09

Механизмы формирования потерь в нелинейно-оптических кристаллах ZnGeP₂ в терагерцевой области частот

© С.В. Чучупал¹, Г.А. Командин¹, Е.С. Жукова^{1,2}, А.С. Прохоров^{1,2}, О.Е. Породинков¹, И.Е. Спектор¹, Ю.А. Шакир¹, А.И. Грибенюков³

 ¹ Институт общей физики им. А.М. Прохорова РАН, Москва, Россия
 ² Московский физико-технический институт (Государственный университет), Долгопрудный, Россия
 ³ Институт мониторинга климатических и экологических систем СО РАН, Томск, Россия
 E-mail: oporodinkov@ran.gpi.ru

(Поступила в Редакцию 30 декабря 2013 г.)

Представлено экспериментальное исследование физических механизмов, формирующих потери излучения в терагерцевом диапазоне в кристаллах ZnGeP₂, в диапазоне волновых чисел 5–350 cm⁻¹ в интервале температур 10–300 К. Показан доминирующий вклад двухфононных разностных процессов в формирование потерь в данном частотном диапазоне.

Работа выполнена в рамках Программы фундаментальных исследований ОФН РАН "Современные проблемы радиофизики".

Введение

Освоение терагерцевого (THz) диапазона частот $(10^{11}-10^{13} \text{ Hz})$ сделало актуальной задачу количественного описания электродинамических характеристик перспективных материалов, применяемых для разработки активных и пассивных элементов этого участка спектра. Особый интерес представляют материалы, подходящие для создания источников излучения THz-диапазона. Один из способов получения THz-излучения — генерация на разностной частоте при накачке нелинейно-оптических кристаллов двухчастотным лазерным излучением [1–4]. Другой способ — возбуждение широкополосного THz-излучения в нелинейно-оптических кристаллах фемтосекундными лазерными импульсами [5–7].

Перспективным кристаллом, в котором реализованы оба способа получения THz-излучения, является дифосфид цинка-германия ZnGeP₂. Он обладает большими значениями коэффициентов нелинейной восприимчивости и двулучепреломления, достаточными для выполнения условий фазового согласования в широких спектральных диапазонах [8]. Практическая ценность этого кристалла определяется также высоким порогом оптического пробоя, хорошей теплопроводностью, большими значениями температурной, угловой и спектральной ширин синхронизма, механической прочностью, стойкостью к повышенной влажности и агрессивным средам [9].

Терагерцевый диапазон является областью дисперсии различных типов дипольного поглощения, определяющего потери генерируемого излучения в самом нелинейнооптическом кристалле. В работе [10] методами субмиллиметровой (СБММ) и ИК-спектроскопии было обнаружено в монокристалле ZnGeP₂ поглощение, дополнительное к фононному. Было показано, что это поглощение при комнатной температуре имеет диффузный характер, то есть, распределено в широком частотном диапазоне без явно выраженных резонансов. В силу этого факта сделано предположение об определяющей роли свободных носителей в формировании диэлектрических потерь в THz-диапазоне частот.

Монокристалл ZnGeP₂ является непрямозонным полупроводником. В литературе он характеризуется тремя величинами запрещенной зоны, определяемыми строением валентной зоны: A', B' и C'. Минимальное значение запрещенной зоны составляет 1.99 eV при комнатной температуре [11,12]. За счет структурных дефектов и вакансий в запрещенной зоне этих кристаллов образуются глубокие и мелкие уровни. Наличие мелких уровней, энергия активации которых составляет около 0.6 eV, приводит к обогащению спектра в средней ИК-области дополнительными полосами поглощения.

Свободные носители в зоне проводимости, активируемые двухфотонным поглощением при воздействии лазерного импульса [13], также могут быть причиной дополнительных потерь.

Целью настоящей работы является выявление механизмов, формирующих поглощение в СБММ — THz-области спектра в ZnGeP₂, и количественное определение параметров этого поглощения.

Экспериментальные результаты и обсуждение

Монокристалл ZnGeP₂ выращен по технологии, изложенной в [14–16]. Из полученной заготовки была вырезана ориентированная плоскопараллельная пластина толщиной 0.405 mm. Кристаллографические оси **а** и с располагались в плоскости пластины. Спектральные измерения проведены в диапазоне частот $5-700 \text{ cm}^{-1}$ в температурном интервале 10-300 K для двух поляризаций: Е || с и Е \perp с. Спектры пропускания измерялись на субмиллиметровом ЛОВ спектрометре "Эпсилон" [17] (ЛОВ — лампа обратной волны, backward wave oscillator — BWO) ($5-32 \text{ cm}^{-1}$) и на ИК-Фурье-спектрометре Bruker IFS-113v ($25-350 \text{ cm}^{-1}$). На ИК-спектрометре также были измерены спектры отражения в диапазоне $30-700 \text{ cm}^{-1}$. В качестве поляризатора излучения использована металлическая сетка, нанесенная на полиэтиленовую пленку толщиной $60 \mu \text{m}$.

Определение параметров ИК-колебаний выполнено по модели Друде-Лоренца с тремя подгоночными параметрами: v_i — собственная частота осциллятора, $\Delta \varepsilon_i$ — диэлектрический вклад в статическую проницаемость, γ_i — затухание *i*-го осциллятора, ε_{∞} — высокочастотная диэлектрическая проницаемость. В этом случае выражение для частотной зависимости комплексной диэлектрической проницаемости представлено в виде суммы гармонических осцилляторов и имеет вид

$$\varepsilon^*(\nu) = \varepsilon_{\infty} + \sum_{i=1}^n \frac{\Delta \varepsilon_i \nu_i^2}{\nu_i^2 - \nu^2 + i\nu\gamma_i}.$$
 (1)

Подгонка расчетного спектра к экспериментальным данным заключалась в минимизации среднеквадратичного отклонения модельного спектра от экспериментального путем подбора параметров дисперсионной модели при расчёте спектра отражения

$$R(\nu) = \left| \frac{\sqrt{\varepsilon^*(\nu)} - 1}{\sqrt{\varepsilon^*(\nu)} + 1} \right|^2.$$
(2)

При описании асимметричных, сильно уширенных полос использовалась модель взаимодействующих осцилляторов [18]

$$\varepsilon_{i}^{*}(\nu) = \frac{s_{1}(\nu_{2}^{2} - \nu^{2} + i\nu\gamma_{2}) + s_{2}(\nu_{1}^{2} - \nu^{2} + i\nu\gamma_{1}) - 2\sqrt{s_{1}s_{2}}(\alpha + i\nu\delta)}{(\nu_{1}^{2} - \nu^{2} + i\nu\gamma_{1})(\nu_{2}^{2} - \nu^{2} + i\nu\gamma_{2}) - (\alpha + i\nu\delta)^{2}}$$
$$s_{i} = \Delta\varepsilon_{i}\nu_{i}^{2}, \qquad (3)$$

где α — действительная часть константы связи, определяющая перенормировку частот v_i ; δ — мнимая часть, определяющая деформацию контуров поглощения взаимодействующих мод; s_i — сила осциллятора (i = 1, 2).

Монокристалл ZnGeP₂ относится к группе тройных полупроводников типа $A^{II}B^{IV}C_2^V$. Он имеет структуру халькопирита (пространственная группа $D_{2d}^{12} = I42d$) с параметрами решетки a = 5.465 Å, c = 10.708 Å, в которой отсутствует центр симметрии [19]. В элементарной ячейке ZnGeP₂ содержится восемь атомов, что соответствует двум формульным единицам Z = 2. Теоретико-групповой анализ допускает существование 24 фононных ветвей. Длинноволновые нормальные колебания распределены по типам симметрии:

Рис. 1. Спектры отражения (*R*) монокристалла ZnGeP₂ (точки — эксперимент, линии — расчет), полученные для $\mathbf{E} \parallel \mathbf{c} (a)$ и $\mathbf{E} \perp \mathbf{c} (b)$.

 $A_1 + 2A_2 + 3B_1 + 4B_2 + 7E$. В ИК-спектрах активны моды $B_2(z)$ и E(x, y) [20,21].

На рис. 1 представлены спектры отражения, измеренные при комнатной температуре. Можно уверенно выделить две (рис. 1, $a - \mathbf{E} \parallel \mathbf{c}$) и четыре (рис. 1, $b - \mathbf{E} \perp \mathbf{c}$) ИК-активные моды в соответствующих поляризациях. Обращает на себя внимание расхождение расчетных и экспериментальных спектров на низкочастотном краю диапазона. Это объясняется приборными ограничениями ИК-Фурье спектрометра, не позволяющими с достаточным разрешением зарегистрировать многолучевую интерференцию в области прозрачности образца. Интерференция зарегистрирована в спектрах пропускания, измеренных на низкочастотном участке диапазона.

Экспериментальные спектры пропускания в соответствующих поляризациях показаны на рис. 2. Резонансные линии в области 120 cm^{-1} для $\mathbf{E} \parallel \mathbf{c}$ (рис. 2, *a*) и 140 cm^{-1} для $\mathbf{E} \perp \mathbf{c}$ (рис. 2, *b*) соответствуют ИК-активным фононам, которые в силу малости их диэлектрических вкладов не были зарегистрированы в спектрах отражения. Выявлено, что полоса в области 140 cm^{-1} для поляризации $\mathbf{E} \perp \mathbf{c}$ состоит из двух близко расположенных резонансных линий.

Рис. 2. Спектры пропускания монокристалла ZnGeP₂ (точки — эксперимент, линии — расчет) в поляризациях: $\mathbf{E} \parallel \mathbf{c}$ (*a*) и $\mathbf{E} \perp \mathbf{c}$ (*b*).

В табл. 1 и 2 приведены параметры дисперсионного моделирования экспериментальных спектров отражения и пропускания, измеренных при комнатной температуре в двух поляризациях. Как видно из таблиц, электронный вклад ε_{∞} в диэлектрическую проницаемость примерно в пять раз превышает суммарный диэлектрический вклад $\Sigma\Delta\varepsilon_{\rm phonon}$ ИК-активных фононов. Аномально большая

величина высокочастотной диэлектрической проницаемости $\varepsilon_{\infty} \sim 10$ обусловлена, в том числе, вкладом электронных переходов с примесных уровней, расположенных в запрещенной зоне [19]. Малая же величина фононного вклада указывает на преимущественно ковалентный характер химических связей в кристалле ZnGeP₂ со сравнительно небольшой долей ионности.

Рис. 3. Спектры пропускания монокристалла $ZnGeP_2$ (**E** \parallel **c**) при T = 10 K (*a*) и T = 300 K (*b*). Точки — эксперимент. Линия I — спектр пропускания, рассчитанный по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанный по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанный по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанный по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанный по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанный по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанный по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанный по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанный по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанный по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанный по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанный по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанный по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанный по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанный по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанных по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанных по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанных по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанных по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанных по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанных по параметрам оптических фононов; линия 2 — спектр пропускания, рассчитанных по параметрам оптических фононов; линия 2 — спектр пропускания 2 — спектр пропус

По параметрам дисперсионного моделирования рассчитаны спектры пропускания (**E** || **c**) в ТНz-области частот (рис. 3) для двух температур: 300 К — рис. 3, *a* и 10 К — рис. 3, *b*. Видно, что различие между экспериментально измеренным спектром пропускания и спектром, рассчитанным по параметрам ИК-активных фононов, заметнее выражено при комнатной температуре (рис. 3, a). При охлаждении образца до 10 К расхождение становится минимальным. Для этих же температур рассчитаны спектры диэлектрических потерь $\varepsilon''(\nu)$

Осциллятор	$\Delta \varepsilon$	ν , cm ⁻¹	γ , cm ⁻¹	δ , cm ⁻¹
1.1	0.001	39	15	17
1.2	0.02	97	62	
2.1	0.006	<i>120</i>	<i>1.9</i>	-9.5
2.2	0.002	131	13	
3.1	0.006	191	29	2.6
3.2	0.008	209	38	
4.1	0.003	225	15	0.21
4.2	0.005	237	20	
5	0.002	254	11	
6	0.006	266	24	
7	0.01	288	15	
8.1	1.3	342	3.5	-1.5
8.2	0.3	400	2.7	
	$\Sigma\Delta\varepsilon_{ m phonon}=1.6$			

Таблица 1. Параметры дисперсионного моделирования спектров пропускания—отражения в ТГц-ИК-диапазоне монокристалла ZnGeP₂. $T = 300 \text{ K E} \parallel \mathbf{c}, \varepsilon_{\infty} = 10.2$. (Курсивом выделены параметры ИК-активных фононов)

Таблица 2. Параметры дисперсионного моделирования спектров пропускания—отражения в ТГц-ИК-диапазоне монокристалла ZnGeP₂. $T = 300 \text{ K E} \perp \text{ c}, \ \varepsilon_{\infty} = 9.7.$ (Курсивом выделены параметры ИК-активных фононов)

Осциллятор	$\Delta \varepsilon$	ν , cm ⁻¹	γ , cm ⁻¹	δ , cm ⁻¹
1.1 1.2	0.0009 0.021	39 97	15 62	-60
2.1 2.2	0.007 0.003	136 <i>141</i>	17 2	-1.94824
3	0.004	142.5	2	
4	0.3	201	3.4	
5	0.5	327	5.9	
6	1.0	365	3	
7	0.3	384	1.3	
	$\Sigma\Delta\varepsilon_{\rm phonon} = 2.1$			

(рис. 4). Из сравнения спектров следует, что при низких температурах сохраняется остаточный вклад дополнительных потерь в THz-области, общие потери при этом снижаются на порядок.

Рост прозрачности образца в ТН*z*-диапазоне при охлаждении образца может быть интерпретирован как уменьшение проводимости [10]. Наличие выраженной дисперсии в спектрах диэлектрического отклика в ограниченном частотном диапазоне не соответствует классической модели проводимости Друде

$$\sigma^*(\nu) = \frac{\sigma_0}{1 - i2\pi c \nu \tau},\tag{4}$$

где σ_0 — статическая проводимость, τ — среднее время между двумя последовательными соударениями. В силу того, что энергии активации известных межуровневых переходов соответствуют ИК-области спектра, модель Друде исключает заметную дисперсию проводимости, обусловленной наличием свободных носителей в полупроводниках, в THz-диапазоне [22].

Рис. 4. Спектр мнимой части диэлектрической проницаемости ε'' монокристалла ZnGeP₂ для **E** || **с**. Линия *I* — спектр ε'' , рассчитанный по параметрам оптических фононов при *T* = 10 K; линия *2* — спектр ε'' , рассчитанный по параметрам оптических фононов с учетом дополнительного поглощения при *T* = 10 K; линия *3* — спектр ε'' , рассчитанный по параметрам оптических фононов с учетом дополнительного поглощения при *T* = 300 K.

Рис. 5. Спектры динамической проводимости монокристалла ZnGeP₂. Линия *1* — спектр суммарной проводимости, полученный моделированием спектров пропускания и отражения; линия *2* — фононный вклад в проводимость; линия *3* — вклад статической проводимости.

Рис. 6. Спектры мнимой части диэлектрической проницаемости монокристалла ZnGeP₂ (**E** || **c**) при T = 300 К. Линия 1 — спектр ε'' , рассчитанный по параметрам оптических фононов; линия 2 — спектр ε'' , рассчитанный по параметрам оптических фононов с учетом дополнительного поглощения.

Типичные значения статического удельного сопротивления ZnGeP₂ при комнатной температуре составляют $\sim 10^6 - 10^7 \,\Omega \cdot \mathrm{cm}$. Подстановка величины статической проводимости в модель Друде и определение коэффициента пропускания в СБММ диапазоне показало, что вклад проводимости на уровне 10^{-6} не дает возможности описать наблюдаемое в эксперименте поглощение. На рис. 5 приведен спектр динамической проводимости, рассчитанный по параметрам дисперсионного моделирования. Из приведенных данных следует, что в THz-области частот роль проводимости в формировании потерь незначительна. Фононный вклад в динамическую проводимость превышает ее более чем на 2–3 порядка. Дополнительные механизмы поглощения в THz-области увеличивают эту разницу еще минимум на порядок.

На рис. 6 приведен спектр диэлектрических потерь $\varepsilon''(v)$ монокристалла ZnGeP₂ в поляризации **E** || **с** при комнатной температуре. Заштрихованный участок под суммарным спектром, обозначенным линией 2, показывает вклад в потери, дополнительные к фононному вкладу, обозначенному линией *1*.

Дополнительные потери модельно описаны набором взаимодействующих осцилляторов (3). Расчет спектров по модели Друде—Лоренца (1) показал, что при охлаждении образца собственные частоты осцилляторов в ТНz-области остаются практически без изменений. При этом дополнительные потери снижаются. Для ИК-активных фононов наблюдается обычное обужение контуров, обусловленное уменьшением коэффициента затухания мод. Температурная эволюция спектров пропускания в ТНz-области описана снижением диэлектрических вкладов модельных осцилляторов (рис. 7).

Как уже отмечено, подобная температурная зависимость электродинамических параметров в THz-области не может быть интерпретирована в рамках друдевской модели, а также исключает фононную природу дополнительного поглощения в силу нарушения правила сумм. Дополнительные потери интерпретируются в рамках модели многофононных разностных переходов в работах [23,24], где анализируется температурная зависимость спектров поглощения, которая определяется разностью заселенностей оптической и акустической ветвей. В приближении незначительной температурной зависимости заселенности оптической ветви, можно считать, что интенсивность переходов определена заселенностью акустической ветви на границе зоны Бриллюэна.

Поглощение в области разностных двухфононных переходов следует линейной температурной зависимости [23] в соответствии с законом Бозе-Эйнштейна

$$\overline{n_i} = \frac{1}{e^{(\varepsilon_i - \mu)/k_B T} - 1},\tag{5}$$

где $\overline{n_i}$ — количество частиц в *i*-том состоянии, ε_i — энергия *i*-того состояния, μ — химический потенциал системы, k_B — постоянная Больцмана.

Полученное нами температурное поведение коэффициента поглощения на частотах, соответсвующих

Рис. 7. Температурные зависимости диэлектрических вкладов $\Delta \varepsilon_i$ монокристалла ZnGeP₂ для разных частот.

Рис. 8. Температурные зависимости коэффициента поглощения *α_i* монокристалла ZnGeP₂ для разных частот.

разностным многофононным процессам, показано на рис. 8. Характерные величины модельных диэлектрических вкладов, описывающих эти процессы поглощения, не превышают 10^{-2} [25].

В отличие от простых двухатомных ионных кристаллов, рассмотренных в цитированных работах [23–25], монокристаллы ZnGeP₂ имеют более сложную структуру фононных ветвей в зоне Бриллюэна. Двукратный фолдинг зоны Бриллюэна приводит к росту плотности фононных состояний и формированию остаточного THz-поглощения при низких температурах [26].

Заключение

Экспериментальные исследования монокристалла ZnGeP₂, выполненные методами THz- и ИК-спектроскопии выявили дополнительное к фононному поглощение на частотах $50-300 \,\mathrm{cm^{-1}}$, имеющее выраженную температурную зависимость. Асимметричные контуры данного поглощения описаны в рамках модели взаимодействующих осцилляторов. Установлено, что температурная зависимость модельных диэлектрических вкладов и частотный диапазон дисперсии данного поглощения указывают на доминирующий характер разностных двухфононных процессов, которые наряду с однофононным вкладом и ростом плотности фононных состояний вследствие двукратного фолдинга зоны Бриллюэна формируют диэлектрические потери в этом кристалле в THz-области частот.

Список литературы

- [1] R.L. Aggarwal, B. Lax. Topics Appl. Phys. 16, 19 (1977).
- [2] V.V. Apollonov, A.I. Gribenyukov, V.V. Korotkova, A.G. Suzdal'tsev, Yu.A. Shakir. Quantum Electron. 26, 469 (1996).
- [3] K. Vijayraghavan, R.W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M.C. Amann, M.A. Belkin. Appl. Phys. Lett. 100, 251 104 (2012).
- [4] M.I. Bakunov, M.V. Tsarev, E.A. Mashkovich. Opt. Express, 20, 28 573 (2012).
- [5] R. Ulbricht, E. Hendry, J. Shan, T.F. Heinz, M. Bonn. Rev. Mod. Phys. 83, 543 (2011).
- [6] Y.-S. Lee. Principles of Terahertz Science and Technology. Springer, NY (2009). 340 c.
- [7] J.D. Rowley, J.K. Pierce, A.T. Brant, L.E. Halliburton, N.C. Giles, P.G. Schunemann, A.D. Bristow. Opt. Letters, 37, 788 (2012).
- [8] В.Г. Воеводин, В.А. Чалдышев. Вест. ТГУ, 285, 63 (2005).
- [9] G.Kh. Kitaeva. Laser Phys. Lett. 5, 559 (2008).
- [10] В.В. Войцеховский, А.А. Волков, Г.А. Командин, Ю.А. Шакир. ФТТ 37, 2199 (1995).
- [11] S. Limpijumnong, W.R.L. Lambrecht, B. Segall. Phys. Rev. B 60, 8087 (1999).
- [12] N.C. Giles, L. Bai, M.M. Chirila, N.Y. Garces, K.T. Stevens, P.G. Schunemann, S.D. Setzler, T.M. Pollak. J. Appl. Phys. 93, 8975 (2003).
- [13] S.M. Harrel, R.L. Milot, J.M. Schleicher, C.A. Schmuttenmaer. J. Appl. Phys. **107**, 033 526 (2010).

- [14] А.А. Вайполин, В.Ю. Рудь, Ю.В. Рудь, Т.Н. Ушакова. ФТП 33, 1411 (1999).
- [15] Г.А. Верозубова, А.И. Грибенюков, Ю.П. Миронов. Неорг. материалы **43**, 1164 (2007).
- [16] Г.А. Верозубова, М.М. Филиппов, А.И. Грибенюков, А.Ю. Трофимов, А.О. Окунев, В.А. Стащенко. Изв. Томского политехн. ун-та. **321**, 121 (2012).
- [17] G. Kozlov, A. Volkov. Top. Appl. Phys. 74, 51 (1998).
- [18] A.S. Barker Jr., J.J. Hopfield. Phys. Rev. A 135, 1732 (1964).
- [19] В.Н. Брудный, В.Г. Воеводин, С.Н. Гриняев. ФТТ 48, 1949 (2006).
- [20] И.С. Горбань, В.А. Горыня, В.И. Луговой, И.И. Тычина. ФТТ 17, 2631 (1975).
- [21] Ю.Ф. Марков, В.С. Григорьева, Б.С. Задохин, Т.В. Рыбакова. Оптика и спектроскопия **36**, 163 (1974).
- [22] А.А. Волков, А.С. Прохоров. Изв. вузов. Радиофизика **46**, 1 (2003).
- [23] R. Stolen, K. Dransfeld. Phys. Rev. A 139, 1295 (1965).
- [24] M. Sparks, D.F. King, D.L. Mills. Phys. Rev. B 26, 6987 (1982).
- [25] Г.А. Командин, О.Е. Породинков, И.Е. Спектор, А.А. Волков. ФТТ 51, 1928 (2009).
- [26] G.A. Komandin, E.S. Zhukova, V.I. Torgashev, A.V. Boris, A.A. Boris, E.A. Motovilova, A.S. Prokhorov, L.S. Kadyrov, B.P. Gorshunov, M. Dressel. J. Appl. Phys. **114**, 024102 (2013).