09,04

Люминесценция монокристаллов тиогаллата свинца, активированных ионами церия

© Г.Р. Асатрян¹, В.В. Бадиков², А.Б. Кулинкин¹, С.П. Феофилов¹,

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

² Кубанский государственный университет,

Краснодар, Россия

E-mail: hike.asatryan@mail.ioffe.ru

(Поступила в Редакцию 9 июля 2014 г.)

Исследована люминесценция монокристаллов тиогаллата свинца PbGa₂S₄ : Ce³⁺. Обнаруженная немонотонная температурная зависимость интегральной интенсивности люминесценции PbGa₂S₄ : Ce³⁺ объяснена передачей энергии от собственных возбуждений матрицы к примесным ионам и температурным тушением люминесценции ионов Ce³⁺. Наблюдаемая структура $4f^05d^1-4f^1({}^2F_{7/2})$ -полосы люминесценции ионов Ce³⁺ указывает на существование по крайней мере двух типов центров ионов Ce³⁺ в PbGa₂S₄.

1. Введение

В кристаллах с примесью ионов Ce³⁺ наблюдается широкая электронно-колебательная полоса люминесценции $4f^{0}5d^{1}-4f^{1}(^{2}F_{I})$, соответствующая разрешенным электрическим дипольным переходам со временем жизни 10-100 ns. Эти кристаллы широко используются в качестве люминофоров и сцинтилляторов. Спектральное положение полосы люминесценции $4f^{0}5d^{1}-4f^{1}$ весьма чувствительно к кристаллическому окружению и во многих матрицах находится в ультрафиолетовой области [1]. В некоторых матрицах (например, Y₃Al₅O₁₂, Sc₂O₃ и Y₂O₂S) [1] излучательные переходы в ионах Ce³⁺ соответствуют видимой области спектра, такие материалы привлекают значительное внимание в связи с возможностью их использования в светодиодных источниках света. Люминесценция ионов Ce³⁺ эффективно возбуждается в $4f^{1}(2F_{5/2}) - 4f^{0}5d^{1}$ -полосе поглощения. В то же время значительный интерес представляют кристаллы, в которых в возбуждении ионов Ce³⁺ могут участвовать собственные (зонные) состояния кристаллической матрицы.

Монокристаллы тиогаллата свинца PbGa₂S₄ (симметрия решетки D_{2h}), в основном, привлекают внимание с точки зрения создания лазеров среднего ИК-диапазона (от 3 до 5 μ m) на ионах Nd³⁺, Dy³⁺ [2–3], так как они обладают узким колебательным спектром [4–6], что препятствует безызлучательной релаксации возбужденных электронных состояний. В то же время ширина энергетической запрещенной зоны этих кристаллов относительно мала: в [3] положение края полосы фундаментального поглощения PbGa₂S₄ оценивается как 470 ± 10 nm, и при оптическом возбуждении в синей области видимого диапазона возможны переходы "зона–зона".

В настоящей работе приводятся результаты исследования спектров люминесценции $PbGa_2S_4$ с примесью ионов Ce^{3+} . Оптические спектры кристаллов $PbGa_2S_4: Ce^{3+}$, насколько нам известно, ранее не исследовались.

2. Детали эксперимента

Монокристаллы тиогаллата свинца выращивались методом Бриджмена-Стокбаргера из шихты стехиометрического состава, состоящей из сульфида свинца и сульфида галлия, в вакуумированных до остаточного давления 2 · 10⁻⁵ mm Hg кварцевых ампулах диаметром 24 и длиной 200 mm. Масса шихты в ампуле составляла 200-250 g. Ампулу с шихтой устанавливали в печь для выращивания в зону разогрева, где температуру шихты доводили до 920-930°С и выдерживали при этой температуре в течение 3 h, после чего ампулу опускали в зону кристаллизации. Оптимальными параметрами ростового процесса являлись: скорость прохода зоны кристаллизации — (6 ± 2) mm/day, температурный градиент в зоне кристаллизации — $(10 \pm 2)^{\circ}$ С/ст. Характерная длительность ростового процесса составляла 20 суток. Содержание Ce₂S₄ в шихте составляло примерно 0.1 at.%.

В оптических исследованиях использовались неориентированные монокристаллические образцы тиогаллата свинца (слегка желтоватый прозрачный материал) в виде прямоугольных параллелепипедов размерами примерно $1.5 \times 2 \times 5$ mm. Образцы устанавливались на "холодном пальце" гелиевого криостата замкнутого цикла (T = 10-300 K).

Люминесценция возбуждалась непрерывным полупроводниковым лазером с длиной волны 405 nm и регистрировалась при помощи двойного решеточного спектрометра (разрешение 0.05 nm) с фотоумножителем, работающим в режиме счета фотонов, или решеточного спектрометра (разрешение 1 nm) с ССД-детектором.

3. Экспериментальные результаты

На рис. 1 показан типичный спектр $4f^{0}5d^{1}-4f^{1}$ люминесценции ионов Ce³⁺ в PbGa₂S₄ при T = 90 K. Видны характерные для ионов церия широкие электронно-колебательные полосы $4f^{0}5d^{1}-4f^{1}({}^{2}F_{5/2})$ - и

Рис. 1. Спектр люминесценции PbGa₂S₄ : Ce³⁺, T = 90 K, $\lambda_{exc} = 405$ nm. Вставка — спектр люминесценции PbGa₂S₄ : Ce³⁺, T = 10 K, $\lambda_{exc} = 405$ nm. Штриховая линия — кривая $(\lambda - 450)^2$ (см. текст).

 $4f^{0}5d^{1}-4f^{1}(^{2}F_{7/2})$ -переходов. Отметим, что спектр по положению полос сходен с приведенным в работах [7-8] для ионов Ce³⁺ в родственном соединении (тиогаллате кальция CaGa₂S₄). Бесфононная линия (БФЛ) перехода $4f^{0}5d^{1}-4f^{1}({}^{2}F_{5/2})$ в спектре люминесценции ионов Ce^{3+} в PbGa₂S₄ не наблюдалась вплоть до T = 10 K. На вставке в рис. 1 показана оценка положения бесфононного перехода $4f^{0}5d^{1}-4f^{1}({}^{2}F_{5/2})$, — положение оценивается как 450 nm. Показанная штриховой линией на вставке кривая $(\lambda - 450)^2$, достаточно хорошо характеризующая поведение спектра вблизи чисто электронного перехода, является просто "указателем для глаза", позволяющим подтвердить эту оценку. Можно полагать, что в области $\lambda < 450$ nm эта кривая соответствует спектру поглощения света ионами Се³⁺, непосредственное наблюдение которого затруднительно из-за собственного поглощения кристалла PbGa₂S₄.

На рис. 2, *a*, *b* показана температурная зависимость спектров люминесценции кристаллов $PbGa_2S_4:Ce^{3+}$ в диапазоне 10–190 К (масштабы по осям ординат на обоих рисунках одинаковы). В области температур 10–90 К наблюдается изменение формы спектра люминесценции и рост ее интегральной интенсивности (рис. 2, *a*), а в диапазоне 90–190 К — спад интенсивности люминесценции (рис. 2, *b*). При температуре выше 90 К в полосе

Рис. 2. Спектры люминесценции PbGa₂S₄ : Ce³⁺, $\lambda_{\text{exc}} = 405 \text{ nm. } a - T = 10-90 \text{ K}, b - T = 90-190 \text{ K}.$ Масштабы по осям ординат одинаковы.

Рис. 3. Спектры люминесценции PbGa₂S₄ : Er^{3+} , T = 10-190 K, $\lambda_{exc} = 405$ nm.

люминесценции $4f^{0}5d^{1}-4f^{1}({}^{2}F_{7/2})$ четко наблюдается структура (отмечена стрелкой на рис. 1), которая указывает на существование нескольких типов парамагнитных центров Ce³⁺ в PbGa₂S₄ [9].

В области низких температур наблюдается существенное изменение формы спектра: при $T = 10-50 \,\mathrm{K}$ на характерный спектр $4f^05d^1-4f^1({}^2F_{5/2},{}^2F_{7/2})$ ионов Ce³⁺ накладывается широкополосная компонента люминесценции с максимумом около 530 nm. Для того, чтобы можно было сделать выводы о происхождении этой широкополосной люминесценции, были исследованы спектры люминесценции кристалла PbGa₂S₄ : Er³⁺ (узость линий 4f - 4f-переходов в ионах Er^{3+} позволяет четко разделить люминесценцию примесных ионов и матрицы). Температурная зависимость этих спектров показана на рис. 3. В спектрах, соответствующих низким температурам, наряду с узкими линиями 4f-4f-переходов в ионах Er^{3+} (${}^{4}S_{3/2} - {}^{4}I_{15/2}$ и ${}^{4}F_{9/2} - {}^{4}I_{15/2}$, отмечены на рисунке), четко наблюдается широкая полоса люминесценции, идентичная наблюдавшейся в $PbGa_2S_4: Ce^{3+}$. Это позволяет сделать вывод о том, что наблюдаемая в PbGa₂S₄ : Ce³⁺ при низких температурах полоса люминесценции с максимумом около 530 nm связана не с примесными ионами Се³⁺, а с излучательной электронно-дырочной рекомбинацией в кристаллической матрице.

4. Обсуждение результатов

В целом, наблюдавшиеся спектры люминесценции PbGa₂S₄ : Ce³⁺ являются характерными для ионов Ce³⁺. Хорошее спектральное разрешение $4f^{0}5d^{1}-4f^{1}({}^{2}F_{5/2})$ -и $4f^{0}5d^{1}-4f^{1}({}^{2}F_{7/2})$ -компонент спектра может быть объяснено узким колебательным спектром матрицы PbGa₂S₄, обусловливающим сужение электронно-колебательных полос.

В работе [9] показано, что ионы Се³⁺ локализованы в узлах Pb²⁺ кристаллической решетки тиогаллата свинца (симметрия D_{2h}). Ионы Pb²⁺ в PbGa₂S₄ в ближайшем окружении имеют восемь ионов серы, расположенных на различных расстояниях от центра и образующих три структурно неэквивалентные тетрагональные антипризмы. Для положения Pb3 имеет место локальная симметрия C_2 , а для Pb1 и Pb2 — симметрия D_2 [9]. Часть ионов Ce³⁺ компенсирована нелокально, а часть имеет локальную компенсацию с вакансией ионов Pb²⁺ или Ga³⁺ в ближайшем окружении. Поэтому отсутствие бесфононной линии в спектре люминесценции ионов Ce³⁺ в PbGa₂S₄ можно объяснить ее сильным неоднородным уширением, обусловленным наличием значительного количества точечных компенсационных дефектов и высокой чувствительностью положения электронных $4f^{0}5d^{1}$ -уровней ионов Ce³⁺ к локальному окружению.

Рис. 4. Зависимость интегральной интенсивности люминесценции $PbGa_2S_4: Ce^{3+}$ от температуры, $\lambda_{exc} = 405$ nm. Кружки — экспериментальные результаты, штриховая линия — аппроксимация термоактивационной кривой, пунктирная линия — аппроксимация температурного тушения, сплошная линия — общая аппроксимация экспериментальных результатов.

Невозможность наблюдения узкой бесфононной линии в спектрах люминесценции ионов Ce^{3+} в PbGa₂S₄ не позволяет сделать по этим спектрам однозначный вывод о количестве типов центров Ce^{3+} . В то же время структура в спектре электрон-фононой полосы (отмечена стрелкой на рис. 1) свидетельствует о существовании по крайней мере двух типов центров Ce^{3+} . Возможно, в широкополосном спектре люминесценции различимы лишь центры с локальной зарядовой компенсацией и центры, компенсированные нелокально [9].

Температурная зависимость интегральной интенсивности люминесценции $PbGa_2S_4$: Ce^{3+} показана на рис. 4. На рис. 2 видно, что при повышении температуры происходит существенное перераспределение интенсивности между люминесценцией ионов Ce^{3+} и люминесценцией, обусловленной излучательными переходами между электронными состояниями матрицы. В области низких температур доминирует собственная люминесценция, в то время как люминесценция примесных ионов Ce^{3+} преобладает при T > 50 K.

При сравнении рис. 2 и рис. 4 можно сделать вывод, что температурная зависимость люминесценции PbGa₂S₄ : Ce³⁺ обусловлена несколькими процессами. При низких температурах фотонами с длиной волны $\lambda = 405$ nm, энергия которых выше края полосы фундаментального поглощения 470 ± 10 nm, эффективно возбуждается собственная люминесценция PbGa2S4, превосходящая по интенсивности непосредственно возбуждаемую люминесценцию ионов Ce³⁺. При повышении температуры становится возможной передача энергии от электронных возбуждений кристаллической матрицы к ионам Ce³⁺. Эта передача может быть хорошо охарактеризована активационной кривой $I = I_0 + Ce^{-\Delta E/kT}$, с энергией активации $\Delta E = 110 \,\mathrm{cm}^{-1}$ (14 meV, температура активации 160 К), см. рис. 4. Таким образом, передача энергии происходит с участием тепловых фононов. Возрастание интегральной интенсивности люминесценции может быть объяснено более высоким квантовым выходом люминесценции ионов Се³⁺ по сравнению с собственной люминесценцией РbGa₂S₄. При повышении температуры передача энергии от электронных возбуждений матрицы к ионам Ce³⁺ становится более вероятной, чем безызлучательная электронно-дырочная рекомбинация, и большая часть возбуждений дает вклад в интегральную люминесценцию.

При T > 90 К интегральная интенсивность люминесценции начинает спадать, при этом спектр люминесценции полностью соответствует $4f^{0}5d^{1}-4f^{1}$ -переходам в ионах Ce³⁺ (рис. 2). Таким образом, уменьшение интегральной интенсивности люминесценции с температурой обусловлено температурным тушением люминесценции примесных ионов Ce³⁺. Это тушение может быть обусловлено различными механизмами; для примера на рис. 4 штриховой линией показано тушение за счет многофононной релаксации, аналогичное обсуждавшемуся в [10]. Вероятность многофононной релаксации W_{nr}

определяется как

$$W_{nr}(T) = W_{nr}(0) (1 + n_{\text{eff}}(T))^{p}$$

= $W_{nr}(0) (1 - \exp(-h\nu_{\text{eff}}/kT))^{-p}$, (1)

где p — число эффективных фононов, hv_{eff} — их энергия, и $n_{\text{eff}} = (\exp(hv_{\text{eff}}/kT) - 1)^{-1}$ — числа заполнения эффективных фононных мод [11]. Интенсивность люминесценции пропорциональна квантовому выходу

$$QE = W_r (W_r + W_{nr})^{-1}, (2)$$

где W_r и W_{nr} — вероятности излучательного и безизлучательного переходов соответственно; $W_r = 10^7 \, {\rm s}^{-1}$ (типичное значение для иона Ce³⁺). Такая зависимость хорошо описывает наблюдавшееся температурное тушение люминесценции. В то же время не исключено, что в тушение дают вклад и другие процессы, в том числе и с участием зонных состояний матрицы.

Передача энергии от электронных возбуждений кристаллической матрицы к эффективно люминесцирующим ионам Ce^{3+} и температурное тушение люминесценции ионов совместно обусловливают немонотонную температурную зависимость люминесценции кристаллов $PbGa_2S_4: Ce^{3+}$.

5. Заключение

Люминесценция ионов Ce^{3+} в кристаллах $PbGa_2S_4$ наблюдается в видимой области спектра, причем положение бесфононной линии оценивается длиной волны 450 nm.

В кристаллах PbGa₂S₄ при возбуждении фотонами с энергией выше края фундаментального поглощения наблюдается собственная люминесценция кристаллической матрицы, обусловленная межзонными переходами и/или переходами с участием зонных и примесных состояний.

Спектрально-люминесцентные свойства кристаллов $PbGa_2S_4: Ce^{3+}$ определяются близостью энергетического положения возбужденного состояния ионов Ce^{3+} (БФЛ при 450 nm) и края фундаментального поглощения кристаллической матрицы (470 nm). Необычная температурная зависимость люминесценции кристаллов свидетельствует об эффективной передаче энергии от собственных электронных возбуждений матрицы к примесным ионам Ce^{3+} . Возбуждаемая за счет передачи энергии от матрицы к примесным ионам Ce^{3+} люминесценция может представлять интерес с точки зрения применения кристаллов в качестве сцинтилляторов и/или люминофоров. Кристаллы $PbGa_2S_4: Ce^{3+}$ могут рассматриваться в качестве модельного объекта для изучения такого рода передачи энергии.

Авторы благодарны А.А. Каплянскому за обсуждение результатов.

Список литературы

- [1] P. Dorenbos. J. Lumin. 91, 155 (2000).
- [2] Д. Бадиков, В. Бадиков, М. Дорошенко, А. Финтисова, Г. Шевырдяева. Фотоника, **4**, 24 (2008).
- [3] V. Badikov, D. Badikov, M. Doroshenko, V. Panyutin, V.I. Chizhikov, G. Shevirdyaeva. Opt. mater. 31, 184 (2008).
- [4] Н.Н. Сырбу, В.Э. Львин, И.Б. Заднипру, В.М. Годовей. ФТП 25, 1721 (1991).
- [5] В.Н. Каменщиков, В.А. Стефанович, З.П. Гадьмаши, В.И. Сидей, Л.М. Сусликов. ФТТ 49, 338 (2007).
- [6] Y.V. Orlovskii, T.T. Basiev, K.K. Pukhov, M.E. Doroshenko, V.V. Badikov, D.V. Badikov, O.K. Alimov, M.V. Polyachenkova, L.N. Dmitruk, V.V. Osiko, S.B. Mirov. Opt. Mater. 29, 1115 (2007).
- [7] Р.Б. Джаббаров. ФТП 36, 416 (2002).
- [8] A. Kato, M. Yamazaki, H. Najafov, K. Iwai, A. Bayramov, C. Hidaka, T. Takizawa, S. Iida. J. Phys. Chem. Solids 64, 1511 (2003).
- [9] Г.Р. Асатрян, В.Д. Бадиков, Д.Д. Крамущенко, В.А. Храмцов. ФТТ 54, 1931 (2012).
- [10] S.P. Feofilov, A.B. Kulinkin, R.I. Zakharchenya, J. Hölsä, M. Malkamäki. Phys. Status Solidi B 250, 249 (2013).
- [11] B. Henderson, G.F. Imbusch. Optical Spectroscopy of Inorganic Solids. Clarendon Press, Oxford (1989), 247– 257 pp.