17

Кристаллические комплексы фуллерена с производными анизола

© Г.В. Маркин, Е.В. Баранов, С.Ю. Кетков, М.А. Лопатин, В.А. Куропатов, А.С. Шавырин, Г.А. Домрачев

Институт металлоорганической химии им. Г.А. Разуваева РАН,

Нижний Новгород, Россия

E-mail: mag@iomc.ras.ru

(Поступила в Редакцию 19 июля 2011 г. В окончательной редакции 5 сентября 2011 г.)

Впервые получены фуллерид бис(анизол)хрома (PhOMe) $_2Cr^{+\bullet}[C_{60}]^{-\bullet}$ и кристаллический комплекс фуллерена с ортобутоксианизолом. Исследована температурная зависимость параметров спектра ЭПР фуллерида бис(анизол)хрома (PhOMe) $_2Cr^{+\bullet}[C_{60}]^{-\bullet}$. Установлена молекулярная структура комплекса фуллерена с ортобутоксианизолом.

Работа выполнена при поддержке РФФИ (гранты № 10-03-00968-а и 11-03-97051-р_поволжье_а) и программы ОХНМ ОХ-01 "Кинетика, динамика и механизмы важнейших химических реакций. Современные методы управления реакционной способностью соединений и контроля за протеканием их превращений".

1. Введение

Фуллерен С₆₀ является электроноакцепторной молекулой и способен орбразовывать донорно-акцепторные комплексы с различными электронодонорными молекулами. Известна возможность получения ряда ионрадикальных комплексов фуллерена с бисареновыми соединениями хрома с алкильными заместителями у арена [1-7], но только один пример — с алкоксильным заместителем (этоксигруппой) [8]. Представлялось интересным получить комплекс фуллерена с бис(анизол)хромом. В настоящее время известно исследование в растворе с помощью ЯМР-спектроскопии ряда комплексов фуллерена с производными анизола, содержащими акцепторный заместитель в ароматическом кольце, — метаброманизолом и параброманизолом [9] с мольным соотношением между донором и акцептором, равным 1:1, однако отсутствуют сведения о кристаллических комплексах фуллерена с производными анизола. В качестве донора может быть использован ортобутоксианизол, поскольку он имеет две электронодонорные алкоксигруппы, соединенные с ароматическим кольцом, что должно способствовать комплексообразованию с С₆₀.

2. Эксперимент

Все опыты по синтезу и исследованию свойств фуллерида бис(анизол)хрома проводились в вакуумированных ампулах в отсутствие следов кислорода и воды. Растворители очищали и обезвоживали по стандартным методикам и дегазировали перед опытом путем трехкратного замораживания и размораживания в вакууме. Спектры ЭПР получали на спектрометре Bruker EPX. Электронные спектры регистрировались на спектрометре "PerkinElmer Lambda25". Измерения константы

образования комплекса **1** были проведены методом Бенеши—Гильдебранда.

Содержание Cr в комплексах рассчитывалось по количеству Cr_2O_3 , оставшемуся после сжигания.

 $2.1.~\rm K$ р и сталлический молекулярный комплекс фуллерена C_{60} с ортобутоксианизолом (комплекс 1). К насыщенному профильтрованному раствору фуллерена C_{60} в ортодихлорбензоле при 293 К добавляли одну треть объема ортобутоксианизола. Реакционную смесь охлаждали до 263 К и выдерживали десять суток. Растворитель декантировали, кристаллы промывали небольшим количеством гексана и сушили на воздухе при 290 К.

Рентгенодифракционные измерения комплекса 1 проведены на дифрактометре SMART Арех (графитовый монохроматор, $\varphi-\omega$ -сканирование, $\text{Мо}K_{\alpha}$ -излучение). Строение комплекса 1 определено прямым методом и уточнено методом наименьших квадратов в анизотропном приближении для всех неводородных атомов. Атомы H размещены в геометрически рассчитанные положения и уточнены в "модели наездника".

2.2. Фуллерид бис (анизол) хрома (I) $(PhOMe)_2Cr^{+\bullet}[C_{60}]^{-\bullet}$ (комплекс **2**). К насыщенному раствору фуллерена в толуоле прибавляли раствор бис(анизол)хрома в толуоле, перемешивали 30 min при 293 К. Растворитель декантировали, промывали толуолом, гексаном и сушили в вакууме с остаточным давлением P, равным 10^{-2} Torr, при температуре 308 K. Ультрафиолетовый спектр комплекса 2 в растворе тетрагидрофурана имеет полосу поглощения с максимумом при 1071 nm. Спектр ЭПР комплекса 2 в растворе тетрагидрофурана при температуре 293 К представляет собой синглет со сверхтонкой структурой, д-фактором, равным 1.986, и константой расщепления на протонах $a_{\rm H}$, равной 0.35 mT. Согласно данным элементного анализа, комплекс 2 содержит 5.15% хрома, что хорошо согласуется с содержанием хрома 5.26%, вычисленным для вещества состава $C_{74}H_{16}O_2Cr$.

3. Обсуждение результатов

Найдено, что фуллерен C_{60} взаимодействует с ортобутоксианизолом при 263 K в растворе ортодихлорбензола, образуя в осадке молекулярный кристаллический комплекс (копмлекс 1) с мольным соотношением компонентов, равным 1:2,

Согласно проведенному рентгеноструктурному исследованию, молекула фуллерена в комплексе 1 симметрична и имеет центр инверсии, расположенный внутри C_{60} . Бензольный фрагмент ортобутоксианизола C(35)-C(40) практически параллелен шестичленному углеродному фрагменту C(7)C(8)C(21)C(30)C(22)C(23) молекулы фуллерена. Угол между плоскостями, в которых находятся эти фрагменты, составляет 7.6°. Аналогичная ситуация наблюдается для второй молекулы ортобутоксианизола (с атомами O(1A) и O(2A)), расположенной симметрично.

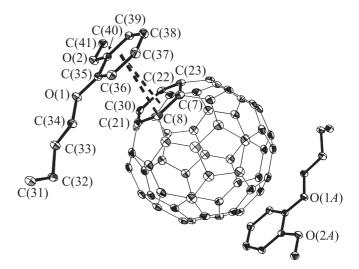
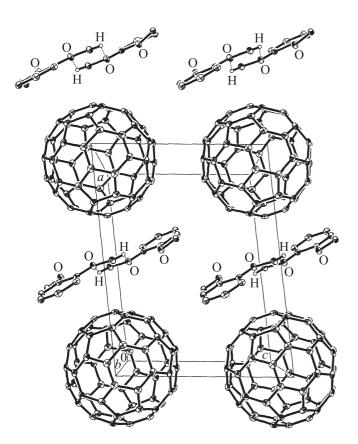
Расстояние между центрами шестичленных фрагментов $C(35)\dots C(40)$ и C(7)C(8)C(21)C(30)C(22)C(23) составляет 3.67 Å. Кратчайшее расстояние между центром фрагмента C(35)-C(40) и атомом молекулы фуллерена C(8) имеет значение 3.36 Å, что, по-видимому, является свидетельством аттрактивных взаимодействий между π -системами бензольного кольца ортобутоксианизола и молекулы фуллерена.

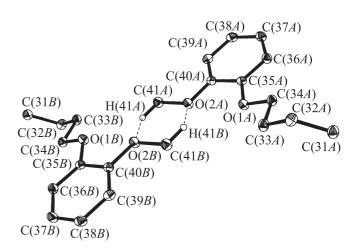
Длины связей углерод—углерод ароматического кольца молекулы ортобутоксианизола лежат в интервале 1.376(2)-1.408(2) Å. Наибольшая длина ароматичской С—С-связи наблюдается между атомами углерода C(35) и C(40), соединенными с метокси- и бутоксигруппами (рис. 1). Атомы кислорода O(1) и O(2) находятся около плоскости ароматического кольца C(35)-C(40). Отклонения атомов кислорода от плоскости составляют 0.047 и 0.028 Å соответственно

для бутокси- и метоксигрупп. Расстояния от атомов кислорода ортобутоксианизола до ближайших к ним атомов углерода молекулы фуллерена $O(1)\dots C(21)$ и $O(2)\dots C(30)$ составляют 3.34 Å, что несколько больше суммы ван-дер-ваальсовых радиусов атомов C и $O(3.2\,\text{Å}\ [10])$. Расстояние от атома углерода C(41) метоксигруппы до плоскости ароматического кольца составляет $0.136\,\text{Å}$. Расстояние от атома углерода C(34) бутоксигруппы до плоскости ароматического кольца равно $0.441\,\text{Å}$.

Длины (6-6)-связей молекулы C_{60} лежат в интервале 1.385(2)—1.395(2) Å. Среднее значение длин (6-6)-связей равно 1.390 Å. Аналогичные величины для (5-6)-связей молекулы C_{60} составляют соответственно 1.443(2)—1.455(2) и 1.450 Å. Кратчайшее расстояние С...С между бутоксигруппой ортобутоксианизола и соседней молекулой С60 наблюдается между атомом C(31) и атомом углерода C_{60} , образующим наибольшую (6-6)-связь (1.395(2) Å). Это расстояние $C(31)...C(C_{60})$ составляет 3.60 Å, что больше суммы ван-дер-ваальсовых радиусов атомов углерода (3.4 Å [10]). Атом C(41) метоксигруппы молекулы ортобутоксианизола имеет более короткое расстояние С...С до соседней молекулы фуллерена, чем атом C(31) бутоксигруппы. Расстояние $C(41)...C(C_{60})$ равно 3.48 Å, что близко к сумме ван-дер-ваальсовых радиусов атомов углерода, указанной выше.

Наиболее укороченные контакты наблюдаются между атомом C(35) ароматического фрагмента молекулы ортобутоксианизола и атомами C(8) и C(21) молекулы C_{60} (рис. 1). Расстояния C(35)...C(8)


Рис. 1. Молекулярная структура комплекса 1. Тепловые эллипсоиды приведены с вероятностью 30%. Атомы водорода не показаны. Жирными штриховыми линиями обозначена область кратчайших межмолекулярных взаимодействий между фуллереном и ортобетоксианизолом. Различные типы штриховок и фигур внутри эллипсов использованы для лучшего отображения объемных фигур — эллипсоидов на плоскости листа.

и C(35)...C(21) составляют соответственно 3.29 и 3.35 Å, что меньше суммы ван-дер-ваальсовых радиусов атомов углерода. Отметим, что атом C(8), контактирующий на самом коротком расстоянии с молекулой ортобутоксианизола (3.29 Å), образует наименьшую (5-6)-связь из всех (5-6)-связей в молекуле C_{60} (1.443(2) Å).

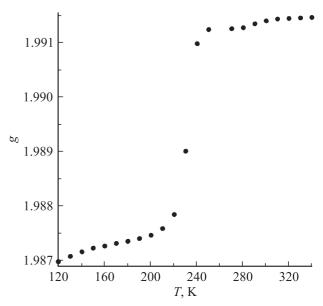

Вследствие практически параллельной ориентации гексагональных фрагментов молекул фуллерена и ароматических колец соседних молекул ортобутоксианизола в кристалле вдоль плоскости a0c молекулы комплекса 1 упакованы в слои, состоящие из чередующихся рядов молекул ортобутоксианизола и C_{60} . Один из таких слоев показан на рис. 2. Между рядами молекул C_{60} расположены пары молекул ортобутоксианизола, которые сформированы посредством межмолекулярных контактов между атомом водорода H(41) метоксигруппы одной молекулы и атомом кислорода O(2) метоксигруппы соседней молекулы ортобутоксианизола (рис. 3). Рассто-

Рис. 2. Фрагменты кристаллической упаковки комплекса 1 в проекции на плоскость a0c. Атомы водорода (за исключением одного атома Н метоксигруппы) не показаны. Тепловые эллипсоиды приведены с вероятностью 30%. Около молекул фуллерена показаны пары молекул ортобутоксианизола. Штриховыми линиями обозначены кратчайшие межмолекулярные контакты. Тонкими линиями обозначены границы элементарной ячейки структуры комплекса 1, представляющей собой параллелепипед. Грань a0c расположена в плоскости листа, ребро 0b перпендикулярно плоскости листа.

Рис. 3. О. . . Н-контакты между молекулами ортобутоксианизола в кристалле. Атомы водорода, за исключением H(41A)и H(41B), не показаны. Тепловые эллипсоиды приведены с вероятностью 30%.

Рис. 4. Температурная зависимость g-фактора сигнала ЭПР фуллерида бис(анизол)хрома.

яния $H(41A)\dots O(2B)$ и $H(41B)\dots O(2A)$ контактов составляет 2.55 Å, что меньше суммы ван-дер-ваальсовых радиусов атомов H и O (2.7 Å [10]).

Координаты атомов, а также полные таблицы длин связей и валентных углов депонированы в Кембриджской базе структурных данных (CCDC 842954).

Исследования методами электронной спектроскопии показали, что в спектрах растворов фуллерена C_{60} с ортобутоксианизолом в ортодихлорбензоле присутствует полоса поглощения с максимумом при 430 nm, являющаяся полосой переноса электронной плотности с ортобутоксианизола на C_{60} . Комплекс фуллерена C_{60} с ортобутоксианизолом является комплексом с переносом заряда с константой образования, равной $0.62\,\mathrm{l/mol}$.

Основные кристаллографические данные и параметры уточнения структуры комплекса 1 ($C_{82}H_{32}O_4$, моноклинная сингония, пространственная группа P2(1)/c)

Параметр	Значение
Молекулярная масса	1081.08
Температура, К	150(2)
Длина волны, Å	0.71073
a, A	13.1568(8)
b, Å	17.5694(11)
c, Å	9.8984(6)
α , deg	90
β , deg	96.7280(10)
γ , deg	90
V , \mathring{A}^3	2272.3(2)
Z	2
$d_{\rm calc}$, g · cm ⁻³	1.580
Коэффициент поглощения, mm^{-1}	0.096
F(000)	1112
Размер кристалла, mm	$0.40\times0.24\times0.05$
$\theta_{ m max}, { m deg}$	26
$\theta_{ m min}, { m deg}$	2.32
Число собранных отражений	19 342
Число независимых отражений $R_{\rm int}$	4446 (0.0422)
$R_1 (I > 2\sigma(I))$	0.0385
$wR_2 (I > 2\sigma(I))$	0.0841
R ₁ (по всем данным)	0.0639
wR_2 (по всем данным)	0.0913
Добротность	1.002
Остаточная электронная	0.230/-0.178
плотность, $e \cdot A^{-3}$	

Примечание. Указана длина волны рентгеновского излучения, использованная для рентгенодифракционного измерения; F(000) — фактор в направлении первичного пучка, используемый для оценки качества рентгенодифракционного измерения; R_1 ($I > 2\sigma(I)$), wR_2 ($I > 2\sigma(I)$), R_1 (по всем данным), wR_2 (по всем данным) — факторы достоверности, показывающие степень согласованности между кристаллографической моделью и экспериментальными данными рентгенодифракционного измерения; добротность — величина, характеризующая качество рентгенодифракционного исследования; остаточная электронная плотность — степень расхождения по электронной плотности между рассчитанной кристаллической моделью и экспериментальными данными рентгенодифракционного измерения.

 C_{60} взаимодействует с бис (анизол) хромом в растворе толуола при 293 K с образованием в осадке темно-коричневой ион-радикальной соли — фуллерида бис (анизол) хрома (I) $({\rm PhO}Me)_2{\rm Cr}^{+\bullet}[C_{60}]^{-\bullet}$ (соль 2)

$$(\text{PhOM}e)_2\text{Cr}^0 + \text{C}_{60} \xrightarrow{\text{PhM}e, 293 \text{ K}} (\text{PhOM}e)_2\text{Cr}^{+\bullet}[\text{C}_{60}]^{-\bullet} \downarrow .$$
(2)

Соль **2** растворима в тетрагидрофуране, нерастворима в алифатических и ароматических углеводородных растворителях. Раствор соли **2** в тетрагидрофуране при 293 К имеет спектр ЭПР с сигналами от катиона $(\text{PhOM}e)_2\text{Cr}^{+\bullet}$ и электронный спектр, характерный для анион-радикалов $(C_{60})^{-\bullet}$. Спектр ЭПР твердой соли **2** при 290 К представляет собой синглет с g=1.9913, что характерно для ион-радикальных

фуллеридов бис(арен)хрома. При охлаждении g-фактор сигнала в спектре ЭПР твердой соли **2** резко уменьшается в интервале $240-210\,\mathrm{K}$ (рис. 4), и ниже $210\,\mathrm{K}$ спектр ЭПР представляет собой синглет с g-фактором, приближающимся к 1.986, что характерно для катионов бис(анизол)хрома. Это является следствием образования димеров фуллерида бис(анизол)хрома ниже $210\,\mathrm{K}$ [(PhOMe) $_2\mathrm{Cr}^{+\bullet}$] $_2[C_{60}-C_{60}]^{2-}$ (димер **3**)

$$(\text{PhO}Me)_2\text{Cr}^{+\bullet}[\text{C}_{60}]^{-\bullet} \xleftarrow{T < 210 \text{ K}}$$

$$\xleftarrow{T < 210 \text{ K}} [(\text{PhO}Me)_2\text{Cr}^{+\bullet}]_2[\text{C}_{60} - \text{C}_{60}]^{2-}. \quad (3)$$

Димеры **3** термически значительно более устойчивы, чем димеры фуллерида бис(фенетол)хрома $[(PhOEt)_2Cr^{+\bullet}]_2[C_{60}-C_{60}]^{2-}$, которые разрушаются выше $110\,\mathrm{K}$ [8]. Повышенная устойчивость димера **3** по сравнению с димером $[(PhOEt)_2Cr^{+\bullet}]_2[C_{60}-C_{60}]^{2-}$ объясняется меньшим, чем в случае этоксигруппы, объемом метоксигруппы и меньшими стерическими препятствиями, создаваемыми метоксигруппой при образовании димера **3**.

4. Заключение

Таким образом, совокупность полученных данных позволяет заключить, что кристаллический молекулярный комплекс фуллерена с ортобутоксианизолом образуется за счет донорно-акцепторного взаимодействия π -систем ароматического кольца ортобутоксианизола и молекулы C_{60} и межмолекулярных парных взаимодействий между метоксигруппами ортобутоксианизола. Термическая устойчивось димеров фуллеридов бис (алкоксибензол) хрома существенно зависит от размера алкильного радикала алкоксигруппы.

Все расчеты по определению и уточнению структуры выполнены на основе комплекса программ SHELXTL [11] (см. таблицу). Программа SADABS [12] использовалась для учета поглощения.

Список литературы

- [1] М.Г. Каплунов, Е.В. Голубев, А.В. Куликов, Н.Г. Спицына. Изв. РАН. Сер. хим. *4*, 785 (1999).
- [2] A. Hönnerscheid, L. van Wüllen, R. Dinnebier, M. Jansen, J. Rahmer, M. Mehring. Phys. Chem. Chem. Phys. 6, 2454 (2004).
- [3] A. Hönnerscheid, L. van Wullen, M. Jansen. J. Chem. Phys. 115, 7161 (2001).
- [4] Г.А. Домрачев, Ю.А. Шевелев, В.К. Черкасов, Г.К. Фукин, С.Я. Хоршев, Г.В. Маркин, Б.С. Каверин, В.Л. Карнацевич, Г.А. Киркин. Докл. РАН 395, 772 (2004).
- [5] Г.А. Домрачев, Ю.А. Шевелев, В.К. Черкасов, Г.В. Маркин, Г.К. Фукин, С.Я. Хоршев, Б.С. Каверин, В.Л. Карнацевич. Изв. РАН. Сер. хим. *9*, 1973 (2004).

- [6] А.В. Маркин, В.А. Рученин, Н.Н. Смирнова, Г.В. Маркин, Ю.А. Шевелев, В.А. Куропатов, Г.А. Домрачев. ЖФХ 83, 1451 (2009).
- [7] V.A. Ruchenin, A.V. Markin, N.N. Smirnova, G.V. Markin, Yu.A. Shevelev, V.K. Cherkasov, V.A. Kuropatov, S.Yu. Ketkov, M.A. Lopatin, G.A. Domrachev. Bull. Chem. Soc. Jpn. 82, 65 (2009).
- [8] В.А. Рученин, А.В. Маркин, Н.Н. Смирнова, Г.В. Маркин, Ю.А. Шевелев, В.А. Куропатов, М.А. Лопатин, Г.А. Домрачев. ЖФХ 84, 1036 (2010).
- [9] S. Bhattacharya, A.K. Bauri, S. Chattopadhyay, M. Banerjee.J. Phys. Chem. B 109, 7182 (2005).
- [10] С.С. Бацанов. ЖНХ 36, 3015 (1991).
- [11] G.M. Sheldrick. SHELXTL 6.12. Structure Determination Software Suite. Bruker AXS, Madison, USA (2000).
- [12] G.M. Sheldrick. SADABS 2.01. Siemens Area Detector Absorption Correction Program. Bruker AXS, Madison, USA (1998).