11,04,05

Исследование перовскита La_{1/3}Sr_{2/3}FeO_{3-δ} методом мёссбауэровской спектроскопии

© А.П. Чернышев, С.А. Петров, Н.Ф. Уваров

Институт химии твердого тела и механохимии СО РАН, Новосибирск, Россия E-mail: alfred.chernyshev@solid.nsc.ru

(Поступила в Редакцию 7 февраля 2014 г.)

Методом мёссбауэровской спектроскопии исследовано зарядовое состояние железа в перовските La_{1/3}Sr_{2/3}FeO_{3- δ}. Установлено, что при уменьшении температуры в интервале 200–162 К происходит зарядовое диспропорционирование по схеме $3Fe^{11/3+} \rightarrow 2Fe^{3.5+} + Fe^{4+}$ и формируется антиферромагнитная фаза. Зарядовое диспропорционирование обусловлено конденсацией дырочных биполяронов. Каждый биполярон обобществлен группой из трех ионов. Обобществление осуществляется по схеме $[3Fe^{3+}-2\underline{L}] \rightarrow [2Fe^{3+}-\underline{L}] + [Fe^{3+}-\underline{L}]$. Одновременно образуется энергетическая щель, максимальная ширина которой определена методом мёссбауэровской спектроскопии и составила 0.14 ± 0.02 eV.

1. Введение

Перовскиты относятся к редкому классу соединений, в которых железо имеет необычное для себя значение степени окисления. Например, ионы железа в SrFeO3 имеют степень окисления 4+ и находятся в высокоспиновом состоянии $t_{2g}^3 e_g^{*1}$. Здесь под e_g^* подразумевается дважды вырожденная ўзкая энергетическая зона, образованная e_g -орбиталями ионов Fe⁴⁺. Эти ионы имеют симметричную электронную конфигурацию, поэтому октаэдры могли бы быть искажены за счет эффекта Яна-Теллера. Однако этого не происходит, поскольку электрон e_g^{*1} делокализован [1]. Соединение SrFeO3 обладает кубической симметрией, проявляет проводимость, свойственную металлам, и не подвержено зарядовому диспропорционированию (ЗД). Это соединение сохраняет металлическую проводимость и кубическую симметрию до 4 К. Однако если в этом соединении частично заменить анион Sr²⁺ на редкоземельный ион, то в получившемся феррите со смешанной валентностью наблюдается ЗД в антиферромагнитной фазе. При ЗД в перовските La_{1/3}Sr_{2/3}FeO₃₋₆, в котором железо представлено формально следующим образом: 67% Fe⁴⁺, 33% Fe³⁺, происходит образование зарядово-упорядоченной фазы, в которой состояние железа условно представляют как Fe³⁺Fe³⁺Fe⁵⁺. Наличие зарядового упорядочения при температуре ниже ~ 200 K было установлено методом мёссбауэровской спектроскопии [2,3], методом дифракции нейтронов [4] и методом просвечивающей электронной микроскопии [5]. В La_{1/3}Sr_{2/3}FeO₃₋₆ при температуре около 200 К происходит переход в парамагнитную фазу с усредненным валентным состоянием, который сопровождается резким (примерно на порядок) уменьшением сопротивления [6].

Исследование ряда соединений (SrFeO₃, CaFeO₃ и др.) показало, что их электрические и магнитные свойства определяются не электронами, а дырками [7,8]. Было установлено, что электронная конфигурация октаэдра Fe–O имеет вид Fe³⁺(O₆)^{11–}. Часто эту конфигурацию обозначают как Fe³⁺ \underline{L} , здесь \underline{L} обозначает дырку,

принадлежащую кислородному октаэдру [7]. В настоящей работе для такой конфигурации мы ввели обозначение $[Fe^{3+}-L]$, которое лучше отражает характер связи катион-лиганд. Принято считать, что в парамагнитной фазе $La_{1/3}Sr_{2/3}FeO_{3-\delta}$ катион железа имеет формальную валентность 11/3 (Fe^{11/3+}) и может рассматриваться как SrFeO3 с добавленным электроном [9]. В SrFeO₃ кислородные дырки L при любых температурах остаются делокализованными. В модели Такано [2] принято считать, что кислородные дырки в La_{1/3}Sr_{2/3}FeO_{3-δ} локализуются при охлаждении по следующему механизму: [3Fe³⁺-2<u>L</u>] (металлическая проводимость, $T \ge 200 \text{ K}$) $\rightarrow 2\text{Fe}^{3+} + [\text{Fe}^{3+} - 2\underline{L}]$ (полупроводник, *T* < 200 K) [2,4,10,11]. Скачкообразное изменение валентности в зарядово-упорядоченном состоянии рассматривается как конденсация дырочного биполярона и образование комплекса катион–биполярон $[Fe^{3+}-2L]$ в магнитном поле подрешетки, состоящей из ионов Fe^{3+} (3 d^{3}) [2,9]. Однако используемое в модели Такано предположение о том, что ниже температуры фазового перехода часть катионов железа имеет степень окисления 5+, не подтверждается данными по величине химического сдвига. Наблюдаемый химический сдвиг, имеющий значение примерно $-0.07 \,\mathrm{mm/s}$, соответствует наличию у катионов железа степени окисления 4+ [12,13]. Значение химического сдвига, обусловленного присутствием в структуре перовскита Fe⁵⁺, должно было бы составлять от -0.5 до -0.3 mm/s [13]. Цель настоящей работы состоит в определении зарядового состояния ионов железа в перовските $La_{1/3}Sr_{2/3}FeO_{3-\delta}$, механизма конденсации дырочного биполярона при низких температурах и ширины энергетической щели, возникающей при конденсации биполяронов.

2. Эксперимент

Поликристаллические образцы были приготовлены методом твердотельной керамической технологии. Синтез соединения $Sr_{2/3}La_{1/3}FeO_{3-\delta}$ проводился обычным

№ п/п	<i>T</i> ,K	δ , mm/s	ε , mm/s	Γ, mm/s	<i>Н</i> ,Т	<i>S</i> ,%	Примечание
1	298.2	0.14	0	0.38	0	100	Синглет
2	202.7	0.19	0	0.35	0	100	То же
3	199.6	0.19	0	0.36	0	100	»
4	196.4	0.19	0	0.38	0	53	»
		0.29	0.004	0.22	38.1	33	Секстет, Fe ³⁺
		-0.07	-0.005	0.21	23.9	14	Секстет, Fe ⁴⁺
5	193.3	0.18	0	0.41	0	28	Синглет
		0.32	-0.02	0.25	38.3	48	Секстет, Fe ³⁺
		-0.04	-0.02	0.20	23.9	24	Секстет, Fe ⁴⁺
6	191.7	0.19	0	0.41	0	23	Синглет
		0.33	-0.003	0.21	38.6	51	Секстет, Fe ³⁺
		-0.04	-0.02	0.23	23.8	26	Секстет, Fe ⁴⁺
7	190	0.19	0	0.44	0	21	Синглет
		0.32	-0.01	0.26	38.6	54	Секстет, Fe ⁴⁺
		-0.05	-0.02	0.18	23.9	25	То же
8	183.5	0.18	0	0.58	0	12	Синглет
		0.31	-0.02	0.24	39.2	58	Секстет, Fe ³⁺
		-0.03	-0.01	0.22	24.0	30	То же
9	173.3	0.21	0	0.77	0	9	Синглет
		0.32	-0.02	0.22	40.0	58	Секстет, Fe ³⁺
		-0.04	-0.02	0.26	24.3	33	Секстет, Fe ⁴⁺
10	162.7	0.20	0	0.84	0	7 - 8	Синглет
		0.34	-0.01	0.23	40.9	61	Секстет, Fe ³⁺
		-0.04	-0.02	0.21	24.6	31	Секстет, Fe ⁴⁺
11	151.6	0.34	-0.02	0.25	41.6	65	Секстет, Fe ³⁺
		-0.03	-0.004	0.21	24.7	35	Секстет, Fe ⁴⁺

Таблица 1. Параметры мёссбауэровских спектров La_{1/3}Sr_{2/3}FeO₃₋₆ при различных температурах

керамическим методом из SrCO₃, Fe₂O₃ и La₂O₃. Перед синтезом реагенты прокаливались несколько часов в печи в атмосфере воздуха, чтобы освободиться от сорбированной воды и примесей гидроксидов. Температура прокаливания составляла 500°C для карбоната стронция и 1300°С для оксидов. Измельчение и смешивание реагентов проводилось в шаровой планетарной мельнице АГО-2 со стальными шарами при центробежном ускорении 20g, навеска 10g, шаровая загрузка 200g. Полученная шихта прогревалась в платиновых тиглях на воздухе при температуре 1200°С в течение 2 h. После охлаждения из прокаленных порошков прессовались таблетки. Синтез проводился при 1450°С в платиновых тиглях в атмосфере воздуха в течение 3-4h. После синтеза таблетки измельчались в агатовой ступке, из порошка вновь прессовались таблетки, и отжиг при 1450°С повторялся еще 1-2 раза. Результаты синтеза проверялись с помощью рентгеновского фазового анализа. Соединение имело структуру перовскита с небольшим (~0.2%) ромбоэдрическим искажением (группа симметрии R3c, a = 5.475 Å, c = 13.385 Å), что хорошо совпадает с литературными данными [4,8].

Образцы La_{1/3}Sr_{2/3}FeO_{3- δ} исследовались методом мёссбауэровской спектроскопии в температурном интервале 87–298 К. В качестве источника γ -излучения использовался изотоп ⁵⁷Со в родиевой матрице. Источник находился при комнатной температуре. Величина химического сдвига определялась относительно α -Fe.

3. Результаты и их обсуждение

На рисунке представлены характерные мёссбауэровские спектры La_{1/3}Sr_{2/3}FeO₃₋₆, полученные в исследуемом интервале температур. Фазовый переход наблюдался при температуре 200 К. При охлаждении ниже температуры фазового перехода происходит зарядовое диспропорционирование, которое продолжается вплоть до температуры 162 К. Поэтому в данном интервале температур мёссбауэровский спектр состоит из двух секстетов и одного синглета. Секстеты с химическими сдвигами -0.04 и 0.32 mm/s (табл. 1) обусловлены зарядовоупорядоченными атомами железа, находящимися в разных зарядовых состояниях. Оба секстета представляют атомы железа в антиферромагнитном состоянии. Синглет соответствует смешанному состоянию железа $[3Fe^{3+}-2\underline{L}]$ в парамагнитном состоянии и имеет химический сдвиг 0.14 mm/s. По мере понижения температуры интенсивность синглета понижается и при температуре ниже 162К синглет не наблюдается. Таким образом, в интервале температур 162-200 К присутствуют атомы железа, соответствующие парамагнитному и антиферромагнитному состояниям. По мере повышения температуры доля атомов железа в парамагнитном состоянии уменьшается. При температуре выше 200 К все атомы железа находятся только в парамагнитном состоянии. Соответственно при температуре ниже 162 К все атомы железа находятся в антиферромагнитном состоянии.

Мёссбауэровские спектры La_{1/3}Sr_{2/3}FeO_{3-δ}.

Химический сдвиг зависит от зарядового состояния железа. Для атомов железа, находящихся в высокоспиновом состоянии, в работе [13] получено феноменологическое соотношение

$$\delta = 0.685 + 0.688(n_{3d} - 5) - 1.987n_{4s}.$$
 (1)

Здесь для электронной конфигурации железа приняты обозначения [Ar]3*d*^{*n*_{3d}}4*s*^{*n*_{4s}</sub>. В рассматриваемом случае}

можно принять, что $n_{4s} = 0$, тогда по известному значению химического сдвига можно рассчитать значение n_{3s} по формуле

$$n_{3d} = (\delta - 0.685)/0.688 + 5.$$
(2)

Результаты расчетов по формуле (2) приведены в табл. 2.

В исследованном перовските эффективный заряд катионов железа при температуре выше температуры фазо-

Таблица 2. Зарядовое состояние ионов железа

№ п/п	δ , mm/s	<i>n</i> _{3<i>d</i>}	Эффективный заряд ионоа Fe	Эффективный заряд иона Fe по модели [2]
1	0.19	4.28	3.72+	3.66 + (11/3+)
2	0.29-0.34	4.43 - 4.50	3.57 + -3.5 +	3+
3	-(0.07 - 0.03)	3.90-3.96	4.10 + -4.04 +	5+

вого перехода близок к величине 11/3+, что обусловлено обменным взаимодействием между тремя катионами: катионом Fe³⁺ и двумя катионами Fe⁴⁺ (табл. 2). Такой же эффективный заряд принят и в модели Такано. Однако при температуре ниже температуры фазового перехода полученные результаты свидетельствуют о том, что модель Такано дает сильно завышенное значение эффективного заряда катионов железа в исследуемом перовските, поскольку наблюдаемый заряд не превосходит величину 4.1+. Завышенное значение эффективного заряда обусловлено предположением о том, что биполярон сосредоточен на кислородном октаэдре, принадлежащем одному катиону железа. Поэтому полученные нами результаты показали, что биполярон не сосредоточен на одном катионе железа, как это предполагается в модели Такано, а распределен по группе атомов Fe^{7/2+}Fe^{7/2+}Fe⁴⁺. Из полученных результатов также следует, что схема зарядового диспропорционирования имеет вид

$$\operatorname{Fe}^{3+} + 2[\operatorname{Fe}^{3+} - \underline{L}] \rightarrow [\operatorname{Fe}^{3+} - \underline{L}] + [2\operatorname{Fe}^{3+} - \underline{L}].$$
 (3)

Первое слагаемое в правой части уравнения (3) соответствует Fe^{4+} в нашей модели и Fe^{5+} в модели Такано соответственно. Второе слагаемое в правой части уравнения (3) показывает, что часть биполярона (второй полярон) обобществлен между оставшимися двумя ионами Fe^{3+} .

В перовските La_{1/3}Sr_{2/3}FeO_{3- δ} одновременно с переходом металл–изолятор происходит переход парамагнетик–антиферромагнетик. При понижении температуры возникает энергетическая щель. По данным оптических измерений величина расщепления 2 Δ достигает максимального значения 0.13 eV ниже 100 K [10]. Следует отметить, что в работе [10] подчеркивается оценочный характер значения 2 Δ_0 и отсутствует оценка точности его определения, поэтому определение коэффициента 2 Δ_0 представляет собой самостоятельную научную задачу.

Температурная зависимость $\Delta = \Delta(T/T_c)$ такая же, как при переходе в сверхпроводящее состояние [14,15], и обусловлена конденсацией дырочных биполяронов [10]. В соответствии с теорией зависимость имеет следующий вид:

$$2\Delta \approx 2\Delta_0 \left(1 - \frac{T}{T_c}\right)^{1/2},\tag{4}$$

где $k_{\rm B}$ — постоянная Больцмана, T_c — критическая температура. Типичное значение коэффициента $2\Delta_0$ в

уравнении (4) составляет $3.5k_BT_c$ [13,14]. Таким образом, в области температур выше ~ 162 К для описания зависимости ширины энергетической щели от температуры можно использовать выражение (4).

Полученное в [10] для $La_{1/3}Sr_{2/3}FeO_{3-\delta}$ значение $2\Delta_0 = 7.5k_BT_c$ в 2.14 раза больше, чем предсказываемое теорией. Коэффициент $2\Delta_0$ составляет 12.6 k_BT_c для соединения $La_{1.67}Sr_{0.33}NiO_4$ [16] и 13.4 для Fe₃O₄ [17]. Расхождение между теоретическими и экспериментальными значениями принято относить за счет электронно-корреляционного эффекта [16]. Чтобы определить величину $2\Delta_0$ методом мёссбауэровской спектроскопии, рассмотрим двухуровневую систему: основной уровень будет соответствовать локализованным на кислородных октаэдрах биполяронам, возбужденный уровень — делокализованным биполяронам. Энергия активации перехода из основного в возбужденное состояние равна 2Δ . Пусть N_1 — количество биполяронов в основном состоянии, а N_2 — в возбужденном, тогда

$$\frac{N_2}{N_1} = \frac{\nu_2}{\nu_1} \exp\left[-\frac{2\Delta}{k_{\rm B}T}\right].$$
(5)

Здесь v_1 и v_2 — кратность вырождения основного и возбужденного уровней энергии соответственно. Количество сконденсированных биполяронов равно количеству атомов железа в зарядовом состоянии Fe⁴⁺, т. е. $N_1 = [[Fe^{3+} - \underline{L}]]$. Количество биполяронов в возбужденном состоянии определяется соотношением $N_2 = [[3Fe^{3+} - 2\underline{L}]]$.

Площади мёссбауэровских спектров прямо пропорциональны количеству мёссбауэровских ядер в образце. Формальное соотношение $Fe^{4+}:Fe^{3.5+}$ в рассматриваемом перовските составляет 1:2. Поэтому площадь синглета S₂ и количество биполяронов связаны соотношением

$$N_2 = \lambda_2 S_2 / 3, \tag{6}$$

а площадь S_1 секстета Fe^{4+} и количество атомов железа в зарядовом состоянии Fe^{4+} N_1 связаны уравнением

$$N_1 = \lambda_1 S_1. \tag{7}$$

Здесь λ₁ и λ₂ — коэффициенты пропорциональности. Из уравнений (4)–(7) следует, что

$$\ln\left(\frac{S_2}{3S_1}\right) = -\frac{2\Delta_0(1 - T/T_c)^{1/2}}{k_{\rm B}T} + \ln\left(\frac{\nu_2\lambda_1}{\nu_1\lambda_2}\right).$$
 (8)

Из соотношения (8) следует, что если известна экспериментальная зависимость отношения $S_2/(3S_1)$ от температуры *T*, то методом регрессионного анализа в линеаризующих координатах

$$x = \frac{(1 - T/T_c)^{1/2}}{kT}, \quad y = \ln\left(\frac{S_2}{3S_1}\right)$$
 (9)

можно получить регрессионные коэффициенты *a* и *b* уравнения y = ax + b. По определению $a = 2\Delta_0$ и $b = \ln(v_2\lambda_1/v_1\lambda_2)$.

Используя соотношения (8) и (9), а также метод линейного регрессионного анализа, мы получили значение ширины энергетической щели $2\Delta_0$, равное 0.14 ± 0.02 eV. Эта величина практически совпадает со значением $2\Delta_0 = 0.13$ eV, полученным в работе [10] с помощью анализа оптических спектров отражения, а также с рассчитанным методом Хартри–Фока значением $2\Delta_0 = 0.14$ eV [11].

4. Выводы

1. Впервые метод мёссбауэровской спектроскопии применен для определения ширины энергетической щели, возникающей при зарядовом упорядочении в перовскитах и оксидах железа. Максимальная ширина энергетической щели в перовските La_{1/3}Sr_{2/3}FeO_{3- δ} составила 0.14 \pm 0.02 eV.

2. Методом мёссбауэровской спектроскопии определено зарядовое состояние ионов железа в перовските $La_{1/3}Sr_{2/3}FeO_{3-\delta}$.

3. Из полученных методом мёссбауэровской спектроскопии данных следует новая схема зарядового диспропорционирования, в соответствии с которой дырочный биполярон при зарядовом диспропорционировании обобществляется между тремя ионами железа Fe^{7/2+}Fe^{7/2+}Fe⁴⁺.

Список литературы

- Y. Takeda, K. Imayoshi, N. Imanishi, O. Yamamoto, M. Takano. J. Mater. Chem. 4, 19 (1994).
- [2] M. Takano, J. Kawachi, N. Nakanishi, Y. Takeda. J. Solid State Chem. 39, 75 (1981).
- [3] P.D. Battle, T.C. Gibb, S. Nixon. J. Solid State Chem. 77, 124 (1988).
- [4] P.D. Battle, T.C. Gibb, P. Lightfoot. J. Solid State Chem. 84, 271 (1990).
- [5] J.Q. Li, Y. Matsui, S.K. Park, Y. Tokura. Phys. Rev. Lett. 79, 297 (1997).
- [6] S.K. Park, T. Ishikawa, Y. Tokura, J.Q. Li, Y. Matsui. Phys. Rev. B 60, 10788 (1999).
- [7] A.E. Bocquet, A. Fujimori, T. Mizokawa, T. Saitoh, H. Namatame, S. Suga, N. Kimizuka, Y. Takeda, M. Takano. Phys. Rev. B 45, 1561 (1992).
- [8] H.D. Zhou, J.B. Goodenough. J. Solid State Chem. 178, 3679 (2005).
- [9] N. Hayashi, T. Terashima, M. Takano. J. Mater. Chem. 11, 2235 (2001).
- [10] T. Ishikawa, S.K. Park, T. Katsufuji, T. Arima, Y. Tokura. Phys. Rev. B 58, R13 326 (1998).
- [11] J. Matsuno, T. Mizokawa, A. Fujimori, K. Mamiya, Y. Takeda, S. Kawasaki, M. Takano. Phys. Rev. B 60, 4605 (1999).
- [12] K. Lázár, Á. Szegedi, F. Martinez, R. Molina, P. Fejes. Stud. Surf. Sci. Catal. 158, 733 (2005).
- [13] К.С. Русаков. Мёссбауэровская спектроскопия локально неоднородных систем. ИЯФ НЯЦ РК, Алматы (2000). 431 с.

- [14] A.W. Overhauser. Phys. Rev. 128, 1437 (1962).
- [15] A.W. Overhauser. Phys. Rev. 167, 691 (1968).
- [16] T. Katsufuji, T. Tanabe, T. Ishikawa, Y. Fukuda, T. Arima, Y. Tokura. Phys. Rev. B 54, 14 230 (1996).
- [17] S.K. Park, T. Ishikawa, Y. Tokura. Phys. Rev. B 58, 3717 (1998).