# Особенности определения механических характеристик тонких пленок методом наноиндентирования

© А.Р. Шугуров, А.В. Панин, К.В. Оскомов\*

Институт физики прочности и материаловедения Сибирского отделения Российской академии наук, 634021 Томск, Россия \* Институт сильноточной электроники Сибирского отделения Российской академии наук, 634021 Томск, Россия

E-mail: shugurov@ispms.tsc.ru

(Поступила в Редакцию 17 августа 2007 г. В окончательной редакции 30 октября 2007 г.)

Исследованы твердость и модуль упругости тонких пленок Cu на подложках Si, Ti, Cu и Al. Показано, что применение метода Оливера–Фарра в сочетании с методикой определения истинной твердости позволяет однозначно определить твердость тонких пленок Cu при различных соотношениях твердости пленки и подложки. Установлено, что корректное измерение модуля упругости тонких пленок методом Оливера–Фарра возможно, лишь когда пленка и подложка обладают одинаковыми упругими свойствами. Для определения модуля упругости пленок с помощью параметра  $P/S^2$  необходимо, чтобы пленка и подложка имели близкие значения как твердости, так и модуля упругости.

Работа выполнена при финансовой поддержке Сибирского отделения Российской академии наук (проекты № 8.1.1 и 2.16).

PACS: 62.20.-x, 62.25.+g, 68.60.Bs

### 1. Введение

В последние годы метод наноиндентирования широко используется для исследования тонких пленок и покрытий. Несмотря на то что с помощью наноиндентора сегодня возможно изучение различных механических свойств твердых тел [1,2], степени адгезии [3], особенностей развития упругой и пластической деформации [4,5] и др., одним из основных аспектов применения данного метода является измерение твердости и модуля упругости [6–11].

К настоящему моменту для определения твердости и модуля упругости тонких пленок наиболее широко применяется метод, предложенный Оливером и Фарром [12]. Поскольку данный метод был разработан для объемных материалов, при определении механических характеристик тонких пленок возникают существенные погрешности, оказывающие влияние на корректность получаемых результатов. Во-первых, это связано с тем, что отклик индентора при его проникновении внутрь образца определяется механическими свойствами не только пленки, но и подложки, причем с увеличением глубины проникновения вклад подложки возрастает [13,14]. Это особенно проявляется в случае "твердой" пленки на "мягкой" подложке, когда не только упругая, но и пластическая деформация подложки начинается уже на начальной стадии наноиндентирования. Во-вторых, при использовании метода Оливера-Фарра возникают неточности в определении контактной площади индентора с образцом из-за выдавливания ("pile-up") или вдавливания ("sink-in") материала вокруг отпечатка индентора [14,15].

Для исключения вклада подложки в измеряемую твердость композиции пленка-подложка и определения истинной твердости пленки было предложено несколько моделей [13,16–18]. Так, согласно [18], изменение твердости композиции пленка-подложка при увеличении глубины проникновения индентора можно описать с помощью следующего соотношения:

$$H_c = H_s + \frac{H_f - H_s}{1 + \frac{h^2}{B_t}},\tag{1}$$

где  $H_c$ ,  $H_s$  и  $H_f$  — значения твердости композиции, подложки и пленки соответственно, h — глубина проникновения индентора, t — толщина пленки,  $\beta$  — параметр, имеющий размерность длины. Авторами данной работы было показано, что применение метода Оливера– Фарра в сочетании с вычислением истинной твердости по формуле [1] позволяет корректно определить механические характеристики "мягкой" пленки Ag на "твердой" подложке Si [19]. Однако осталась невыясненной применимость данного подхода при различных соотношениях твердости пленки и подложки.

Аналогичные проблемы возникают и при определении методом Оливера–Фарра модуля упругости тонких пленок. В работе [20] для описания механического поведения твердых тел в процессе наноиндентирования было предложено использовать отношение приложенной нагрузки P к квадрату контактной жесткости  $S^2$ . Обе эти величины не зависят от неточностей в определении контактной площади и геометрии отпечатка индентора и определяются непосредственно из эксперимента. В то же время данный параметр напрямую связан как с твердостью, так и с модулем упругости образца:

$$\frac{P}{S^2} = \frac{\pi}{4} \frac{H}{E_{\text{eff}}^2},\tag{2}$$

где H — твердость образца, а  $E_{\rm eff}$  — эффективный модуль упругости системы образец–индентор. Первоначально данная характеристика была предложена для описания деформации объемных материалов, у которых H и E, как правило, не зависят от глубины проникновения индентора и величина  $P/S^2$  также является постоянной. Позднее этот метод был применен и для анализа данных наноиндентирования тонких пленок. Было показано [14], что если пленка и подложка имеют близкие модули упругости, можно, определив E и  $P/S^2$ , найти из выражения (2) значение твердости пленки. С другой стороны, данный подход может быть использован и для определения модуля упругости тонкой пленки при условии, что известна ее твердость.

Настоящая работа посвящена проблеме корректного определения твердости и модуля упругости тонких пленок на подложках при различных соотношениях величин их механических характеристик.

#### 2. Методика эксперимента

В работе исследовали тонкие пленки Си толщиной 500 nm, осажденные методом магнетронного распыления на подложки Si, Ti, Cu и Al при комнатной температуре. Аттестацию морфологии поверхности пленок проводили с использованием атомно-силового микроскопа (ACM) Solver HV в атмосферных условиях при комнатной температуре. Средний размер зерна в пленках Cu по данным ACM составил ~ 35 nm.

Механические свойства пленок и подложек изучали методом наноиндентирования с помощью прибора NanoTest 600 при максимальной нагрузке от 0.5 до 300 mN. Испытания проводили трехгранной пирамидкой Берковича. Анализ кривых наноиндентирования проводили с использованием метода Оливера–Фарра [12]. Твердость вычисляли из соотношения

$$H = \frac{P_{\max}}{A},\tag{3}$$

где  $P_{\text{max}}$  — максимальная приложенная нагрузка, A — площадь контакта индентора с образцом. Модуль упругости образцов определяли по углу наклона кривой разгрузки с помощью следующих соотношений:

$$E_{\rm eff} = \frac{\sqrt{\pi}}{2} \frac{S}{\sqrt{A}},\tag{4}$$

$$E_{\rm eff} = \left(\frac{1 - \nu^2}{E} + \frac{1 - \nu_{\rm ind}^2}{E_{\rm ind}}\right)^{-1},$$
 (5)

где E и  $E_{ind}$ , v и  $v_{ind}$  — модули упругости и коэффициенты Пуассона образца и индентора соответственно. Результаты измерения твердости и модуля упругости подложек для пленок Си приведены в таблице.

Твердость и модуль упругости подложек

| Подложка | H <sub>s</sub> , GPa | Es, GPa |
|----------|----------------------|---------|
| Al       | 0.7                  | 75      |
| Cu       | 1.0                  | 119     |
| Ti       | 2.9                  | 121     |
| Si       | 11.6                 | 166     |

Истинную твердость исследуемых пленок находили из выражения (1) путем аппроксимации зависимости измеренной твердости композиции пленка-подложка  $H_c$ от глубины проникновения индентора. Как видно из (1), значение истинной твердости  $H_f$  представляет собой предел расчетной зависимости  $H_c(h)$  при  $h \rightarrow 0$ . Полученные значения  $H_f$  использовали для определения модуля упругости пленок Си с помощью параметра  $P/S^2$ из выражений (2) и (5).

#### 3. Результаты и обсуждение

На рис. 1 представлена зависимость твердости пленок Си на различных подложках от глубины проникновения индентора, нормированной на толщину пленки h/t. Из приведенных данных видно, что у пленок на разных подложках характер зависимости и величина измеряемой твердости существенно различаются. Так, твердость пленки Си нанесенной на подложку Ті, не зависит от глубины проникновения индентора и составляет ~ 2.9 GPa. Твердость пленки Си на подложке Si слабо изменяется при h/t = 0.1-1.0, а затем резко возрастает. У пленок Сu, нанесенных на подложки Cu и Al, наоборот, наблюдается снижение твердости при h/t = 0.1-1.0, а при дальнейшем увеличении глубины проникновения индентора величина  $H_c$  практически не изменяется.



**Рис. 1.** Зависимость твердости пленок Си на различных подложках от относительной глубины проникновения индентора. Сплошной линией показана аппроксимация, проведенная с помощью методики определения истинной твердости [18].



**Рис. 2.** АСМ-изображения и поперечные сечения отпечатков индентора на поверхности пленок Cu на подложках Ti (*a*), Si (*b*) и Al (*c*).

Наблюдаемый характер зависимости  $H_c(h/t)$  обусловлен различным соотношением твердости пленки и подложки в исследуемых композициях. В случае нанокристаллических пленок Си на крупнозернистой подложке Ті измеряемое значение твердости не зависит от глубины проникновения индентора. Это свидетельствует о том, что данная композиция является однородной по твердости, т.е.  $H_f \approx H_s$ .

В случае пленок Си на подложке Si величина  $H_s$  существенно превышает  $H_f$ . Поэтому до тех пор пока индентор не приблизится к границе раздела пленка-подложка (т.е. при h/t < 1.0), пластическая деформация, вызванная проникновением индентора внутрь образца, локализуется главным образом внутри пленки. В результате измеряемое значение твердости отражает отклик материала пленки. При проникновении индентора через границу раздела пленка-подложка начинается пластическая деформация кремниевой подложки, что вызывает резкий рост твердости образца до значений, стремящихся к твердости Si.

Для пленок Cu на подложках Cu и Al имеет место обратная ситуация: материал пленки в несколько раз тверже, чем материал подложки. Поэтому отклик индентора уже на самых первых стадиях нагружения образцов в значительной мере определяется свойствами подложки, и лишь при h/t < 0.1 значения измеряемой твердости близки к твердости пленок Cu на подложке Ti.

Для исключения вклада подложки из измеряемой твердости была использована методика определения истинной твердости тонких пленок [18]. Кривые зависимости твердости от глубины проникновения индентора, полученные путем аппроксимации экспериментальных данных с помощью соотношения (1), приведены на рис. 1. В результате были получены следующие значения твердости пленок Си:  $H_f = 3.2$  GPa на подложке Si,  $H_f = 2.8$  GPa на подложке Cu и  $H_f = 2.7$  GPa на подложке Al, которые хорошо согласуются с твердостью пленок Cu на подложке Ti.

Небольшой разброс значений Н<sub>f</sub> обусловлен неточностями в определении площади контакта индентора с образцом при измерении твердости. Действительно, как показали АСМ-исследования, только в случае пленок Си на подложке Ті не наблюдается ни выдавливания ("pile-up"), ни вдавливания ("sink-in") материала вокруг отпечатка индентора (рис. 2, a). У пленки Си на подложке Si вследствие более высокой твердости кремния при нагружении происходит выдавливание материала пленки вокруг пирамидки индентора (рис. 2, b). В результате реальная площадь контакта оказывается больше расчетной, что приводит к завышению  $H_f$ . Напротив, в случае пленок Си на подложках Си и Аl вследствие меньшей твердости последних происходит прогиб поверхности образца вокруг индентора (рис. 2, c), обусловливая занижение  $H_f$ . Таким образом, можно заключить, что наиболее корректным значением твердости для всех исследованных пленок Cu является величина  $H_f = 2.9 \,\text{GPa}$ , полученная для пленок Си на подложке Ті. Следует



**Рис. 3.** Зависимость модуля упругости пленок Си на различных подложках от относительной глубины проникновения индентора. Пунктирными линиями показаны значения модулей упругости подложек.

отметить, что максимальная погрешность в определении величины твердости пленок Cu, возникающая из-за влияния эффектов "pile-up" и "sink-in", не превышает 10%.

Результаты измерения модуля упругости пленок Си на различных подложках методом Оливера-Фарра представлены на рис. 3. С самого начала нагружения наблюдается стремление измеряемого модуля упругости Ес к величине модуля упругости подложки E<sub>s</sub>. Поскольку поля упругих напряжений являются дальнодействующими, упругая деформация не локализуется внутри пленки даже при небольшой глубине проникновения индентора. В результате измеряемые значения модуля упругости резко изменяются при h/t = 0.1 - 1.0 не только в том случае, если модуль упругости пленки E<sub>f</sub> выше, чем E<sub>s</sub> (пленка Cu на подложке Al), но и когда  $E_f$  существенно меньше, чем  $E_s$  (пленка Си на подложке Si). Следует отметить, что при  $h/t \le 0.2$  значения модуля упругости пленок Cu на подложке Si близки к модулю упругости меди (120-130 GPa). Напротив, у пленок Си на подложке Al уже при самой малой глубине проникновения индентора модуль упругости существенно меньше. Это свидетельствует о том, что подложка А1 подвергается упругой деформации с самого начала индентирования, поскольку упругие напряжения, развивающиеся в более эластичной подложке при одинаковой степени деформации, меньше, чем напряжения в пленке Си. В случае пленок Си на подложках Си и Ті, т.е. когда пленка и подложка обладают близкими упругими характеристиками, модуль упругости слабо зависит от глубины проникновения индентора и близок к значениям модуля упругости меди.

Поскольку метод Оливера–Фарра не позволил однозначно определить модуль упругости пленок Си, была использована методика вычисления  $E_f$  с помощью параметра  $P/S^2$ . На рис. 4 показана зависимость этого параметра от глубины проникновения индентора для



**Рис. 4.** Зависимость параметра  $P/S^2$  от относительной глубины проникновения индентора для пленок Cu на различных подложках.



**Рис. 5.** Зависимость модуля упругости пленок Си на различных подложках от относительной глубины проникновения индентора, полученная с использованием параметра  $P/S^2$  и выражений (2) и (5).

пленок Си. Вследствие того что измеряемые величины твердости и модуля упругости по-разному изменяются с увеличением h, стремясь к значениям соответствующих характеристик материала подложки, у всех образцов наблюдается различное поведение зависимостей  $P/S^2(h/t)$ . У пленок Си на подложке Ті данный параметр практически не изменяется с увеличением h, так как пленка и подложка имеют очень близкие значения как твердости, так и модуля упругости. В то же время у остальных пленок не наблюдается участка зависимости  $P/S^2$  от h, где параметр имел бы постоянные значения.

У пленок Си на подложке Си  $E_f \approx E_s$  и  $H_f > H_s$ , поэтому при увеличении глубины проникновения измеряемое значение модуля упругости не изменяется (рис. 3), а значение твердости уменьшается, приближаясь к  $H_s$ уже при h = t (рис. 1). Соответственно наблюдается быстрое снижение  $P/S^2$  при  $h/t \le 1$ , а после проникновения индентора через границу раздела пленка-подложка данный параметр изменяется незначительно (рис. 4). У пленок Си на подложке Al  $E_f > E_s$  и  $H_f > H_s$ , однако измеряемая твердость композиции пленка-подложка уменьшается быстрее, чем квадрат модуля упругости, что приводит к снижению  $P/S^2$ . Наконец, у пленок Си на подложке Si  $E_f < E_s$  и  $H_f < H_s$ . В этом случае при h/t < 1 измеряемое значение твердости почти не изменяется, однако имеет место быстрый рост модуля упругости, а следовательно, и снижение  $P/S^2$ . После проникновения индентора через границу раздела вклад подложки в измеряемое значение твердости начинает возрастать, в то время как модуль упругости уже достиг своего максимального значения. Соответственно при h/t > 1 происходит рост  $P/S^2$ .

Результаты определения модуля упругости пленок Си из выражений (2) и (5) с использованием параметра  $P/S^2$  и значений истинной твердости представлены на рис. 5. Как видно из рисунка, данный метод дает корректное значение модуля упругости только в случае пленок Си на подложке Ті. В остальных случаях изменение параметра  $P/S^2$  с увеличением глубины проникновения индентора приводит к сильной зависимости получаемых значений модуля упругости от h. Даже в системе Cu/Cu, несмотря на однородность в отношении упругих свойств, снижение параметра  $P/S^2$  вследствие существенного различия между  $H_s$  и  $H_f$  приводит к росту значений модуля упругости с увеличением глубины проникновения индентора. Таким образом, обсуждаемый метод оказывается применим лишь в том случае, когда близки не только значения модулей упругости пленки и подложки, но и значения их твердости.

#### 4. Заключение

В работе проведено исследование механических свойств тонких пленок Cu на различных подложках методом наноиндентирования. Показано, что применение метода Оливера–Фарра в сочетании с методикой определения истинной твердости позволяет исключить вклад подложки и однозначно определить твердость тонких пленок как в случае "мягкой" пленки на "твердой" подложке, так и в случае "твердой" пленки на "мягкой" подложке. При этом максимальная погрешность в определении значения твердости тонких пленок Cu, возникающая из-за влияния выдавливания и вдавливания материала пленки вокруг отпечатка индентора, не превышает 10%.

Для корректного измерения модуля упругости тонких пленок методом Оливера–Фарра необходимо подбирать систему пленка–подложка так, чтобы они обладали одинаковыми упругими свойствами. Точное определение модуля упругости пленок с помощью параметра  $P/S^2$  возможно лишь тогда, когда пленка и подложка имеют близкие значения как твердости, так и модуля упругости. Получаемые при этом значения зависят не только от

соотношения величин твердости и модуля упругости пленки и подложки, но и от характера изменения их значений при увеличении глубины проникновения индентора. Анализ зависимостей  $P/S^2$  от глубины проникновения индентора позволяет проследить характер развития упругой и пластической деформации в системе пленка–подложка.

## Список литературы

- A.E. Giannakopoulos, S. Suresh. Scripta Mater. 40, 1191 (1999).
- [2] Ю.И. Головин, А.И. Тюрин, В.В. Хлебников. ЖТФ 75, 91 (2005).
- [3] T.Y. Tsui, C.A. Ross, G.M. Pharr. Mater. Res. Soc. Symp. Proc. 473, 51 (1997).
- [4] Ю.И. Головин, В.И. Иволгин, А.И. Тюрин, В.А. Хоник. ФТТ 45, 1209 (2003).
- [5] A. Gouldstone, H.-J. Koh, K.-Y. Zeng, A.E. Giannakopoulos, S. Suresh. Acta Mater. 48, 2277 (2000).
- [6] Р.А. Андриевский, Г.В. Калинников, N. Hellgren, P. Sandstom, Д.В. Штанский. ФТТ 42, 1624 (2000).
- [7] Д.В. Штанский, С.А. Кулинич. ФТТ 45, 1122 (2003).
- [8] M.A. Phillips, B.M. Clemens, W.D. Nix. Acta Mater. 51, 3171 (2003).
- [9] A.A. Volinsky, N.R. Moody, W.W. Gerberich. J. Mater. Res. 19, 2650 (2004).
- [10] P. Mishra, D. Ghose. Surf. Coat. Technol. 201, 965 (2006).
- [11] R. Saha, Z. Xue, Y. Huang, W.D. Nix. J. Mech. Phys. Sol. 49, 1997 (2001).
- [12] W. Oliver, G. Pharr. J. Mater. Res. 7, 1564 (1992).
- [13] T.Y. Tsui, C.A. Ross, G.M. Pharr. Mater. Res. Soc. Symp. Proc. 473, 57 (1997).
- [14] R. Saha, W.D. Nix. Acta Mater. 50, 23 (2002).
- [15] D.E. Kramer, A.A. Volinsky, N.R. Moody, W.W. Gerberich. J. Mater. Res. 16, 3150 (2001).
- [16] B. Jonsson, S. Hogmark. Thin Solid Films 114, 257 (1984).
- [17] P.J. Burnett, D.S. Rickerby. Thin Solid Films 148, 51 (1987).
- [18] J.R. Tuck, A.M. Korsunsky, S.J. Bull, R.I. Davidson. Surf. Coat. Technol. 137, 217 (2001).
- [19] А.В. Панин, А.Р. Шугуров, К.В. Оскомов. ФТТ **47**, 1973 (2005).
- [20] D.L. Joslin, W.C. Oliver. J. Mater. Res. 5, 123 (1990).