07,13

Физико-механические и трибологические свойства квазикристаллических покрытий AI—Cu—Fe, полученных плазменным напылением

© А.А. Лепешев^{1,2}, Е.А. Рожкова¹, И.В. Карпов¹, А.В. Ушаков¹, Л.Ю. Федоров¹

¹ Сибирский федеральный университет, Красноярск, Россия ² Красноярский научный центр СО РАН, Красноярск, Россия E-mail: sfu-unesco@mail.ru

(Поступила в Редакцию 29 мая 2013 г.)

Исследованы физико-механические и трибологические свойства квазикристаллических покрытий на основе сплава $Al_{65}Cu_{23}Fe_{12}$, полученных плазменным напылением. Установлены закономерности процесса фазообразования при конкурирующем взаимодействии икосаэдрической ψ и кубической β фаз. Определена корреляция между величиной микротвердости и содержанием в покрытии икосаэдрической фазы. Проведены испытания и выявлена приоритетная роль квазикристаллической фазы в формировании высоких трибологических характеристик покрытий.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ в рамках государственного задания на оказание услуг (выполнение работ), проект № 7.4484.2011.

1. Введение

Квазикристаллические сплавы, характеризуемые необычной квазипериодической структурой и "запрещенной" в кристаллографии осью симметрии пятого порядка, обладают уникальным набором химических и физико-механических свойств [1-7]. В этом отношении показательны квазикристаллические сплавы системы Al-Cu-Me (где Me — Fe, Cr, Mn, V), которые при относительно небольшом удельном весе обладают высокими значениями химической стойкости, модуля упругости, твердости, износостойкости и низким коэффициентом трения. Разработка составов и технологий обработки таких сплавов открывает широкие возможности для их использования в качестве антифрикционных материалов в узлах трения. При этом высокая эффективность пар трения может быть обеспечена как за счет использования композитов с упрочнителем из квазикристаллического сплава, так и непосредственно напылением квазикристаллических покрытий.

К одному из наиболее перспективных методов изготовления узлов из квазикристаллических сплавов следует отнести порошковую металлургию и, в частности, плазменное напыление [8–11]. Используя технологические возможности этого метода, можно в процессе напыления квазикристаллических покрытий не только управлять их структурой и фазовым составом, но и направленно формировать композиционные составы с заданным соотношением основного материала и добавок квазикристаллического сплава.

Изучение процессов структуро- и фазообразования в квазикристаллических покрытиях в зависимости от технологических условий напыления и проведение трибо-

логических испытаний полученных покрытий являлось целью настоящего исследования.

2. Методика эксперимента

Исследования проводились на образцах покрытий, напыленных на наружную поверхность медных колец качающимся плазмотроном с коаксиальным вводом порошка в прикатодную область [9,10]. Контроль теплового режима напыления осуществлялся термопарой, подведенной из внутренней части кольца к внешней поверхности. Лигатура и исходные порошки сплава $Al_{65}Cu_{23}Fe_{12}$ для плазменного напыления приготавливались методом газовой атомизации (gas atomization). Дисперсность полученных порошков составляла $25-106 \,\mu$ m.

Основные параметры плазменного напыления квазикристаллических покрытий на основе сплава Al–Cu–Fe приведены в табл. 1. Для обеспечения различных тепловых условий напыления покрытий варьировалась температура медной подложки T_k .

Толщина напыленных покрытий изменялась в пределах 1.65-2.75 mm.

Рентгеноструктурный и фазовый анализ исходных порошков и напыленных квазикристаллических покрытий осуществлялся на автоматизированном дифрактометре ДРОН-3 с источником CuK_{α} излучения. Обработка полученных дифракционных спектров проводилась с использованием программ DRON-3 и ORIGIN-4.

Микроструктура и морфологические особенности квазикристаллических порошков и покрытий исследовались на оптическом МБИ-15 и электронном JEM-100C микроскопах с растровой приставкой EM-ASID-4 и комплек-

Таблица	 Параметры 	плазменного	напыления	квазикристал-
лических п	юкрытий			

Параметр	Значение
Ток дуги, А	200-250
Мощность, kW	13-17
Расход плазмообразующего газа, kg/s	0.008 - 0.0127
Расход транспортирующего газа, kg/s	0.08 - 0.12
Расход газа на срезе, kg/s	0.0065
Дистанция напыления, mm	110-130
Расход порошка, kg/s	0.046 - 0.056

сом обработки изображений с программным обеспечением JMAGE-С.

Микротвердость напыленных квазикристаллических покрытий определяли на микротвердомере ПМТ-3 методом восстановленного отпечатка алмазной четырехгранной пирамиды.

Трибологические испытания проводились на модернизированной машине трения СМТ-1 по схеме палец-диск в режиме сухого трения.

3. Экспериментальные результаты и их обсуждение

В результате проведенных рентгеноструктурных исследований исходного порошка и напыленных покрытий было установлено наличие в них гетерофазной структуры (ψ , β , λ , θ фазы), с конкурирующим формированием основных фаз — икосаэдрической ψ и кубической β .

На рис. 1 приведены полученные в отфильтрованном Си K_{α} излучении рентгенограммы квазикристаллических покрытий, напыленных при различных тепловых режимах подложки. Видно, что интенсивные дифракционные пики спектра лежат в диапазоне углов 2θ $42^{\circ}-46^{\circ}$, а структура покрытий неоднородна и состоит из смеси двух основных фаз: икосаэдрической ψ и кубической β . Влияние температуры подложки T_k на фазообразование и структуру напыленных квазикристаллических покрытий проявляется в виде изменения соотношений интенсивностей дифракционных пиков, соответствующих ψ и β фазам, например (422222), (110), (420024).

Для определения весового содержания икосаэдрической фазы в напыленных покрытиях использовали данные рентгенофазового анализа покрытий и результаты работ [10,12]. На основании проведенных расчетов построена зависимость процентного содержания икосаэдрической фазы в покрытиях от температурных режимов напыления (рис. 2). Видно, что при повышении температуры подложки, начиная с $T_k \sim 400^{\circ}$ С, происходит увеличение доли икосаэдрической фазы, которая достигает максимальной величины вблизи $T_k \sim 700^{\circ}$ С, после чего уменьшается до 33% при $T_k \sim 880^{\circ}$ С.

Таким образом наиболее высокий уровень содержания икосаэдрической фазы в покрытиях (до 80%) достига-

ется при их напылении на подложки с температурой 600-750°С.

Температурные режимы формирования квазикристаллических покрытий во многом определяют их морфологическую картину. На рис. 3 приведены шлифы поперечных сечений покрытий, полученных из сплава $Al_{65}Cu_{23}Fe_{12}$ при различных температурах подложки $T_k = 500^{\circ}C$, $T_k = 650^{\circ}C$, $T_k = 850^{\circ}C$. Видно, что морфологическая картина: микротрещины, количество пор, их размеры и характер распределения, существенно зависит

Рис. 1. Дифракционный рентгеновский спектр покрытий квазикристаллического сплава $Al_{65}Cu_{23}Fe_{12}$, напыленных при различных температурных режимах подложки: $I - T_k = 500^{\circ}C$; $2 - T_k = 650^{\circ}C$; $3 - T_k = 850^{\circ}C$.

Рис. 2. Зависимость микротвердости HV и весового содержания икосаэдрической фазы ψ в покрытиях от температурных режимов плазменного напыления (T_k — температура подложки).

Рис. 3. Морфология поперечного шлифа покрытий (×90), напыленных при различных температурных режимах: $a - T_k = 500^{\circ}$ С; $b - T_k = 650^{\circ}$ С; $c - T_k = 850^{\circ}$ С.

от режимов формирования покрытия. Так, при температуре подложки $T_k = 500^{\circ}$ С (рис. 3, *a*) покрытие характеризуется наличием большого количества микротрещин и трещин, начинающихся преимущественно с наружной поверхности и, в некоторых случаях, проходящих через всю толщину напыленного слоя. Процесс порообразования протекает неравномерно по толщине покрытия, значительная пористость, достигающая величины 20%, наблюдается вблизи основания подложки и 10% на свободной поверхности. При этом с увеличением толщины покрытия наблюдается уменьшение среднего размера пор. В основном, поры имеют округлую форму, однако вблизи внутренней поверхности напыленного покрытия встречаются поры неправильной формы, сливающиеся в микротрещины [9,11].

При повышении температуры покрытия ЛО $T_k = 650^{\circ}$ С картина шлифа изменяется (рис. 3, *b*). Форма пор становится округлой, средний размер уменьшается, а их распределение по объему становится более равномерным. Вместе с этим, в покрытии, также как и при $T_k = 500^{\circ}$ С, хотя и в меньшей степени, наблюдаются микротрещины. По-видимому, это связано как с особенностями технологии плазменного напыления, так и с механическими свойствами исследуемого квазикристаллического сплава. Поскольку исходный сплав обладает высокой хрупкостью [4,5], то повышенные внутренние напряжения, характерные для высокоскоростной закалки, приводят не к пластической деформации, а к появлению микротрещин и к хрупкому излому напыляемых частиц, что хорошо видно на рис. 3 при $T_k = 500^{\circ}$ С и $T_k = 650^{\circ}$ С. Механизм формирования протяженных трещин, возникающих со стороны свободной поверхности напыленного сплава, связан с большими усадочными напряжениями, возникающими в результате быстрой закалки при заданных режимах напыления.

При температуре нагрева подложки $T_k = 850^{\circ}$ С наблюдается процесс оплавления поверхности. Это приводит к тому, что в объеме напыленного сплава типичные поры либо отсутствуют, либо имеют очень маленькие размеры, меньше $1 \mu m$. Вместе с тем, как видно на рис 3, *c*, область сплава вблизи свободной поверхности характеризуется наличием крупных пор пузырькового типа размером до $80 \mu m$. Появление такого слоя может быть связано с интенсивным газовыделением, протекающим через расплавленный объем покрытия.

Для лучшего выявления микроструктуры покрытия данные образцы подвергались селективному травлению. На рис. 4 приведены поперечные шлифы образцов, напыленных из сплава Al₆₅Cu₂₃Fe₁₂. Видно, что структура таких покрытий анизотропна и имеет характерный для плазменной технологии вид однородных волнистых слоев без посторонних включений, сформированных из расплавленных частиц. Основную часть среди них составляют частицы дискообразной формы, образующиеся в результате деформации и затвердевания на подложке полностью расплавленных в плазме частиц исходного порошка. Вместе с этим присутствуют крупные частицы, подвергнутые воздействию высокотемпературной плазменной струи, но затвердевшие до соударения с подложкой. Появление в покрытии округлых мелких частиц связано с разбрызгиванием на подложке более крупных капель расплава. Кроме того, в полученных покрытиях имеются частицы смешанного типа, сочетающие в себе признаки нескольких видов частиц.

Образующиеся при напылении межчастичные прослойки содержат поры, процентное содержание которых, в зависимости от условий получения покрытий, составляет 6–10%. Так, покрытия, нанесенные при температуре $T_k = 500^{\circ}$ С, характеризуются наименьшей плотностью. С увеличением температуры подложки от $T_k = 500^{\circ}$ С (рис. 4, *a*) до $T_k = 850^{\circ}$ (рис. 4, *c*) волнистая структура покрытий становится более плотной, а содержание пор в объеме материала значительно уменьшается.

Микрофрактограмма поверхности разрушения напыленного квазикристаллического покрытия имеет вид

Рис. 4. Микроструктура покрытий из сплава Al₆₅Cu₂₃Fe₁₂ (×630), напыленных при различных температурных режимах: $a - T_k = 500^{\circ}$ C; $b - T_k = 650^{\circ}$ C; $c - T_k = 850^{\circ}$ C.

блестящих плоских ступенчатых участков. Такая картина характерна для хрупкого разрушения материала. Образование трещин и разлом покрытия происходят, как правило, по границам зерен. При более детальном рассмотрении поверхности излома можно заметить выделения как отдельных частиц порошка, так и целых конгломератов, образующих покрытие.

Сравнительный анализ микротвердости проводился как на исходных квазикристаллических частицах, так и на напыленных на их основе покрытиях. Микротвердость определялась на отшлифованных поверхностях исследуемых образцов с шероховатостью Ra = 0.34 алмазной пирамидой с нагрузкой идентирования 50 g для отдельных частиц и 100 g для напыленного покрытия. Результаты измерений микротвердости исходных квазикристаллических частиц показали значения порядка 850–900 HV. Такие высокие величины HV обусловлены монолитной, беспористой структурой и достаточно высоким содержанием икосаэдрической фазы (~ 68%) в объеме исходных порошков.

Микротвердость покрытий изучалась на образцах, полученных при различных условиях напыления и содержащих различные доли икосаэдрической фазы. На рис. 2 представлены совмещенные зависимости микротвердости и содержания икосаэдрической фазы покрытий от температурных режимов их напыления. Видно, что с повышением температуры и увеличением весового содержания икосаэдрической фазы возрастает твердость материала. Так, в покрытиях с 80%-м содержанием икосаэдрической фазы микротвердость достигает значений порядка 1000 HV. При дальнейшем повышении температуры $T_k > 700^{\circ}$ С, несмотря на уменьшение доли икосаэдрической фазы в покрытиях, значения их микротвердости остаются достаточно высокими. Повидимому, это связано с появлением оплавленного слоя и уменьшением пористости покрытий.

Вместе с этим следует отметить значительное возрастание хрупкости сплава Al-Cu-Fe, о чем свиде-

тельствует картина испытаний по определению твердости. При вдавливании индентора Виккерса в покрытие вокруг отпечатка появляются радиально направленные трещины, развивающиеся преимущественно из углов четырехугольника.

С целью определения однородности свойств напыленных покрытий изучалось распределение микротвердости по поперечному сечению образцов. Такие измерения проводились на отшлифованных сечениях покрытий через каждые 0.2 mm, начиная с внутренней поверхности. Результаты исследований приведены на рис. 5.

Видно, что структура отпечатков одинакова практически по всей толщине покрытия, что свидетельствует о высокой однородности напыленных слоев. Наблюдаемые отдельные локальные выбросы значений, вероятно, связаны с тем, что индентор при измерении попадает

Рис. 5. Измерение микротвердости на поперечном сечении покрытия, напыленного при $T_k = 650^{\circ}$ C, ×630.

Таблица 2. Коэффициенты трения квазикристаллических покрытий, полученных при различных технологических условиях напыления

$T_k, {}^{\circ}\mathrm{C}$	Коэффициент трения μ
400	0.17-0.20
500	0.18 - 0.20
650	0.15 - 0.17
750	0.15 - 0.18
850	0.16-0.19

в межчастичное пространство или в область пор напыленного покрытия. Расчетные значения микротвердости, полученные по данным отпечаткам, приведены на рис. 6.

Для проведения трибологических испытаний (трение и износ) были выбраны квазикристаллические покрытия, обладающие наилучшим сочетанием физикомеханических характеристик: содержание икосаэдрической фазы, твердость, пористость, адгезия и др.

Коэффициент трения определялся методом профилографирования с помощью пирамиды Виккерса при нагрузке индентора 30 H на покрытиях сплава Al–Cu–Fe, полученных при различных условиях напыления (различных температурах подложки T_k). В результате проведенных исследований было установлено, что коэффициенты трения напыленных покрытий существенно не отличались и их значения находились в пределах $\mu = 0.15-0.20$ (табл. 2).

Несколько бо́льшие значения коэффициента трения, характерные для квазикристаллических покрытий, напыленных при $T_k = 400-500^{\circ}$ С, можно связать с их более высокой пористостью, меньшим содержанием икосаэдрической фазы и величиной микротвердости.

Испытания на износостойкость напыленных покрытий проводились в режиме сухого трения при различных нагрузках, скоростях и времени истирания. В качестве контртела использовалась закаленная сталь ШХ15.

Было установлено, что исследуемые покрытия обладают высокой износостойкостью — потеря массы сплава была незначительной и слабо изменялась в зависимости от прилагаемой нагрузки, скорости истирания и времени испытаний (рис. 7).

Морфологическая картина поверхностей покрытия после истирания была гладкой без наличия канавок и следов адгезионного износа, отсутствовали микротрещины и заметная пластическая деформация на краях зоны истирания.

Такое поведение квазикристаллических покрытий при испытаниях на трение и износ существенно отличается от картины износа использованного для сравнения сплава ВТ 1-0 (рис. 7, кривая 2). Из результатов испытаний сплава ВТ 1-0, проведенных в условиях, аналогичных экспериментам с покрытиями Al–Cu–Fe, следует, что уже на начальных этапах с увеличением удельного давления происходит резкое увеличение скорости изнашивания. Морфология изношенной поверхности титаново-

Рис. 6. Изменение микротвердости HV по сечению образца начиная с внутренней поверхности покрытий, напыленных при: $I - T_k = 500^{\circ}$ C; $b - T_k = 650^{\circ}$ C; $c - T_k = 850^{\circ}$ C.

Рис. 7. Зависимость потери массы покрытия $Al_{65}Cu_{23}Fe_{12}$ (*I*) и титанового сплава BT 1-0 (*2*) от времени испытаний (*a*) и прилагаемой нагрузки (*b*).

го сплава представляла типичную картину интенсивной пластической деформации с задирами, глубокими канавками, следами схватывания и переноса металла. Это, в конечном счете, и определяло низкую по сравнению с квазикристаллическими покрытиями износостойкость титанового сплава BT 1-0.

Наблюдаемый высокий уровень износостойкости квазикристаллических покрытий в режиме сухого трения связан как с низким значением коэффициента трения, так и с высокой твердостью напыленного сплава. Поскольку коэффициенты трения исследованных образцов отличаются незначительно, то приоритетную роль в формировании высокой износостойкости, по-видимому, следует отдать их высокой твердости.

Таким образом, квазикристаллические покрытия на основе сплава Al–Cu–Fe обладают высокими и важными с точки зрения практического применения трибологическими характеристиками в условиях сухого трения. Технологические принципы получения таких покрытий заключаются в обоснованном выборе химического состава исходных порошков и условий их напыления с учетом закономерностей процессов, протекающих в квазикристаллических сплавах.

4. Заключение

Морфологическая картина квазикристаллических покрытий имеет типичную слоистую микроструктуру с характерным распределением по объему пор и микротрещин, зависящим от режимов напыления, в частности, температуры подложки T_K . При оплавлении поверхностного слоя ($T_k = 850^{\circ}$ C) наблюдается уменьшение пористости по объему покрытия и повышенное газовыделение через расплавленный слой.

При формировании квазикристаллического покрытия в конкурирующем взаимодействии находятся две основные фазы — икосаэдрическая ψ и кубическая β . С повышением температуры подложки доля икосаэдрической фазы сначала увеличивается, достигая 80% при $T_k = 700^{\circ}$ С, а затем падает до 33% при $T_k = 880^{\circ}$ С.

Установлена корреляционная зависимость между величиной микротвердости и содержанием в покрытии икосаэдрической фазы. Микротвердость покрытий возрастает с увеличением содержания ψ -фазы, достигая значений HV = 900–1000 при ψ = 80% (T_k = 700°C).

Авторы выражают признательность Dr. D.J. Sordelet, Ames Laboratory Jova State University, за предоставленные исходные порошки сплава $Al_{65}Cu_{23}Fe_{12}$.

Список литературы

- [1] D.J. Sordelet, E.A. Rozhkova, M.F. Besser, M.J. Kramer. Intermet. 10, 1233 (2002).
- [2] D.J. Sordelet, E.A. Rozhkova, M.F. Besser, M.J. Kramer. Appl. Phys. Lett. bf80, 25, 4735 (2002).

- [3] X.Y. Yang, M.J. Kramer, E.A. Rozhkova, D.J. Sordelet. Scripta Mater. 49, 885 (2003).
- [4] U. Koster, W. Liu, H. Leibertz, M. Michel. J. Non-Cryst. Solids 153–154, 446 (1993).
- [5] Н.И. Носкова, Е.Г. Пономарева. ФММ 78, 6, 34 (1994).
- [6] H. Kronmuller, N. Moser. Z. Phys. Chem. N.F. 157, 837 (1988).
- [7] А.М. Братковский, Ю.А. Данилов, Г.И. Кузнецов. ФММ 68, 6, 1045 (1989).
- [8] D.J. Sordelet, M.J. Kramer, O. Unal. J. Therm. Spray Tech. 4, 3, 235 (1995).
- [9] Е.А. Лепешева. Формирование фазового состава, структуры и физико-механических свойств квазикристаллических покрытий Al–Cu–Fe при плазменном напылении. Дисс. канд. техн. наук. Красноярск, (1999). 120 с.
- [10] A. Lepeshev, D.J. Sordelet, E.A. Rozhkova, A.V. Ushakov. J. Cluster Sci 22, 2, 289 (2011).
- [11] А.А. Лепешев, Л.В. Кашкина, Т.Н. Рублева, А.А. Ногин, В.Н. Саднин. В сб.: Теория и эксперимент в современной физике. КрасГУ, Красноярск (2000). С. 144.
- [12] S. Ebalard, F. Spaepen. J. Mater. Res. 4, 39 (1989).