14

Самоорганизация ламелей и проницаемость микропористых ориентированных пленок полипропилена

© Д.В. Новиков¹, Г.К. Ельяшевич¹, В.К. Лаврентьев¹, И.С. Курындин¹, V. Bukošek²

¹ Институт высокомолекулярных соединений РАН,

Санкт-Петербург, Россия

² University of Ljubljana, Faculty for Natural Sciences and Engineering,

Ljubljana, Slovenia

E-mail: dvnovikov65@mail.ru, elya@hq.macro.ru

(Поступила в Редакцию 5 марта 2013 г.)

Методами малоуглового рассеяния рентгеновских лучей и сканирующей электронной микроскопии изучено влияние температуры *T*_{ann} отжига экструдированных пленок полипропилена на структуру мембран, полученных в результате одноосной вытяжки отожженных пленок и последующей термофиксации. Показано, что повышение проницаемости мембран с ростом *T*_{ann} обусловлено самоорганизацией элементов ламелярной структуры полимера в результате упорядочения и агрегации частиц.

Работа выполнена при поддержке РФФИ (грант № 13-03-00219), Проекта совместных исследований РАН и университета г. Любляна (Словения) BI-RU/12-13-032.

1. Введение

В работах [1-6] исследованы структура, проницаемость и механические свойства мембран — микропористых ориентированных пленок полиолефинов (полиэтилена и полипропилена), полученных экструзией расплава полимера с последующими стадиями отжига, одноосного растяжения и термофиксации [7]. В результате формирования структуры на стадиях экструзии и отжига пленки приобретали способность к высоким обратимым деформациям, а именно, они могли быть вытянуты в несколько раз без разрушения [1-3,7]. В процессе одноосного растяжения таких образцов в них появляются разрывы сплошности — поры. Было показано, что число и размер пор возрастают с увеличением степени растяжения, и при достижении определенных величин деформации в результате слияния пор происходит формирование сквозных каналов, т.е. пленки становятся фильтрационными мембранами, проницаемыми для жидкостей [1,7]. Было установлено также, что объемную степень пористости Р и проницаемость G мембран можно регулировать изменением как величины кратности фильерной вытяжки расплава полимера при экструзии (λ_f) , так и температуры отжига T_{ann} экструдированных пленок при фиксированных прочих параметрах процесса получения пористых образцов. При этом сходный вид графиков зависимостей $G(\lambda_f)$ и $G(T_{ann})$ указывает на единый механизм роста проницаемости при увеличении какого-либо одного из параметров λ_f и T_{ann} [3].

В работе [6] было установлено, что с ростом параметра λ_f в микропористых пленках происходит самоорганизация элементов структуры, результатом которой является возникновение регулярной пространственной решетки ориентированных частиц — стопок ламелей (суперрешетки ламелей). Процессу самоорганизации по шкале λ_f предшествует возникновение перколяции по порам (образование сквозных пор) при некотором критическом значении λ_f^* . Формирование перколяционного кластера пористой фазы сопровождается ростом флуктуаций плотности распределения частиц и фрактализацией поверхности мембран. Самоорганизация частиц при $\lambda_f > \lambda_f^*$ имеет место в стационарных условиях, когда средний размер пор в мембранах увеличивается, а степень пористости *P* не изменяется ($\partial P/\partial \lambda_f = 0$) [3].

Согласно данным работы [3], с ростом температуры отжига T_{ann} в диапазоне $T_{ann} < T_m$, где T_m — температура плавления полимера, величина P микропористых пленок полиолефинов увеличивается по линейному закону. По этой причине в ряду образцов мембран трансформация пористой фазы по шкале T_{ann} проходит в квазистационарном режиме ($\partial P / \partial T_{ann} = \text{const}$) и может приводить к аналогичному эффекту самоорганизации системы [8], который наблюдается по шкале λ_f в области $\lambda_f > \lambda_f^*$.

Цель настоящей работы — установление механизма трансформации структуры экструдированных пленок полипропилена (PP) при отжиге и при одноосном растяжении в процессе порообразования в зависимости от T_{ann} , а также обоснование закономерностей роста проницаемости мембран при увеличении T_{ann} .

2. Объекты и методы исследования

Для получения пористых пленок использовали гранулы изотактического PP с молекулярной массой $M_w = 380\,000 \ (M_w/M_n = 4-5)$. Формование пленок на стадии экструзии расплава полимера осуществлялось с применением плоскощелевой фильеры. Кристаллизация расплава происходила на воздухе. Степень ориентации расплава задавали кратностью фильерной вытяжки λ_f . Для исследования были выбраны пористые пленки, сформованные при $\lambda_{f1} = 44$ и $\lambda_{f2} = 78$. Экструдированные пленки подвергали отжигу при варьировании T_{ann} в диапазоне от 422 до 444 К, ограниченном температурой плавления $T_m = 445$ К. Формирование пористой структуры мембран происходило при одноосном растяжении отожженных пленок в результате раздвижки и изгиба кристаллических ламелей [1,2,7] и появления между ними пор и сквозных каналов [3]. Процесс растяжения проводили при комнатной температуре до степени растяжения 200% (соответственно до кратности вытяжки, равной 3) со скоростью 400% min⁻¹. Завершающая стадия — термофиксация — обеспечивала релаксацию внутренних напряжений, возникающих при растяжении, и стабилизацию размеров пленок [1,3].

Проницаемость *G* мембран определяли методом фильтрационной порометрии (методом Пуазейля) по измерению скорости протекания жидкости (этанола) через образец [1,9].

Влияние температуры T_{ann} отжига на структуру экструдированных пленок РР исследовали методом малоуглового рентгеновского рассеяния с использованием камеры "KRATKI". По значениям большого периода d_0 и рентгеновской степени кристалличности образцов рассчитана средняя толщина отдельных ламелей (l_c) и аморфной прослойки (l_a) в направлении фильерной вытяжки пленок.

Структуру поверхности мембран, полученных используемым методом при варьировании параметра T_{ann} , изучали методом сканирующей электронной микроскопии (SEM) с помощью микроскопа LEO 1550 FE SEM (ZIESS, Германия).

Компьютерную обработку изображений поверхности (рис. 1) проводили с использованием кластерной двухфазной модели на квадратной решетке по методике [4].

Эффективный размер d и фрактальную размерность D кластеров пористой фазы рассчитывали с помощью радиальной функции g(R) распределения решеточной плотности кластеров [4].

Периоды $L_{s\parallel}$ и $L_{p\parallel}$ чередования решеточной плотности кластеров твердой $(L_{s\parallel})$ и пористой $(L_{p\parallel})$ фаз вдоль оси *s* ориентации (вытяжки) пленок определяли с использованием функций $g(R)_{\parallel}$, рассчитанных по направлению оси *s* (рис. 2, 3). Толщину l_{\parallel} частиц твердой фазы рассчитывали как $l_{\parallel} = 0.8R_{\min}$ [6], где R_{\min} — позиция первого минимума соответствующей функции $g(R)_{\parallel}$.

Для количественной оценки степени упорядоченности частиц (координационного порядка вдоль оси *s*) использовали параметр $\varphi = |L_s|| - L_p|| |/(L_s|| \cdot L_p||)^{1/2}$. Регулярной пространственной решетке частиц соответствует значение $\varphi = 0$; с увеличением координационного беспорядка параметр φ возрастает.

3. Результаты и их обсуждение

Доля Ω_p пористой фазы [4] в двумерном изображении поверхности изученных образцов мембран ($\lambda_{f1} = 44$ и $\lambda_{f2} = 78$) практически не зависит от параметра T_{ann}

в диапазоне 432–444 К и составляет $\Omega_p = 0.25 \pm 0.05$. Таким образом, твердой фазе на плоской решетке соответствует бесконечный кластер связанных между собой частиц, а пористой фазе — дискретные кластеры.

Изображения SEM показывают, что в области $432 < T_{ann} < 442 \, {\rm K}$ микрорельеф поверхности мембран формируется периодическим чередованием анизометрических частиц $(l_{\parallel} = 20 - 35 \text{ nm})$ твердой фазы и кластеров $(d \approx 50 \,\mathrm{nm})$ пористой фазы в направлении вытяжки пленок (рис. 1 a, d). При этом характер микрорельефа однотипен и не изменяется при варьировании параметра λ_f на стадии экструзии расплава полимера. В области $T_{ann} = 442 - 444 \, \mathrm{K}$ мембранам свойствен полиморфизм, выражающийся в наличии участков поверхности различной топологии. Участкам первого типа отвечают регулярно расположенные частицы, аналогичные имеющимся в мембранах при $T_{ann} < 442 \,\mathrm{K}$ (рис. 1, *a*, *d*). Участки второго типа характеризуются более крупными надмолекулярными образованиями $(l_{\parallel} = 50 - 300 \,\mathrm{nm})$, размер которых увеличивается с ростом параметров T_{ann} и λ_f (рис. 1, b, c, e, f). Отметим, что доля участков первого типа, как правило, невелика. Трансформация микрорельефа поверхности мембран при переходе от участков первого типа к участкам второго типа отображается скачкообразным увеличением периода L_s чередования плотности кластера твердой фазы и толщины l_{\parallel} частиц (рис. 4, кривые 1 и 2).

В мембранах, сформированных при $T_{ann} < 442$ K, а также на топологически однотипных участках мембран, сформированных в области $T_{ann} = 442 - 444$ К, толщина частиц l_{\parallel} близка к толщине l_c одиночной ламели PP, которая в среднем увеличивается с ростом температуры отжига экструдированных пленок (рис. 5, кривая 1). Вывод о близости параметров l_{\parallel} и l_c следует с учетом искажений, вносимых методикой препарирования образцов для SEM, а также погрешности компьютерной обработки изображений. Увеличение параметров L_s и *l*_{||} на отдельных участках мембран, сформированных в области T_{ann} = 442-444 К, обусловлено образованием более крупных частиц — стопок ламелей, составляющих каркас перколяционного кластера твердой фазы [4]. Образование агрегатов ламелей приводит к разделению кривых $L_{s\parallel}(T_{ann})$ и $l_{\parallel}(T_{ann})$ в точке бифуркации при $T_{ann} > 440 \,\mathrm{K}$ на две ветви (рис. 4) — ветвь одиночных ламелей и ветвь агрегатов. Отметим, что на ветви ламелей (кривая 3) параметры $L_{\!\scriptscriptstyle S\,\parallel}$ и l_{\parallel} в пределах погрешности расчета не зависят от T_{ann} и λ_f , а положение ветви агрегатов на шкале T_{ann} зависит от параметра λ_f (кривые 1 и 2).

Агрегация ламелей трансформирует кластеры пористой фазы: резко увеличиваются их эффективный размер d (рис. 6, a) и величина фрактальной размерности D (рис. 6, b).

Важно отметить, что при $T_{ann} < 442$ К отношение $L_{s\parallel}/d_0$ периода чередования ламелей в мембранах к рентгеновскому большому периоду в пленках близко к 3 и соответствует кратности одноосной вытяжки пленок (рис. 7). Очевидно, что в этом случае структура

Рис. 1. SEM-изображения отдельных участков поверхности мембран, соответствующих $\lambda_{f1} = 44$ (*a*-*c*) и $\lambda_{f2} = 78$ (*d*-*f*). Температура T_{ann} отжига пленок: 439 (*a*), 443 (*b*), 444 (*c*), 440 (*d*), 442 (*e*), 443 K (*f*).

мембран формируется на стадии порообразования за счет раздвижки одиночных ламелей. В свою очередь при $T_{ann} \ge 442$ К в мембранах реализуются два способа построения квазирешетки частиц за счет чередования либо отдельных ламелей, либо стопок ламелей. В первом случае выполняется условие $L_{s\parallel}/d_0 \approx 3$ (рис. 7, кривая 3). Во втором случае, который имеет место на большей площади поверхности мембран, величина $L_{s\parallel}/d_0$ резко возрастает с увеличением T_{ann} , причем тем больше, чем выше значение λ_f (рис. 7, кривые 1 и 2).

Образование агрегатов ламелей в мембранах при $T_{ann} \ge 442 \, {
m K}$ обусловлено структурными изменениями в

Рис. 2. Радиальные функции $g(R)_{\parallel}$ распределения плотности кластеров фаз на отдельных участках поверхности мембран с $\lambda_{f1} = 44 \ (I - \text{твердая фаза, } 2 - \text{пористая фаза})$. Температура T_{ann} отжига пленок: 442 (a), 443 (b), 444 K (c).

Рис. 3. Радиальные функции $g(R)_{\parallel}$ распределения плотности кластеров фаз на отдельных участках поверхности мембран с $\lambda_{f2} = 78 \ (I -$ твердая фаза, 2 — пористая фаза). Температура T_{ann} отжига пленок: 440 (a), 442 (b), 443 K (c).

экструдированных пленках PP при увеличении температуры отжига. Необходимым условием агрегации ламелей на стадии порообразования является увеличение участков проходных цепей в аморфных прослойках, соединяющих кристаллиты. Действительно, рост средней толщины l_a аморфной прослойки должен способствовать раздвижке элементов структуры в виде стопок ламелей и сопутствующему резкому увеличению эффективного размера пор (рис. 6, *a*) без изменения общей доли Ω_p пористой фазы на поверхности мембран. Такой рост

величины l_a фиксируется при изучении рентгеновского рассеяния в экструдированных пленках PP, отожженных вблизи T_m в области $T_{ann} \ge 442$ K (рис. 5, кривая 2).

Ранее методами атомной силовой микроскопии и SEM было установлено [6], что величина λ_f оказывает существенное влияние на ориентационный и координационный порядок структонов как в экструдированных и отожженных пленках РР, так и в получаемых из них мембранах. По данным работы [6], при фиксированной величине $T_{ann} = 443 \,\mathrm{K}$ с ростом параметра λ_f в пленках формируется квазипериодический ансамбль ориентированных надмолекулярных образований, при расщеплении которых на стадии одноосной вытяжки образуется пространственная решетка частиц — фактически отдельных ламелей. Данные настоящей работы показывают, что с такой решеткой сосуществует и решетка, построенная агрегатами ламелей (суперрешетка ламелей). Таким образом, необходимо учитывать, что топология решеток частиц в мембранах РР зависит не

Рис. 4. Зависимости периода $L_{s\parallel}(a)$ и толщины l_{\parallel} частиц (b) в мембранах от температуры T_{ann} отжига пленок. I — ветвь агрегатов ламелей для $\lambda_{f1} = 44$; 2 — ветвь агрегатов ламелей для $\lambda_{f2} = 78$; 3 — ветвь одиночных ламелей.

Рис. 5. Зависимости средней толщины l_c (1) ламелей и аморфной прослойки l_a (2) от температуры отжига T_{ann} экструдированных пленок РР ($\lambda_{f2} = 78$).

только от параметра λ_f , но и от температуры T_{ann} отжига экструдированных пленок.

Влияние T_{ann} на степень упорядоченности частиц в мембранах демонстрирует рис. 8 (кривая 2). В области $T_{ann} < 439-440$ К с ростом T_{ann} происходит упорядочение ламелей, и параметр φ падает тем интенсивнее, чем больше λ_f . В области $T_{ann} > 440$ К на рис. 8 параметр φ рассчитан для агрегатов ламелей. Его изменение показывает, что степень упорядоченности частиц по-разному зависит от T_{ann} для двух значений: $\lambda_{f1} = 44$ и $\lambda_{f2} = 78$.

В мембранах, полученных при $\lambda_{f1} = 44$, с ростом T_{ann} параметр φ изменяется немонотонно и приближается к нулю при $T_{ann} \rightarrow T_m$ (рис. 8, *a*, кривая 2). Переход от менее упорядоченного кластера твердой фазы (рис. 2, *a*) к более упорядоченному (рис. 2, *c*) связан со сближением значений периодов $L_{s\parallel}$ и $L_{p\parallel}$ и образованием суперрешетки ламелей [6]. Аналогичная самоорганизация частиц в мембранах происходит с ростом параметра λ_f при фиксированной температуре T_{ann} [5,6].

В мембранах, полученных при $\lambda_{f2} = 78$, образование агрегатов (стопок) ламелей при $T_{ann} > 440$ К практически не изменяет высокую степень координационного порядка структонов, возникающую с ростом T_{ann} при $T_{ann} = 440$ К (рис. 8, *b*, кривая 2). В результате формируется суперрешетка ламелей (рис. 3, *b*, *c*), причем размер пор *d* в этой структуре увеличивается с ростом T_{ann} (рис. 8, *a*, кривая 2).

При исследовании зависимости проницаемости мембран G от T_{ann} (рис. 8, кривая I) необходимо учитывать, что при условии $\Omega_p \approx$ const и неизменной толщине образцов величина G, в первую очередь, должна зависеть от размера пор d на поверхности и объемной концентрации сквозных каналов. Последняя должна изменяться симбатно со степенью упорядоченности частиц, характеризуемой параметром φ . Таким образом, рост проницаемости G должен происходить как за счет увеличения d, так и за счет уменьшения φ .

Для мембран, полученных при $\lambda_{f1} = 44$, в области $T_{ann} < 439$ К рост T_{ann} сопровождается увеличением координационного порядка частиц (рис. 8, *a*, кривая 2),

Рис. 6. Зависимости эффективного размера d(a) и фрактальной размерности D(b) пор в мембранах от температуры T_{ann} отжига пленок. На части a: 1 — ветвь агрегатов ламелей для $\lambda_{f1} = 44$; 2 — ветвь агрегатов ламелей для $\lambda_{f2} = 78$; 3 — ветвь одиночных ламелей. На части b: образцы мембран: $\lambda_{f1} = 44$ (1), $\lambda_{f2} = 78$ (2).

Рис. 7. Зависимости отношения $L_{s\parallel}/d_0$ в мембранах от температуры T_{ann} отжига пленок. I — ветвь агрегатов ламелей для $\lambda_{f1} = 44$; 2 — ветвь агрегатов ламелей для $\lambda_{f2} = 78$; 3 — ветвь одиночных ламелей.

Рис. 8. Зависимости отношения G/G_{max} (1) для проницаемости G мембран, где G_{max} — максимальное значение проницаемости при $T_{ann} = 444$ K, и параметра φ (2) от температуры T_{ann} отжига пленок. Образцы мембран: $\lambda_{f1} = 44$ (a), $\lambda_{f2} = 78$ (b). Параметр φ рассчитан для одиночных ламелей при $T_{ann} < 440$ K и для агрегатов ламелей при $T_{ann} \ge 440$ K.

что при практически постоянном эффективном размере пор d (рис. 6, a, кривая 3) приводит к ускоренному росту кривой $G(T_{ann})$ (рис. 8, *a*, кривая 1). В области $439\,{
m K} < T_{ann} < 445\,{
m K}$ функция $d(T_{ann})$ возрастает (рис. 6, *a*, кривая *1*), а функция $\varphi(T_{ann})$ проходит через максимум около $T_{ann} = 442 \text{ K}$ (рис. 8, *a*, кривая 2). Суперпозиция функций $\varphi(T_{ann})$ и $d(T_{ann})$ приводит к замедлению роста кривой $G(T_{ann})$ выше точки перегиба при $T_{ann} \approx 440$ К (рис. 8, *a*, кривая 1). Таким образом, совместное рассмотрение зависимостей $\varphi(T_{ann})$ и $d(T_{ann})$ объясняет S-образный вид графика функции G(T_{ann}). Замедление роста кривой $G(T_{ann})$ вблизи T_m обусловлено увеличением относительного вклада участков мембран с регулярным чередованием отдельных ламелей, в результате чего уменьшается усредненный по поверхности эффективный размер пор. Регулярная решетка ламелей для образца, полученного при $\lambda_{f1} = 44$ и $T_{ann} = 444$ К, характеризуется близкими значениями $L_{s\parallel}$ и $L_{p\parallel}$ и отношением $L_{s\parallel}/l_{\parallel} \approx 3$ (рис. 9).

Проницаемость G мембран, полученных при $\lambda_{f2} = 78$, неограниченно возрастает с ростом T_{ann} (рис. 8, b, кри-

Рис. 9. SEM-изображение и функции $g(R)_{\parallel}$ (1 — твердая фаза, 2 — пористая фаза) для регулярной решетки ламелей в мембране, отвечающей $\lambda_{f1} = 44$ и $T_{ann} = 444$ К.

вая 1). Такой ход зависимости $G(T_{ann})$ объясняется тем, что в области $T_{ann} < 440$ К рост проницаемости происходит за счет увеличения степени упорядоченности решетки частиц (уменьшения φ) при неизменном размере пор d, а в области $T_{ann} > 440$ К за счет увеличения dпри $\varphi \approx \text{const}$ (рис. 6, a, кривая 2).

4. Заключение

Проведенный анализ процессов упорядочения в мембранах РР показал, что на формирование пористой структуры этих образцов оказывают существенное влияние как степень ориентации λ_f расплава полимера на стадии экструзии, так и температура T_{ann} отжига экструдированных пленок. Возрастание значений этих параметров приводит к увеличению основных характеристик мембран — проницаемости и общей пористости. Параметр λ_f задает не только ориентационный, но и координационный порядок структонов, а также определяет топологию кластеров пористой фазы и условия протекания по ним как в объеме [3], так и на поверхности образцов [4-6]. В свою очередь, величина T_{ann} оказывает влияние не только на размер частиц и пор, но и на топологическую структуру мембран, в том числе степень упорядоченности кластера твердой фазы.

Как показано в настоящей работе, синергетическое влияние параметров λ_f и T_{ann} на структуру и проницаемость мембран (G) можно описать в рамках представлений о самоорганизации ламелей в результате упорядочения и агрегации частиц. Особенности кривых $G(T_{ann})$ полностью объясняются вкладом трех зависящих друг от друга составляющих: степени пространственной упорядоченности частиц, размера пор и относительной доли фракций ламелей и их агрегатов.

Одним из проявлений самоорганизации частиц является сосуществование ансамблей различных топологических элементов структуры в мембранах, полученных из пленок, отожженных вблизи температуры плавления полимера. Если отжиг экструдированных пленок проводили при $T_{ann} > 440$ K, то в пористых образцах ансамбли чередующихся одиночных ламелей сосуществуют с ансамблями агрегатов ламелей (стопок ламелей), структура которых зависит от степени ориентации расплава полимера на стадии формования пленок, т. е. от величины λ_f .

Для ансамблей ламелей в мембранах эффективный размер пор в области $T_{ann} = 432 - 440 \,\mathrm{K}$ практически не зависит от T_{ann} , а степень упорядоченности частиц возрастает при увеличении как T_{ann} , так и λ_f .

Влияние агрегации ламелей на характер пористой структуры состоит в увеличении эффективного размера пор. Формированию высокоупорядоченного ансамбля стопок ламелей способствуют как отжиг экструдированных пленок при температурах, близких к T_m , так и повышение параметра λ_f на стадии экструзии расплава полимера.

Список литературы

- [1] Г.К. Ельяшевич, А.Г. Козлов, Е.Ю. Розова. Высокомолекуляр. соединения, А **40**, *6*, 956 (1998).
- [2] M. Raab, J. Scudla, A.G. Kozlov, V.K. Lavrentyev, G.K. Elyashevich. J. Appl. Polym. Sci. 80 2, 214 (2001).
- [3] Г.К. Ельяшевич, И.С. Курындин, В.К. Лаврентьев, А.Ю. Бобровский, V. Bukošek. ФТТ 54, 1787 (2012).
- [4] Д.В. Новиков, В.К. Лаврентьев, Г.К. Ельяшевич, V. Bukošek. ФТТ 54, 1783 (2012).
- [5] Д.В. Новиков, И.С. Курындин, Г.К. Ельяшевич, V. Bukošek. ФТТ 54, 2176 (2012).
- [6] Д.В. Новиков, Г.К. Ельяшевич, В.К. Лаврентьев, И.С. Курындин, Н.Н. Сапрыкина, Г.И. Воробьев, А.В. Варламов, V. Bukošek. ФТТ 55, 398 (2013).
- [7] Г.К. Ельяшевич, Е.Ю. Розова, Е.А. Карпов. Микропористая полиэтиленовая пленка и способ ее получения. Патент РФ № 2140936. Приоритет от 15.04.97.
- [8] Г. Николис, И. Пригожин. Самоорганизация в неравновесных системах. От диссипативных структур к упорядоченности через флуктуации / Пер. с англ. В.Ф. Пастушенко. Мир, М. (1979). 512 с. [G. Nicolis, I. Prigogine. Self-Organization in Nonequilibrium Systems. From Dissipative Syructures to Order Through Fluctuations. Wiley-Interscience Publ. N.Y. (1977). 480 p.]
- [9] Р.Е. Кестинг. Синтетические полимерные мембраны / Пер. с англ. под ред. В.К. Ежова. Химия, М. (1991). С. 54. [R.E. Kesting. Synthetic Polymeric Membranes. John Wiley & Sons, Inc. (1985). P. 44].