18,13

Оценка влияния адсорбции на проводимость однослойного эпитаксиального графена, сформированного на полупроводниковой подложке

© С.Ю. Давыдов, А.А. Лебедев

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, Санкт-Петербург, Россия

E-mail: Sergei Davydov@mail.ru

(Поступила в Редакцию 1 июля 2014 г.)

Предложена простая модель влияния адсорбционного субмонослоя на статическую проводимость эпитаксиального графена, сформированного на полупроводниковой подложке, с учетом диполь-дипольного отталкивания адатомов. На примере двух предельных частных случаев показано, что адслой увеличивает статическую проводимость эпитаксиального графена. Численные оценки проведены для адсорбции атомарных водорода и кислорода.

Работа поддержана грантом РФФИ (проект № 12-02-00165а) и программой финансовой поддержки ведущих университетов РФ (субсидия 074-U01).

1. Введение

Высокая подвижность электронов, характерная для однослойного графена, находит применение в резистивных газовых сенсорах [1–3]. Ранее в работах [4,5] для металлических оксидов было показано, что главный эффект адсорбции, влияющий на поверхностную проводимость σ_{eg} , заключается в изменении поверхностной концентрации носителей. Было логично предположить, что и в случае эпитаксиального графена (ЭГ) имеет место тот же самый эффект. На основании этого предположения в работах [6,7] была построена теория влияния адсорбции на проводимость ЭГ, сформированного на металлической подложке. Было показано, в частности, что в случае вольфрамовой подложки адсорбция монослоя атомарного водорода ведет к уменьшению $\sigma_{\rm eg}$ на $\delta\sigma_{\rm eg}$, причем значения $\sigma_{\rm eg}$ и $\delta\sigma_{\rm eg}$ являются величинами одного порядка. В настоящей работе изучается тот же эффект, но для случая полупроводниковой подложки. Вновь из трех основных каналов взаимодействия адатомов [8] будем рассматривать только дипольное отталкивание.

2. Теория

Начнем с рассмотрения одиночного атома, адсорбированного на однолистном графене, сформированном на твердотельной подложке. Предполагаем далее, что на переход заряда между ЭГ и адатомом "работает" только один квазиуровень последнего, характеризующийся энергией ε_a . Затем рассмотрим слой таких адатомов с безразмерной концентрацией $\Theta = N_a/N_{\rm ML}$, где N_a ($N_{\rm ML}$) — число адатомов в слое (в монослое), и включим между ними диполь-дипольное отталкивание, сдвигающее энергию квазиуровня ε_a в положе-

ние $\varepsilon_a(\Theta)$ [9,10]. Используя результаты работ [6–10], можем записать функцию Грина ЭГ, покрытого слоем адатомов, $\tilde{G}_{ag}(\varepsilon_{\pm}, \omega)$, в виде

$$\begin{split} \tilde{G}_{ag}(\omega,\Theta) &= G_{eg}^{\pm}(\omega) + \delta G_{ag}^{\pm}(\omega,\Theta), \\ G_{eg}^{\pm}(\omega) &= \frac{1}{\omega - \varepsilon_{\pm} - \lambda(\omega) + i\gamma(\omega)}, \\ \delta G_{ag}^{\pm}(\omega,\Theta) &= \frac{V^2}{\left(\omega - \varepsilon_{\pm} - \lambda(\omega) + i\gamma(\omega)\right)^2} G_{adlayer}(\omega,\Theta), \\ G_{adlayer}(\omega,\Theta) &= \Theta G_a(\omega,\Theta), \\ G_a(\omega,\Theta) &= \frac{1}{\omega - \varepsilon_a(\Theta) - \Lambda(\omega) + i\Gamma(\omega)}. \end{split}$$
(1)

Здесь $G_{eg}^{\pm}(\omega)$ — функция Грина ($\Phi\Gamma$) невозмущенного ЭГ, $\delta G_{\rm ag}^{\pm}(\omega,\Theta)$ — изменение этой $\Phi\Gamma$ под влиянием адсорбции, описываемой матричным элементом V, связывающим адатом с ЭГ, $G_{\text{adlaver}}(\omega, \Theta) - \Phi \Gamma$ адслоя, $G_a(\omega,\Theta) - \Phi \Gamma$ адатома в адслое, ω — энергетическая переменная; $\Lambda(\omega)$ и $\Gamma(\omega)$, пропорциональные V^2 , представляют собой соответственно функции сдвига и уширения квазиуровня адатома [6,7], $\varepsilon_{\pm} = \varepsilon_{\rm D} + \lambda(\omega) \pm \varepsilon_q$, $\varepsilon_q = (3ta/2)|\mathbf{q}|$, где ε_{D} — энергия точки Дирака, совпадающая с энергией $|p_z\rangle$ -уровня атома углерода, $\lambda(\omega)$ и $\gamma(\omega)$ — функции сдвига и уширения квазиуровня атома углерода ЭГ, возникающие вследствие взаимодействия V_{sc} атома углерода графена с твердотельной подложкой, пропорциональные V_{sc}² (см. далее), t — энергия перехода электрона между состояниями $|p_{7}\rangle$ соседних атомов свободного графена, **q** — волновой вектор графена, отсчитываемый от волнового вектора точки Дирака K, знаки ± относятся соответственно к зоне проводимости и валентной зоне ЭГ,

2487

 $\varepsilon_{a}(\Theta) = \varepsilon_{a} - \xi \Theta^{3/2} Z_{a}(\Theta)$ — энергия квазиуровня адатома при учете диполь-дипольного отталкивания, ξ — константа дипольного взаимодействия, $Z_{a}(\Theta)$ — заряд адатома в слое [10].

Для вычисления статической проводимости ЭГ в присутствии адслоя $\tilde{\sigma}_{eg}$ будем использовать формализм Кубо–Гринвуда для нулевой температуры [11,12], откуда получим

$$\begin{split} \tilde{\sigma}_{\mathrm{eg}} &= \sigma_{\mathrm{eg}} + \delta \sigma_{\mathrm{eg}}, \\ \sigma_{\mathrm{eg}} &= \frac{e^2}{\pi \hbar} \int_{0}^{\xi} \Big\{ \big[\mathrm{Im} \, G_{\mathrm{eg}}^+(\Omega_{\mathrm{F}}) \big]^2 + \big[\mathrm{Im} \, G_{\mathrm{eg}}^-(\Omega_{\mathrm{F}}) \big]^2 \Big\} \varepsilon_q d\varepsilon_q, \\ \delta \sigma \, \mathrm{eg} &= \frac{e^2}{\pi \hbar} \int_{0}^{\xi} \Psi(\Omega_{\mathrm{F}}, \Theta) \, \varepsilon_q d\varepsilon_q, \\ \Psi(\Omega_{\mathrm{F}}, \Theta) &= \big\{ \mathrm{Im} \, \delta G_{\mathrm{ag}}^+(\Omega_{\mathrm{F}}, \Theta) + \mathrm{Im} \, \delta G_{\mathrm{ag}}^-(\Omega_{\mathrm{F}}, \Theta) \big\}^2 \\ &+ 2 \big[\mathrm{Im} \, G_{\mathrm{eg}}^+(\Omega_{\mathrm{F}}) + \mathrm{Im} \, G_{\mathrm{eg}}^-(\Omega_{\mathrm{F}}) \big] \end{split}$$

$$\times \left[\operatorname{Im} \delta G_{\operatorname{ag}}^{+}(\Omega_{\mathrm{F}}, \Theta) + \operatorname{Im} \delta G_{\operatorname{ag}}^{-}(\Omega_{\mathrm{F}}, \Theta) \right], \ (2)$$

где $\sigma_{\rm eg}$ — проводимость невозмущенного ЭГ [12], $\delta\sigma_{\rm eg}$ — изменение проводимости ЭГ, вызванное адслоем, $\Omega_{\rm F} = \varepsilon_{\rm F} - \varepsilon_{\rm D} - \lambda_{\rm F}, \ \varepsilon_{\rm F}$ — энергия Ферми, $\lambda_{\rm F} = \lambda(\varepsilon_{\rm F}),$ $\xi = 2taq_c/2$ — энергия обрезания, соответствующая волновому вектору обрезания q_c . Из (1) получим для слагаемых, входящих в функцию $\Psi(\Omega_{\rm F}, \Theta),$

$$\mathrm{Im}\,G^{\pm}_{\mathrm{eg}}(\Omega_{\mathrm{F}}) = -rac{\gamma_{\mathrm{F}}}{(\Omega_{\mathrm{F}}\mparepsilon_{q})^{2}+\gamma_{\mathrm{F}}^{2}}$$

 $\mathrm{Im}\,\delta G_{\mathrm{ag}}^{\pm}(\Omega_{\mathrm{F}},\Theta) = -\Theta V^{2}\Gamma_{\mathrm{F}}\frac{(\Omega_{\mathrm{F}}\mp\varepsilon_{q})^{2}-\gamma_{\mathrm{F}}^{2}}{\left[(\Omega_{\mathrm{F}}\mp\varepsilon_{q})^{2}+\gamma_{\mathrm{F}}^{2}\right]^{2}}$

$$\times \frac{1}{B_{\rm F}^2(\Theta) + \Gamma_{\rm F}^2} - 2\Theta V^2 \gamma_{\rm F} \frac{\Omega_{\rm F} \mp \varepsilon_q}{\left[(\Omega_{\rm F} \mp \varepsilon_q)^2 + \gamma_{\rm F}^2\right]^2} \frac{B_{\rm F}(\Theta)}{B_{\rm F}^2(\Theta) + \Gamma_{\rm F}^2}$$
(3)

Здесь $\gamma_{\rm F} = \gamma(\varepsilon_{\rm F}), B_{\rm F}(\Theta) = \varepsilon_{\rm F} - \varepsilon_a(\Theta) - \Lambda_{\rm F}, \Lambda_{\rm F} = \Lambda(\varepsilon_{\rm F}),$ $\Gamma_{\rm F} = \Gamma(\varepsilon_{\rm F}).$ Цель настоящей работы состоит в оценке $\delta\sigma_{\rm eg}$, так как проводимость ЭГ $\sigma_{\rm eg}$ уже обсуждалась в [12].

Для дальнейших оценок необходимо принять модель плотности состояний субстрата $\rho_{sc}(\omega)$. Выбираем в качестве подложки полупроводник, описывая его плотность состояний в рамках модели, принятой в работах [12,13]:

$$\rho_{\rm sc}(\omega) = \begin{cases} A\sqrt{\operatorname{sgn}(\omega)\omega - E_g/2}, & |\omega| > E_g/2, \\ 0, & |\omega| \le E_g/2, \end{cases}$$
(4)

где E_g — ширина запрещенной зоны, A — коэффициент.

Для исключения перехода заряда между подложкой и графеном при T = 0 достаточно потребовать, чтобы $|\varepsilon_D| < E_g/2$ [12]. Еще одним условием задачи является отсутствие щели в спектре графена, которую может навести полупроводниковая подложка, достаточным условием чего является выполнение неравенства $\pi AV_{\rm sc}^2/\sqrt{E_g} < 1$ [12], где $V_{\rm sc}$ — матричный элемент, связывающий состояние $|p_z\rangle$ атома углерода графена с полупроводниковой подложкой. Выполнение последнего условия гарантирует, что мы имеем квазисвободный (т. е. бесщелевой) однолистный графен, который только и будем рассматривать далее.

3. Частные случаи

Используя плотность состояний (4), легко показать (см. подробнее [12]), что статическая проводимость ЭГ, сформированного на полупроводнике, будет отлична от нуля и равна $\sigma_{sc} = 2e^2/\pi\hbar$ только при выполнении условия $\Omega_F = 0$. Это последнее условие отвечает перекрытию уровня Ферми (химического потенциала) с положением сдвинутой (за счет взаимодействия с подложкой) точки Дирака, т.е. когда $\varepsilon_F = \varepsilon_D + \lambda_F$, так как $\lambda_F = AV_{sc}^2(F_-(\varepsilon_F) - F_+(\varepsilon_F))$ и $F_{\pm}(\varepsilon_F) = \pi\sqrt{\pm\varepsilon_F + E_g/2}$ [12,13]. Простейшим решением уравнения $\Omega(\varepsilon_F = 0)$ является $\varepsilon_F = \varepsilon_D = 0$, что дает $\lambda_F = 0$. Рассмотрим этот случай, считая его нулевым приближением более общего условия $|\Omega_F| \ll E_g, \xi$.

Считая (как и в [12]) полупроводник невырожденным, т.е. полагая $-E_g/2 \le \varepsilon_F \le E_g/2$, с учетом $\gamma_F = 0$ (см. (4)) из (3) получим

$$\operatorname{Im} G_{eg}^{\pm}(\Omega_{\rm F}) = 0,$$
$$\operatorname{Im} \delta G_{ag}^{\pm}(\Omega_{\rm F}, \Theta) = -\Theta \pi V^2 \rho_a(\varepsilon_{\rm F}, \Theta) / \varepsilon_q^2, \qquad (5)$$

где

$$B_{\rm F}(\Theta) = \varepsilon_{\rm F} - \varepsilon_a(\Theta) - \Lambda_{\rm F}, \quad \Lambda_{\rm F} = \Lambda(\varepsilon_{\rm F}), \quad \Gamma_{\rm F} = \Gamma(\varepsilon_{\rm F}),$$
 $\rho_a(\varepsilon_{\rm F}, \Theta) = \frac{1}{\pi} \frac{\Gamma_{\rm F}}{B_{\rm F}^2(\Theta) + \Gamma_{\rm F}^2}.$
(6)

Подставляя эти выражения в (2), имеем

$$\delta\sigma_{\rm eg} = \frac{2e^2}{\pi\hbar} \Theta^2 \left(\pi V^2 \rho_a(\Omega_{\rm F},\Theta)\right)^2 \int_0^{\xi^2} y^{-2} dy.$$
(7)

Легко видеть, что интеграл (7) расходится на нижнем пределе, что является нефизическим результатом. Чтобы этого избежать, воспользуемся приемом, впервые использованным Алисултановым в работе [11], т.е. будем полагать, что конечное время жизни электронов в ЭГ $\tau(\omega) \sim \hbar/\lambda(\omega)$ связано не только с возможностью их туннелирования в подложку, но и с другими процессами неупругого рассеяния, так что в области запрещенной зоны полупроводникового субстрата функция уширения $\lambda(\omega)$ остается конечной и равной значению $\lambda^*(= \text{const})$.

Тогда, считая λ^* самым малым энергетическим параметром задачи и используя результаты работы [6], получим

$$\delta\sigma_{\rm eg} \approx \frac{2e^2}{3\pi\hbar} \Theta^2 \big(\pi V^2 \rho_a(0,\Theta)\big)^2 / (\lambda^*)^2, \tag{8}$$

так что

$$\delta\sigma_{\rm eg}/\sigma_{\rm sc} \approx \Theta^2 \left(\pi V^2 \rho_a(0,\Theta)\right)^2 / 3(\lambda^*)^2,$$
 (9)

где учтено, что $\sigma_{\rm sc} = 2e^2/\pi\hbar$. Таким образом, в данном случае адсорбция приводит к увеличению статической поверхностной проводимости.

Теперь рассмотрим противоположный предельный случай $|\Omega_{\rm F}| \gg E_g, \xi$. Из (3) получаем

$$\operatorname{Im} G^{\pm}_{eo}(\Omega_{\rm F}) = 0,$$

$$\operatorname{Im} \delta G_{\mathrm{ag}}^{\pm}(\Omega_{\mathrm{F}}, \Theta) = -\Theta \pi V^2 \rho_a(\Omega_{\mathrm{F}}, \Theta) / \Omega_{\mathrm{F}}^2. \tag{10}$$

Тогда

$$\delta\sigma_{\rm eg} \approx \frac{2e^2}{\pi\hbar} \Theta^2 \big(\pi V^2 \rho_a(\Omega_{\rm F},\Theta)\big)^2 (\xi^2/\Omega_{\rm F}^4).$$
(11)

Следовательно, и в данном случае $\delta\sigma_{eg} > 0$. Более того, так как по данным [12] при $\Omega(\varepsilon_F) \neq 0$ имеем $\sigma_{sc} = 0$, получается, что именно наличие адсорбата приводит к появлению статической поверхностной проводимости ЭГ. Итак, в обоих случаях (с учетом $\lambda^* \to 0$) наличие адсорбата приводит к скачку проводимости.

4. Численные оценки

Перейдем теперь к численным оценкам, считая, что в качестве подложки выступают политипы карбида кремния. Воспользовавшись приведенными в работе [14] значениями электронного сродства χ и ширин запрещенных зон E_g (взятых из [15,16]), легко рассчитать положение центра запрещенной зоны политипов карбида кремния $E_0 = -\chi - E_g/2$ относительно вакуума (см. таблицу). С другой стороны, для работы выхода свободного графена ϕ рассмотрим наибольшее (5.11 eV [17]) и наименьшее (4.26 eV [18]) из известных нам значений. Поскольку относительно вакуума $\varepsilon_{\rm D} = -\phi$, имея в виду лишь порядковые оценки, условие $|\Omega(\varepsilon_{\rm F})| \ll E_g, \xi$ для $\phi = 5.11 \, \text{eV}$ можно считать близким к выполнению (отметим, что $\xi \leq 2.38 \,\text{eV}$). Тогда из выражения (8) следует, что максимальным увеличение проводимости будет для адсорбатов, обладающих максимальным значением произведения $V^2 \rho_a(0, \Theta)$ и минимальной величиной λ^* .

Для оценок значений V и $\rho_a(0, \Theta)$ воспользуемся методом связывающих орбиталей (МСО) [19,20]. В соответствии с МСО матричный элемент $V = \eta_{pl\sigma} \hbar^2/m(r_C + r_X)^2$, где $\eta_{pl\sigma}$ — численный коэффициент, отвечающий σ -связи $|p_z\rangle$ -орбитали углерода графена с $|l\rangle$ -состоянием адатома X; $r_{C,X}$ — атомный радиус C(X). Так, например, взяв для атома водорода в качестве атомного радиуса радиус Бора

Значения электронного сродства χ (по данным [14]), ширины запрещенной зоны E_g [15,16] и центра запрещенной зоны политипов карбида кремния относительно вакуума $E_0 = -\chi - E_g/2$ (в eV)

Параметр	Политип					
	8 <i>H</i>	21 <i>R</i>	6 <i>H</i>	15R	27 <i>R</i>	4 <i>H</i>
$\chi \ E_g \ -E_0$	3.58 2.86 5.01	3.52 2.96 5.00	3.45 3.00 4.95	3.33 3.06 4.96	3.27 3.13 4.84	3.17 3.23 4.79

 $r_{\rm B} = 0.53$ Å, с учетом значений $\eta_{ps\sigma} = 1.42$ [20] и $r_C = 0.77$ Å [21] получим V = 6.40 eV. Для атома кислорода $\eta_{ps\sigma} = 2.22$ [20] и $r_0 = 0.74$ Å [21] имеем V = 7.42 eV. Таким образом, с точки зрения матричного элемента связи адатом—ЭГ различия несущественны.

Далее логично предположить, что плотность состояний $\rho_a(0, \Theta)$ для данного покрытия тем больше, чем ближе величина $B_F(\Theta) = \varepsilon_F - \varepsilon_a(\Theta) - \Lambda_F$ к нулю, т.е. при $\varepsilon_a(\Theta) \approx 0$ и $\Lambda_F \approx 0$. Значение $\varepsilon_a(0)$ для адатомов водорода относительно вакуума можно оценить из выражения $\varepsilon_a(0) = -I + e^2/4r_B$ (I = 13.60 eV есть энергия ионизации [19], e — заряд позитрона), что дает $\varepsilon_a(0) = -6.81 \text{ eV}$. Для адатомов кислорода относительно вакуума имеем $\varepsilon_a(0) = -A - e^2/4r_O$, где сродство к электрону A = 1.46 eV [21], откуда $\varepsilon_a(0) = -6.32 \text{ eV}$. Очевидно, что в случае малых покрытий и здесь не наблюдается сколь-либо существенных различий между адсорбцией водорода и кислорода.

К сожалению, второй предельный случай $|\Omega(\varepsilon_{\rm F})| \gg E_g, \xi$ не реализуется (по нашим оценкам) даже для максимального значения работы выхода графена $\phi = 4.26$ eV [18].

5. Заключение

Полученные в настоящей работе оценки показывают в двух предельных случаях рост статической поверхностной проводимости графена σ_g , причем в обоих случаях $\delta\sigma_{\rm eg}/\sigma_{\rm eg} \gg 1$. Следует, конечно, оговориться, что использованные здесь и ранее (см. [6,7,12]) модели весьма грубы. Однако построение более сложных конструкций в рамках метода модельных гамильтонианов неизбежно приведет к увеличению параметров, значения которых можно определить только из экспериментальных данных, в настоящее время отсутствующих. Таким образом, в плане предложенного здесь подхода приходится ограничиться полученными результатами.

В подтверждение такого вывода отметим, что вопрос о статической проводимости в точке Дирака даже свободного однослойного недопированного графена до сих пор является дискуссионным. Так, например, в обзоре [22] по данным разных авторов приводятся значения σ_g , равные $4e^2/\pi\hbar$, $\pi e^2/2\hbar$, 0, ∞ , тогда как в [23] дается величина $\sigma_g = e^2/\pi\hbar$.

Список литературы

- F. Schedin, A.K. Geim, S.V. Morozov, E.H. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov. Nature Mater. 6, 652 (2007).
- [2] S. Basu, P. Bhattacharya. Sensors Actuators B 173, 1 (2013).
- [3] E. Llobet. Sensors Actuators B 179, 32 (2013).
- [4] С.Ю. Давыдов, В.А. Мошников, А.А. Федотов. ЖТФ 51, 1, 141 (2006).
- [5] Д.Г. Аньчков, С.Ю. Давыдов. ФТТ 53, 820 (2011).
- [6] S.Yu. Davydov. Phys. Lett. A 378, 1850 (2014).
- [7] С.Ю. Давыдов. Письма в ЖТФ 40, 13, 52 (2014).
- [8] О.М. Браун, В.К. Медведев. УФН 32, 631 (1989).
- [9] С.Ю. Давыдов. ФТП 47, 97 (2013); ФТТ 53, 2414 (2011).
- [10] С.Ю. Давыдов, С.В. Трошин. ФТТ 49, 1508 (2007).
- [11] З.З. Алисултанов. Письма в ЖТФ **39**, 17, 8 (2013).
- [12] С.Ю. Давыдов. ФТТ 56, 816 (2014).
- [13] С.Ю. Давыдов. ФТП **48**, 49 (2014); ЖТФ **84**, *4*, 155 (2014).
- [14] С.Ю. Давыдов. ФТП 41, 718 (2007).
- [15] В.И. Гавриленко, А.М. Грехов, Д.В. Корбутяк, В.Г. Литовченко. Оптические свойства полупроводников. Справочник. Наук. думка, Киев (1987). 620 с.
- [16] W.R.L. Lambrecht, S. Limpijumnog, B. Segall. Inst. Phys. Conf. Ser. 142, Ch. 2, 263 (1996).
- [17] A. Mattaush, O. Pankratov. Phys. Rev. Lett. 99, 076 802 (2007).
- [18] K.T. Chan, L.B. Neaton, M.L. Cohen. Phys. Rev. B 77, 235 430 (2008).
- [19] У. Харрисон. Электронная структура и свойства твердых тел. Мир, М. (1983).
- [20] W.A. Harrison. Phys. Rev. B 27, 3592 (1983).
- [21] Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М. (1991). 1232 с.
- [22] S. Das Sarma, S. Adam, E.H. Huang, E. Rossi. Rev. Mod. Phys. 83, 407 (2011).
- [23] D.S.L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, T. Chakraborty. Adv. Phys. 59, 261 (2010).