Термическая устойчивость кубана С₈Н₈

© М.М. Маслов, Д.А. Лобанов, А.И. Подливаев, Л.А. Опенов

Московский инженерно-физический институт (Государственный университет), Москва, Россия

E-mail: LAOpenov@mephi.ru

(Поступила в Редакцию 7 мая 2008 г.)

Для выявления причин аномально высокой термической устойчивости кубана C_8H_8 и определения механизмов его распада мы выполнили численное моделирование динамики этого метастабильного кластера при T = 1050 - 2000 K, используя потенциал сильной связи. Энергия активации процесса распада, найденная из данных "численного эксперимента" о температурной зависимости времени жизни кубана, оказалась достаточно большой, $E_a = 1.9 \pm 0.1$ eV. Продуктами распада являются, как правило, либо молекулы C_6H_6 и C_2H_2 , либо изомер C_8H_8 с более низкой энергией.

PACS: 36.40.-c, 36.40.Qv, 71.15.Pd

Кубан (cubane) C₈H₈ (рис. 1), открытый в 1964 г. [1], представляет большой интерес как с фундаментальной, так и с практической точки зрения. В этом кластере атомы углерода находятся в вершинах куба, поэтому углы между ковалентными связями С-С составляют 90°, а не 109.5°С, как в углеродных соединениях с тетраэдрическим расположением атомов и sp³-гибридизацией атомных орбиталей. Такой сильный "изгиб" связей С-С-С невыгоден с энергетической точки зрения, однако атомы водорода, расположенные на главных диагоналях куба, стабилизируют изображенную на рис. 1 атомную конфигурацию, отвечающую не глобальному, а локальному минимуму потенциальной энергии как функции координат атомов. Хотя кубан и является метастабильным кластером, о его высокой устойчивости свидетельствует тот экспериментальный факт, что молекулы кубана не только сохраняют свою структуру при температурах значительно больше комнатной, но и могут образовывать молекулярный кристалл — твердый кубан *s*-C₈H₈ с температурой плавления около 400 К [2]. Теплота формирования кубана относительно велика и составляет $6.5 \, \text{eV} / \text{C}_8 \text{H}_8$ [3] (такая энергия выделится, например, при трансформации твердого кубана в графитовые слои и молекулы Н2). Высокая энергоемкость кубана делает его перспективным материалом для топливных элементов, а возможность замены атомов водорода различными функциональными группами (например, СН₃ в метилкубане [4]) открывает путь к синтезу новых соединений с уникальными свойствами.

Широкому использованию кубана препятствует отсутствие дешевых технологий его производства в больших количествах [5]. С нашей точки зрения, детальное исследование путей и продуктов распада кубана может подсказать направление поиска новых способов его изготовления.

При этом следует рассмотреть возможность обращения хода химической ракции (например, путем нагрева в присутствии соответствующих катализаторов, понижающих барьер обратной реакции). Здесь можно провести определенную аналогию с фуллереном C_{60} : его распаду предшествует цепочка трансформацией Стоуна-Уэльса, в результате которой образуются дефекты "поверхности" и в конечном итоге отделяется димер С2, тогда как отжиг этих дефектов (за счет таких же трансформаций) приводит к образованию фуллерена из сферообразного, но сильно дефектного кластера С₆₀ (см. работы [6,7] и ссылки в них). Экспериментальному изучению процесса разложения кубана посвящено весьма небольшое число работ (см., например, [8,9]), ограниченных к тому же узким интервалом температур [8] и времен жизни [9]. Что касается теории, то из публикации в публикацию кочует одно и то же схематическое изображение поверхности потенциальной энергии кубана и его изомеров [8], тогда как динамика кубана до момента перехода в другой изомер изучена, насколько нам известно, только при очень высокой температуре и в течение очень короткого времени $\sim 1\,\mathrm{ps}$, соответствующего всего лишь нескольким десяткам периодов колебаний кластера [10].

Основной целью настоящей работы является численное моделирование динамики кубана в широком температурном диапазоне, определение энергии активации и продуктов его распада, а также вида изомеров, формирующихся на предшествующей распаду стадии эволюции. Для расчета энергий произвольных атомных конфигураций мы использовали неортогональную мо-

Рис. 1. Кубан С₈Н₈. *I* — атомы углерода, *2* — атомы водорода.

дель сильной связи, предложенную для углеводородных соединений в работе [11] и модифицированную нами [12], исходя из критерия более точного соответствии теоретических и экспериментальных значений энергий связи и межатомных расстояний в различных молекулах С_{*n*}Н_{*m*}. Данная модель представляет собой разумный компромисс между более строгими ab initio подходами и чрезмерно упрощенными классическими потенциалами межатомного взамодействия. Для длин связей в кубане она дает $l_{\rm C-C} = 1.570$ Å и $l_{\rm C-H} = 1.082$ Å, что близко к экспериментальным значениям 1.571 и 1.097 Å соответственно [13]. Расчетное значение энергии связи атомов в кубане $E_b = [8E(C) + 8E(H)]$ $-E(C_8H_8)]/16 = 4.42 \text{ eV/at.}$ также согласуется с экспериментальной величиной 4.47 eV/at. [13]. Для отношения энергий углеродной и водородной подсистем в теплоизолированном кубане эта модель дает значение, совпадающее с теоретическим [14].

Для исследования термической устойчивости кубана С₈Н₈ мы использовали метод молекулярной динамики. В начальный момент времени каждому атому сообщались случайные скорости и смещения так, чтобы импульс и момент импульса всего кластера были равны нулю. Затем вычислялись действующие на атомы силы. Классические уравнения движения Ньютона интегрировались численно с использованием алгоритма скоростей Верле (velocity Verlet method). Шаг по времени составил $t_0 = 2.72 \cdot 10^{-16}$ s. Полная энергия кубана (сумма потенциальной и кинетической энергии) в процессе моделирования оставалась неизменной, что отвечает микроканоническому ансамблю (система не находится в состоянии теплового равновесия с окружением [15-18]). При этом "динамическая температура" Т является мерой энергии относительного движения атомов и вычисляется по формуле [19,20] $\langle E_{\rm kin} \rangle = \frac{1}{2} k_{\rm B} T (3n-6)$, где $\langle E_{\rm kin} \rangle$ — усредненная по времени кинетическая энергия кластера, $k_{\rm B}$ — постоянная Больцмана, n = 16 — число атомов в кубане. Подчеркнем, что алгоритм скоростей Верле является консервативным и по импульсу, и по моменту импульса [21], а относительное изменение полной энергии кубана не превышает 10⁻⁴ в течение как минимум 2 · 10⁹ шагов молекулярной динамики, что отвечает времени $\sim 1\,\mu s$.

Мы исследовали эволюцию кубана при ≈ 50 различных наборах начальных скоростей и смещений атомов, соответствующих температурам T = 1050-2000 К. Оказалось, что чаще всего (в $\approx 80\%$ случаев) кубан при распаде переходит в изображенный на рис. 2, *а* изомер СОТ (cyclooctatetraene) с более низкой потенциальной энергией (более высокой энергией связи $E_b = 4.82$ eV/at.). Реже (в $\approx 20\%$ случаев) имеет место деление кубана на молекулы бензола C₆H₆ с $E_b = 4.82$ eV/at. и ацетилена C₂H₂ с $E_b = 4.54$ eV/at. (рис. 2, *b*). Кроме того, несколько раз мы наблюдали образование стирола и некоторых других изомеров C₈H₈. Распад кубана почти всегда начинается с перехода в изомер STCO (*syn*-tricycloocta-

Рис. 2. Продукты распада кубана. *а* — изомер СОТ (циклооктатетраен); *b* — молекулы C₆H₆ (бензол) и C₂H₂ (ацетилен).

Рис. 3. Изомеры C₈H₈, формирующиеся на предшествующей распаду кубана стадии его эволюции. *а* — изомер STCO (*син*трициклооктадиен); *b* — BCT (бициклооктатриен).

diene) с величиной $E_b = 4.47 \text{ eV/at.}$ (рис. 3, *a*), после чего происходит быстрый (за время 0.1–1 ps) переход либо в СОТ, либо в изомер ВСТ (bicyclooctatriene) с $E_b = 4.65 \text{ eV/at.}$ (рис. 3, *b*). В свою очередь ВСТ трансформируется в СОТ или распадается на молекулы бензола и ацетилена (BEN + A). Обратных переходов STCO — кубан, СОТ — STCO и ВСТ — STCO ни разу не наблюдалось, тогда как СОТ иногда переходил в ВСТ с последующим делением ВСТ — BEN + A.

При понижении температуры T от ≈ 2000 до ≈ 1000 К время жизни кубана τ увеличивается на шесть порядков величины, от ~ 1 рs до $\sim 1 \,\mu$ s (рис. 4). Так как процесс распада метастабильных кластеров является вероятностным по своей природе, то при заданной температуре T величина τ обладает некоторой дисперсией. Тем не менее из рис. 4 видно, что результаты "численного эксперимента" описываются обычной формулой Аррениуса

$$\tau^{-1}(T) = A \exp\left[-\frac{E_a}{k_{\rm B}T}\right].$$
 (1)

Согласно этой формуле, зависимость $\ln(\tau)$ от 1/T является прямой линией, наклон которой определяет энергию активации $E_a = 1.9 \pm 0.1$ eV, а точка ее пересечения с осью ординат — частотный фактор $A = 10^{16.03\pm0.36}$ s⁻¹. Примечательно, что эти величины E_a и A хорошо согласуются с экспериметальными значениями $E_a = 1.87 \pm 0.04$ eV и $A = 10^{14.68\pm0.44}$ s⁻¹, полученными при исследовании пиролиза кубана в очень

Рис. 4. Зависимость логарифма времени жизни τ кубана C_8H_8 от обратной начальной температуры T. 1 — результаты расчета, 2 — линейная аппроксимация методом наименыших квадратов, 3 — экспериментальные данные работы [9]. Стрелками отмечены результаты при температурах $T \le 474$ К и $T \ge 773$ К, для которых в [9] из-за технических сложностей получены только ограничения на τ снизу ($\tau > 40$ ms) и сверху ($\tau < 0.8$ ms) соответственно.

узком диапазоне $T = 230-260^{\circ}$ С [8], далеко отстоящем от нашего интервала температур. Небольшое (в логарифмическом масштабе) различие частотных факторов обусловлено, по-видимому, температурной зависимостью *A* (заметим, что для кубана величина *A* на \approx четыре порядка меньше, чем для фуллерена C₆₀ [7]).

Экстраполяция кривой $\tau(T)$ на область $T < 1000 \, {
m K}$ (недоступную непосредственным численным расчетам из-за чрезмерно больших затрат компьютерного времени) позволяет сравнить результаты моделирования с экспериментальными значениями т, полученными в работе [9] для нескольких температур в диапазоне T = 373 - 973 К. Как видно из рис. 4, здесь также имеет место соответствие теории и эксперимента. Таким образом, формулу (1) с найденными нами значениями E_a и А можно использовать для определения (или во всяком случае — для оценки по порядку величины) времени жизни кубана как при очень высоких, так и при сравнительно низких температурах. В частности, при комнатной температуре эта формула дает $au \sim 10^{16}$ s, тогда как $au \sim 10^8$ s при температуре плавления твердого кубана $T_m \approx 400 \, \text{K}$, т.е. при плавлении разрываются лишь слабые ван-дер-ваальсовские связи между кластерами С₈Н₈, но сами кластеры сохраняют свою структуру (и запасенную в них энергию). Время жизни уменьшается до $\tau \sim 1\,\mathrm{s}$ лишь при нагреве до $T \approx 600\,\mathrm{K}$ (эксперимент по пиролизу [9] дает $\tau \approx 10 \,\mathrm{ms}$ при $T = 573 \,\mathrm{K}$ и $\tau \approx 2 \,\mathrm{ms}$ при $T = 673 \,\mathrm{K}$, см. рис. 4).

Подчеркнем, что при анализе зависимости $\tau(T)$ мы использовали формулул (1) без поправки на конечные размеры теплового резервуара (finite-size correction) [22,23]. Эта поправка сводится к замене Т на $T - E_a/2C$ в показателе экспоненты уравнения (1), где *С* — микроканоническая теплоемкость кластера. Если полагать $C = k_{\rm B}(3n-6)$, где n = 16 — число атомов в кубане, то наилучшее соответствие модифицированной формулы Аррениуса с данными численного моделирования достигается при $E_a = 1.41 \pm 0.07$ eV, что существенно отличается от экспериментального значения [8] и, как мы увидим далее, меньше высоты U минимального энергетического барьера, препятствующего распаду кубана. Причины такого расхождения не вполне ясны, поскольку ранее учет данной поправки позволил нам описать экспериментальные данные по фрагментации фуллерена C_{60} [7]. Кубан в отличие от фуллеренов C_{20} и C_{60} состоит из атомов разного сорта, причем в теплоизолированном кубане кинетическая энергия неравномерно распределяется между водородной и углеродной подсистемами [14]. Это приводит, возможно, к увеличению эффективной теплоемкости кубана в момент распада, так что поправка на конечные размеры становится несущественной. Однако этот вопрос требует дополнительных исследований.

Теперь мы переходим к определению высоты *U* минимального энергетического барьера для распада кубана. На рис. 5 представлены результаты расчета энергий различных изомеров кубана, продуктов распада и седло-

Рис. 5. Энергии различных изомеров кубана C_8H_8 , продуктов его распада и седловых точек S_i потенциальной энергии как функции координат атомов, рассчитанные методом сильной связи. За начало отсчета принята энергия кубана. Линии — схематическое изображение путей соответствующих переходов. Указаны также экспериментальное значение энергии активации распада кубана [8] и величины минимального барьера для перехода кубана в STCO, рассчитанные из первых принци-пов (обозначения изомеров и *ab initio* методов см. в тексте).

тельной методики см. [15,24,25]). Видно, что величина U определяется барьером на пути перехода кубана в изомер STCO — в полном соответствии с данными молекулярной динамики. Согласно нашим расчетам, она составляет $U = 1.59 \,\text{eV}$, что согласуется и с энергией активации распада $E_a = 1.9 \pm 0.1$ eV, найденной нами на основани анализа данных численного моделирования, и с экспериментальным значением $E_a = 1.87 \pm 0.04 \, \text{eV}$ [8]. Как и следовало ожидать, величина U несколько меньше, чем E_a , поскольку в эксперименте (в том числе "численном") распад кубана может происходить по путям с более высокими энергетическими барьерами. Тот факт, что высота барьера для перехода ВСТ -> СОТ ниже, чем для деления ВСТ на молекулы бензола и ацетилена, позволяет понять, почему при численном моделировании СОТ являлся продуктом распада кубана гораздо чаще.

Мы также рассчитывали величину U методом Хартри-Фока (HF), в том числе с поправкой Меллера-Плессета второго порядка (МР2), и методом функционала плотности с обменно-корреляционным функционалом B3LYP. Все расчеты были выполнены в базисе 6-31G^{*}. Мы нашли соответственно U = 3.95, 3.09,3.19 eV — намного больше экспериментального значения Е_а [8] (хотя, как отмечено выше, должно быть $U < E_a$). Таким образом, результаты, полученные в рамках модели сильной связи, согласуются с экспериментом гораздо лучше, чем расчеты из первых принципов. Это обстоятельство связано с тем, что параметры модели подбирались нами, исходя из требования наилучшего соответствия теоретических и экспериментальных значений характеристик различных углеводородных молекул [12]. Подчеркнем, что еще одним неоспоримым преимуществом метода сильной связи является возможность моделировать эволюцию кластеров в течение сравнительно большого по атомным меркам времени $\sim 1 \,\mu s$ (тогда как для *ab initio* методов $t \sim 1 \, ps$).

Полученные в настоящей работе результаты позволили найти температурную зависимость времени жизни метастабильного кубана C_8H_8 , знание которой может пригодиться при анализе возможности использования кубана C_8H_8 и твердого кубана *s*- C_8H_8 в качестве топливного элемента. Представляет также интерес, исходя из известных продуктов распада кубана, попытаться разработать новые способы его синтеза.

Список литературы

- [1] P.E. Eaton, T.W. Cole, Jr. J. Am. Chem. Soc. 86, 962 (1964).
- [2] M.A. White, R.E. Wasylishen, P.E. Eaton, Y. Xiong, K. Pramod, N. Nodari. J. Phys. Chem. 96, 421 (1992).
- [3] B.D. Kybett, S. Carroll, P. Natalis, D.W. Bonnel, J.L. Margrave, J.L. Franklin. J. Am. Chem. Soc. 88, 626 (1966).
- [4] P.E. Eaton, J. Li, S.P. Upadhyaya. J. Org. Chem. 60, 966 (1995).
- [5] P.E. Eaton. Angew. Chem. Int. Ed. Engl. 31, 1421 (1992).

- [6] А.И. Подливаев, Л.А. Опенов. Письма в ЖЭТФ 81, 656 (2005).
- [7] Л.А. Опенов, А.И. Подливаев. Письма в ЖЭТФ 84, 73 (2006).
- [8] H.-D. Martin, T. Urbanek, P. Pföhler, R. Walsh. J. Chem. Soc. Chem. Commun. 446 (1985).
- [9] Z. Li, S.L. Anderson. J. Phys. Chem. A 107, 1162 (2003).
- [10] Ç. Kililç, T. Yildirim, H. Mehrez, S. Ciraci. J. Phys. Chem. A 104, 2724 (2000).
- $[11]\,$ J. Zhao, J.P. Lu. Phys. Lett. A $319,\,523$ (2003).
- [12] А.И. Подливаев, М.М. Маслов, Л.А. Опенов. Инж. физика 5, 42 (2007).
- [13] http://srdata.nist.gov/cccbdb.
- [14] Л.А. Опенов, А.И. Подливаев. ФТТ 50, 1146 (2008).
- [15] И.В. Давыдов, А.И. Подливаев, Л.А. Опенов. ФТТ 47, 751 (2005).
- [16] Л.А. Опенов, А.И. Подливаев. Письма в ЖЭТФ 84, 217 (2006).
- [17] Л.А. Опенов, И.В. Давыдов, А.И. Подливаев. Письма в ЖЭТФ 85, 418 (2007).
- [18] И.В. Давыдов, А.И. Подливаев, Л.А. Опенов. Письма в ЖЭТФ 87, 447 (2008).
- [19] C. Xu, G.E. Scuseria. Phys. Rev. Lett. 72, 669 (1994).
- [20] J. Jellinek, A. Goldberg. J. Chem. Phys. 113, 2570 (2000).
- [21] К.П. Катин, А.И. Подливаев, Л.А. Опенов. Инж. физика 3, 55 (2007).
- [22] C.E. Klots. Z. Phys. D 20, 105 (1991).
- [23] J.V. Andersen, E. Bonderup, K. Hansen. J. Chem. Phys. 114, 6518 (2001).
- [24] А.И. Подливаев, Л.А. Опенов. ФТТ 48, 2104 (2006).
- [25] А.И. Подливаев, Л.А. Опенов. ФТТ 50, 954 (2008).