизированной фазы, типичным для углеродов, полученных из мезофазной смолы (pitch-based graphite), при этом пористая структура биоуглерода сохранялась. Данные биоморфные графитизированные углероды продемонстрировали значительно более высокую теплопроводность по сравнению с обычными квазиаморфными биоуглеродами [7]. Однако упругие, микропластические и прочностные свойства графитизированных биоуглеродов не изучались.

В настоящей работе с помощью подобного метода карбонизации в присутствии катализатора при варьировании температуры карбонизации T_{carb} получены биоуглероды дерева бука и впервые исследованы зависимости модуля Юнга и внутреннего трения от T_{carb} в сопоставлении с их микроструктурными особенностями. Эти данные сравниваются с подобными зависимостями, полученными нами ранее в [15] для биоуглеродов, карбонизированных в тех же условиях, но в отсутствие катализатора.

2. Образцы и методика эксперимента

Исследовались образцы биоуглерода, полученного карбонизацией дерева бука при различных температурах карбонизации T_{carb} в области 600-1600°С в отсутствие и в присутствии Ni-содержащего катализатора. В качестве прекурсора были выбраны куски дерева размером $75 \times 15 \times 15$ mm, предварительно высушенные в печи для устранения из пор остаточной влаги, чтобы предотвратить возникновение трещин в процессе последующего пиролиза. В качестве катализатора использовался насыщенный раствор нитрата никеля (Ni(NO₃)₂ · 6H₂O) в изопропаноле, в который помещались образцы для заполнения им пор. Чтобы обеспечить полное заполнение раствором всего пространства пор, воздух из пор предварительно откачивался путем помещения образца в вакуумную камеру. Образцы выдерживались в растворе определенное время, затем в течение 24 h высушивались на воздухе при комнатной температуре с последующей дополнительной сушкой при 80°C до момента полного высыхания, который контролировался по изменению веса прекурсора. Процесс пиролиза осуществлялся в потоке инертного газа (азота чистоты 99,999%). Нагрев проводился со скоростью 1°C/min до 500°C, затем со скоростью 5°С/тіп до температуры *T*_{carb} (600, 850, 1000, 1150, 1300, 1400, 1500 и 1600°С), при которой образец выдерживался в течение 30 min и затем охлаждался

со скоростью 5°С/тіп. Затем частицы Ni-катализатора удалялись путем промывания образцов в концентрированной кислоте HCl (37%, Panreac) в течение 2h с последующим промыванием в деонизированной воде с нейтральным рН и сушкой в печи. Данный метод получения графитизированных биоуглеродов подробно описан в [8]. Далее представлены результаты для графитизированных образцов после устранения из них остаточного никеля, за исключением специально оговоренных случаев. Для сравнения изготавливались образцы при тех же параметрах термической обработки, но в отсутствие катализатора. В дальнейшем образцы биоуглерода бука, карбонизированные при определенной T_{carb} после обработки Ni-содержащим катализатором, будем обозначать BE-C- $T_{carb}(Ni)$, т.е., например, BE-C-850(Ni) биоуглерод, полученный карбонизацией дерева бука при $T_{\rm carb} = 850^{\circ}{\rm C}$ в присутствии Ni-катализатора. Соответственно образцы, карбонизированные без никеля, будем обозначать как ВЕ-С-600, ВЕ-С-850 и т.д.

Структура карбонизированных образцов исследовалась методами рентгеновской дифрактометрии и растровой электронной микроскопии.

Образцы для акустических исследований представляли собой стержни длиной ~ 20 mm с примерно квадратным поперечным сечением площадью ~ 16 mm². Изучались образцы, ориентированные длинной стороной вдоль ростовых волокон исходного дерева. Для измерений модуля Юнга E и декремента ультразвуковых колебаний δ использовался метод составного вибратора. В образцах возбуждались продольные резонансные колебания на частоте около 100 kHz. Измерялись модуль Юнга Е и декремент ультразвуковых колебаний δ в зависимости от амплитуды акустических колебаний. Диапазон амплитуд колебательной деформации є находился в пределах от $\sim 10^{-7}$ до $2 \cdot 10^{-4}$. Подробное описание метода можно найти в [16]. Для измерения амплитудных зависимостей $E(\varepsilon)$ и $\delta(\varepsilon)$ акустическая система (образец и кварцевый преобразователь) помещалась в вакуумную камеру, из которой воздух откачивался до величины давления $\sim 10^{-3}$ mm Hg. Затем измерялись амплитудные зависимости модуля Юнга Е и декремента б при комнатной температуре.

3. Экспериментальные данные и их обсуждение

3.1. Структурная характеризация образцов. В первую очередь влияние каталитического пиролиза (карбонизации) на изменение кристаллической структуры и степени остаточного разупорядочения контролировалось методами дифракционного анализа. На рис. 1 показан пример рентгеновских дифрактограмм для биоуглеродных образцов, карбонизированных при различной температуре с использованием никельсодержащего катализатора. Видно, что использование катализатора при $T_{\rm carb} \ge 1000^{\circ}$ С приводит к формированию графитизированной фазы, о чем свидетельствует появление на рентгенограмме сильного (002) пика при $2\theta = 26.6^{\circ}$ (рис. 1). При меньших температурах карбонизации использование катализатора было неэффективным для формирования заметной доли графитовой фазы.

Исследование степени упорядочения структуры биоуглеродов методом рамановской спектроскопии было проведено в [8]. Данные рамановской спектроскопии также свидетельствуют о значительном увеличении степени графитизации в образцах, обработанных Ni-катализатором, по сравнению с необработанными образцами при увеличении $T_{\rm carb} \geq 1000^{\circ}$ C [8].

Использование катализатора не влияло на макропористую структуру биоуглеродных образцов: для всех температур карбонизации она оставалась подобной и характеризовалась наличием пор малого $(3-7\,\mu\text{m})$ и большого $(22-38\,\mu\text{m})$ диаметров, ориентированных вдоль направления роста дерева. Суммарный объем таких микроскопических пор у образцов составлял $65 \pm 5\%$ [6]. Измерения плотности самих углеродных каркасов d_c , проведенные с помощью гелиевого пикнометра в [8], свидетельствуют о формировании дополнительной нанопористости в биоуглеродах с $T_{\text{carb}} > 1000^{\circ}$ С, сравнимой с таковой у образцов ВЕ-С [15].

Микроструктура биоуглеродов исследовалась методами растровой электронной микроскопии. Электронномикроскопические изображения структуры образцов BE-C(Ni) с $T_{carb} = 1000$ и 1600° С показаны на рис. 2, *a* и *b* соответственно. При $T_{carb} = 1000^{\circ}$ С около частиц Ni происходит формирование графитовой фазы (рис. 2, *a*). Меньшие температуры карбонизации были неэффективны для графитизации. Тонкая структура зарождающейся графитовой фазы была исследована детально в [8] мето-

Рис. 1. Картины рентгеновской дифракции для биоуглеродных образцов, карбонизированных при различных температурах в присутствии Ni-катализатора. Звездочками отмечены пики, относящиеся к остаточному Ni после травления образцов в HCl.

Рис. 2. Типичные микроструктурные изображения, полученные методом растровой электронной микроскопии для образцов, карбонизированных при $T_{carb} = 1000$ (*a*) и 1600°C (*b*) в присутствии Ni-катализатора. *G* — фаза графита, Ni — частицы никелевого катализатора. Стрелками показана Ni-фаза, вокруг которой зарождается графитовая фаза при $T_{carb} = 1000$ °C.

дом просвечивающей электронной микроскопии. Было показано, что зарождающаяся фаза представляет собой слои графена, растущие вокруг частиц Ni и формирующие после удаления никеля полые наносферы размером 50-100 nm. В образцах биоС-1600(Ni) формируются большие графитовые глобулы (зерна) с размерами $0.5-3.0\,\mu$ m (рис. 2, b). Доля образовавшейся графитовой фазы в образцах с $T_{carb} = 1000^{\circ}$ С невелика (рис. 2, a), тогда как в образцах с $T_{carb} = 1600^{\circ}$ С она занимает значительную часть объема образца (рис. 2, b). Следует отметить, что глобулы графитовой фазы с размерами более $1\,\mu$ m формировались лишь при температурах карбонизации, превышающих температуру плавления никеля ~ 1450°С.

3.2. У пругие и неупругие свойства. На рис. 3 показаны измеренные в вакууме после откачки воздуха

574

Рис. 3. Зависимости модуля Юнга E(a) и декремента $\delta(b)$ биоморфных углеродных образцов от температуры их карбонизации $T_{\text{carb.}}$ I — серия образцов BE-C(Ni), данные настоящей работы; 2 — серия образцов BE-C [15].

зависимости модуля Е и декремента б от температуры карбонизации для биоуглеродных матриц биоС(Ni), полученных карбонизацией бука в присутствии Niсодержащего катализатора (кривые 1). При этом отметим, что измеряемые (действующие) значения Е и б определялись исходя из полного сечения образца, а не составляющего его биоуглеродного материала. Там же для сравнения приведены зависимости $E(T_{carb})$ и $\delta(T_{carb})$, полученные нами ранее в [15] для биоуглеродных матриц бука, карбонизированных в тех же самых условиях только без катализатора, которые можно условно разбить на две линейные области: при увеличении $T_{\rm carb}$ до $\sim 1000^\circ {
m C}$ величина E быстро растет, а δ уменьшается, затем при $T_{\rm carb} > 1000^{\circ}{\rm C}$ эти изменения существенно замедляются (рис. 3, a, b, кривые 2). Быстрое изменение E и δ с температурой в интервале $T_{\rm carb} < 1000^{\circ}{\rm C}$ связывается с ростом доли нанокристаллической фазы в аморфной матрице, в то время как при T_{carb} > 1000°C упругие свойства определяются уже практически сформировавшейся нанокристаллической фазой [15]. В этой же области температур $T_{carb} = 900 - 1000^{\circ}$ С наблюдается известный из литературы переход изолятор-сильно разупорядоченный металл [17,18], а также происходит изменение поведения тепловых свойств [19-21]. Для серии образцов биоС(Ni) полученные зависимости $E(T_{carb})$ и $\delta(T_{carb})$ можно условно разбить на три области: Е увеличивается и δ уменьшается в интервалах $T_{carb} < 1000^{\circ}C$ и $T_{\text{carb}} > 1300^{\circ}\text{C}$, в интервале $1000 < T_{\text{carb}} < 1300^{\circ}\text{C}$ происходит резкое падение Е и рост б. Фактически в интервале $850 < T_{carb} < 1000^{\circ}$ С зависимости $E(T_{carb})$ и $\delta(T_{carb})$ для образцов BE-C(Ni) и BE-C подобны. Повидимому, в данной области графитовая фаза (G-фаза) еще очень слабо формируется, о чем свидетельствуют данные рентгеновских и микроструктурных исследований (см. подраздел 3.1), и рост Е и падение б с увеличением T_{carb} определяются для образцов BE-C(Ni), как и для ВЕ-С, растущей нанокристаллической фазой и аморфной матрицей. В области T_{carb} > 1300°C по данным структурных исследований происходит быстрый рост G-фазы, который и определяет сильный рост Е и падение δ с увеличением T_{carb} . Интересным представляется тот факт, что, несмотря на формирование G-фазы, в интервале $1000 \le T_{\rm carb} \le 1300^\circ{
m C}$ наблюдается сильное падение величины Е от значений 8.8 до 2.8 GPa и рост декремента от $4 \cdot 10^{-3}$ до $8 \cdot 10^{-3}$. Такие низкие значения E и высокие значения δ можно объяснить, если предположить, что формирование G-фазы препятствует формированию нанокристаллической фазы, что кажется разумным, поскольку процессы кристаллизации нанокристаллической и графитовой фаз представляются конкурирующими. Тогда при $T_{\rm carb} \sim 1300^{\circ}{
m C}$ сформировавшиеся глобулы графита "плавают" в аморфной матрице, доля их невелика, что и определяет низкую величину Е, которая обусловлена в основном аморфной фазой. Затем в области T_{carb} > 1400°С рост Е происходит за счет быстрого увеличения доли G-фазы в аморфной матрице. Увеличение модуля упругости при повышении температуры карбонизации в интервале $T_{carb} > 1300^{\circ}$ С безусловно связано со степенью кристаллизации биоуглерода. Из данных микроскопии (рис. 2, b) следует, что, хотя при $T_{\rm carb} = 1600^{\circ}{\rm C}$ формируется большое количество глобул графита, на долю аморфной (или квазиаморфной) фазы еще приходится значительный объем образца. Тот факт, что величина модуля Юнга для образцов биоС-1600(Ni) не достигает значения E при $T_{carb} = 1000^{\circ}C$ для обеих систем образцов ВЕ-С и ВЕ-С(Ni), вероятно, косвенно свидетельствует в пользу нашего предположения, что зарождающаяся графитовая фаза подавляет формирование нанокристаллической фазы.

Интересным представляется сравнить амплитудные зависимости модуля Юнга и декремента для частично графитизированных образцов BE-C(Ni) с T_{carb} из разных температурных областей: $1000 < T_{carb} < 1300^{\circ}$ С и $T_{carb} > 1300^{\circ}$ С. На рис. 4 и 5 представлены зависимости $E(\varepsilon)$ и $\delta(\varepsilon)$ для образцов BE-C-1150(Ni) и

Рис. 4. Амплитудные зависимости модуля Юнга E(a) и декремента $\delta(b)$ для образцов ВЕ-С(Ni), полученных при $T_{\text{carb}} = 1150^{\circ}$ С в присутствии Ni-катализатора. Измерения выполнены в вакууме на образцах, подвергавшихся воздействию высоких амплитуд при комнатной температуре. Стрелки указывают направление изменения ε .

Рис. 5. Амплитудные зависимости модуля Юнга E(a) и декремента $\delta(b)$ для образцов ВЕ-С(Ni), полученных при $T_{\rm carb} = 1400^{\circ}$ С в присутствии Ni-катализатора. Измерения выполнены в вакууме на образцах, подвергавшихся воздействию высоких амплитуд при комнатной температуре.

BE-C-1400(Ni) соответственно. На зависимостях $E(\varepsilon)$ и $\delta(\varepsilon)$ для BE-C-1400(Ni) (рис. 5), как и для BE-C-1500(Ni) и BE-C-1600(Ni), можно отметить следующие характерные черты. При увеличении амплитуды колебаний значение модуля постепенно понижается. Что касается декремента, то в образцах BE-C(Ni) с $T_{carb} > 1300^{\circ}C$ при увеличении амплитуды сначала значение декремента практически не изменяется, затем при достижении больших амплитуд $\varepsilon > 10^{-4}$ растет (рис. 5, b). Для образцов BE-C(Ni) с $T_{carb} < 1300^{\circ}$ С декремент не растет даже при достижении максимальных амплитуд, используемых в работе (рис. 4, b). Это свидетельствует о пониженной пластичности образцов с $T_{\text{carb}} < 1300^{\circ}$ С. Следует отметить, что эффект пластичности (падение Е и рост δ с увеличением ε) проявляется в BE-C(Ni) начиная с $T_{carb} > 1300^{\circ}$ С, когда, по-видимому, формируется уже значительный объем графитовой фазы, графитовые глобулы достигают микронных размеров и G-фаза контролирует поведение упругих и неупругих свойств материала. Скольжение дислокаций, обеспечивающее пластическое течение, легче, по-видимому, осуществить в кристаллической структуре (даже если она представляет собой совокупность глобул графита с размерами от долей до нескольких микрометров), чем в аморфной. При исследовании упругих и неупругих свойств биоуглерода сосны с $T_{\text{carb}} = 1000$ и 2400°С было показано, что при повышении T_{carb} размер кристаллитов увеличивается примерно в 2 раза, что приводит к понижению условного предела текучести, т.е. к облегчению процесса микропластической деформации [22]. В биоуглероде бука, карбонизированном без Ni-катализатора, эффект пластичности (падение E и рост δ с увеличением ε) проявлялся уже при $T_{\text{carb}} \ge 1000^{\circ}\text{C}$, что связывалось с формированием нанокристаллической фазы [15]. Отсутствие возрастания микропластичности в образцах BE-C(Ni) с 1000 < T_{carb} < 1300°C даже при больших амплитудах акустических колебаний (в отличие от образцов ВЕ-С) косвенно свидетельствует, как уже отмечалось выше, в пользу нашего предположения о подавлении формирования нанокристаллической фазы при активном зарождении графитовой фазы.

Таким образом, у исследованных в настоящей работе биоуглеродных матриц BE-C(Ni) с $T_{carb} \ge 1300^{\circ}$ С проявились микропластические свойства. На рис. 6 приведены диаграммы напряжение—микропластическая деформация, полученные по результатам акустических измерений в вакууме для образцов системы BE-C(Ni). При построении диаграмм были использованы зависимости $E(\varepsilon)$, подобные кривым на рис. 4 и 5, полученным при увеличении амплитуды. Процедура построения по-добных диаграмм приведена в [23].

При сопоставлении кривых $\sigma(\varepsilon_d)$, показанных на рис. 6, видно, что образцы BE-C(Ni) с $T_{\text{carb}} \ge 1300^{\circ}$ С имеют меньшие значения условного предела микропластичности σ_y (напряжение при $\varepsilon_d = 1.0 \cdot 10^{-8}$), что,

Рис. 6. Кривые напряжение—микропластическая деформация, полученные по данным акустических измерений в вакууме на образцах BE-C(Ni), карбонизированных в присутствии Ni-катализатора. T_{carb} , °C: I = 850, 2 = 1000, 3 = 1150, 4 = 1300, 5 = 1400, 6 = 1600.

очевидно, связано со значительным увеличением объемной доли графитовой фазы и формированием глобул графита микронного размера. Следует отметить, что образцы ВЕ-С, полученные карбонизацией бука при подобных температурах карбонизации, но в отсутствие Ni-содержащего катализатора, не выявили подобного микропластического течения [15]. Таким образом, пористые биоуглеродные матрицы ВЕ-С(Ni) с $T_{carb} = 1000$ и 1600°С показывают наиболее высокие значения модуля Юнга, однако при этом образцы с $T_{carb} = 1600^{\circ}$ С демонстрируют значительно более высокую склонность к пластическому течению.

4. Заключение

Таким образом, в работе впервые определены амплитудные зависимости модуля Юнга E и декремента ультразвуковых колебаний δ для частично графитизированных пористых биоуглеродных матриц, полученных карбонизацией дерева бука при различных температурах $T_{\rm carb}$ в присутствии никельсодержащего катализатора.

Методами рентгеноструктурного анализа и электронной микроскопии показано, что присутствие Niкатализатора при карбонизации приводит к частичной графитизации биоуглеродов при $T_{carb} \ge 1000^{\circ}$ С, при этом фаза графита формируется в виде глобул, размер которых увеличивается с возрастанием T_{carb} от 50–100 nm при $T_{carb} = 1000^{\circ}$ С до $0.5-3.0\,\mu$ m при $T_{carb} = 1600^{\circ}$ С. Суммарная объемная доля графитовой

фазы также увеличивается с повышением T_{carb}. Получены зависимости $E(T_{carb})$ и $\delta(T_{carb})$, на которых выявлены три характерные области изменения модуля Юнга и декремента с температурой карбонизации. Обнаруженное поведение $E(T_{carb})$ и $\delta(T_{carb})$ для карбонизированных в присутствии никеля биоуглеродов коррелирует с эволюцией их микроструктуры: Е увеличивается, а б уменьшается с увеличением T_{carb} в интервалах $T_{carb} < 1000^{\circ}$ С и $T_{\rm carb} > 1300^{\circ}$ С, что связывается с формированием в аморфной матрице нанокристаллической фазы в первом и графитовой фазы во втором случае. В интервале $1000 < T_{carb} < 1300^{\circ}$ С происходит резкое падение *E* и рост δ , что наиболее вероятно свидетельствует о подавлении формирования нанокристаллической фазы образующейся фазой графита. В области $T_{carb} \ge 1300^{\circ}C$ установлено облегчение процесса микропластической деформации (понижение величины условного предела текучести σ_v). Наибольшие величины *E* были получены для образцов с $T_{\text{carb}} = 1000$ и 1600° С, однако образцы с $T_{\text{carb}} = 1600^{\circ}$ С показали более высокую склонность к микропластической деформации, обусловленную значительно большей объемной долей графитовой фазы.

Список литературы

- [1] C.E. Byrne, D.C. Nagle. Carbon **35**, *2*, 267 (1997).
- [2] P. Greil, T. Lifka, A. Kaindl. J. Eur. Ceram. Soc. 18, 1961 (1998).
- [3] A.R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, C. Domínguez, V. Fernandez-Quero, M. Singh. Int. J. Appl. Ceram. Technol. 1, 1, 56 (2004).
- [4] A.G. Pandolfo, A.F. Hollenkamp. J. Power Sources 157, 11 (2006).
- [5] L. Zhang, X.S. Zhao. Chem. Soc. Rev. 38, 2520 (2009).
- [6] M.T. Johnson, K.T. Faber. J. Mater. Res. 26, 1, 18 (2011).
- [7] M.T. Johnson, A.S. Childers, J. Ramírez-Rico, H. Wang, K.T. Faber. Composites A 53, 182 (2013).
- [8] A. Gutiérrez-Pardo, J. Ramírez-Rico, A.R. de Arellano-López, J. Martínez-Fernández. J. Mater. Sci. 49, 22, 7688 (2014).
- [9] H.M. Cheng, H. Endo, T. Okabe, K. Saito, G.B. Zheng. J. Porous Mater. 6, 3, 233 (1999).
- [10] A. Oya, H. Marsh. J. Mater. Sci. 17, 2, 309 (1982).
- [11] R. Sinclair, T. Itoh, R. Chin. Microsc. Microanal. 8, 4, 288 (2002).
- [12] M. Sevilla, C. Sanchís, T. Valdés-Solís, E. Morallón, A.B. Fuertes. J. Phys. Chem. C 111, 27, 9749 (2007).
- [13] F.J. Derbyshire, A.E.B. Presland, D.L. Trimm. Carbon 13, 2, 111 (1975).
- [14] C. Yokokawa, K. Hosokawa, Y. Takegami. Carbon 5, 5, 475 (1967).
- [15] Б.К. Кардашев, Т.С. Орлова, Б.И. Смирнов, А. Gutierrez, J. Ramirez-Rico. ФТТ 55, 9, 1771 (2013).
- [16] С.П. Никаноров, Б.К. Кардашев. Упругость и дислокационная неупругость кристаллов. Наука, М. (1985). 254 с.

- [17] В.В. Попов, Т.С. Орлова, Е. Enrique Magarino, М.А. Bautista, J. Martinez-Fernandez. ФТТ **53**, *2*, 259 (2011).
- [18] В.В. Попов, Т.С. Орлова, J. Ramirez-Rico. ФТТ **51**, *11*, 2118 (2009).
- [19] И.А. Смирнов, Б.И. Смирнов, Т.С. Орлова, Сz. Sulkovski, H. Misiorek, A. Jezowski, J. Mucha. ФТТ **53**, *11*, 2133 (2011).
- [20] Л.С. Парфеньева, Т.С. Орлова, Н.Ф. Картенко, Б.И. Смирнов, И.А. Смирнов, Н. Misiorek, А. Jezowski, J. Mucha, М.С. Vera. ФТТ 53, 11, 2278 (2011).
- [21] Н.Ф. Картенко, Т.С. Орлова, Л.С. Парфеньева, Б.И. Смирнов, И.А. Смирнов. ФТТ **56**, *11*, 2269 (2014).
- [22] Б.К. Кардашев, Т.С. Орлова, Б.И. Смирнов, Т.Е. Wilkes, К.Т. Faber. ФТТ **51**, *12*, 2320 (2009).
- [23] Б.И. Смирнов, Ю.А. Буренков, Б.К. Кардашев, D. Singh, К.С. Goretta, A.R. de Arellano-Lopez. ФТТ 43, 11, 2010 (2001).