Электронный парамагнитный резонанс ионов Er³⁺ в поликристаллическом *α*-Al₂O₃

© Г.Р. Асатрян, Р.И. Захарченя, А.Б. Куценко*, Р.А. Бабунц, П.Г. Баранов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия * Fachbereich Physik, Universität Osnabrück, 49069 Osnabrück, Germany E-mail: hike.asatryan@mail.ioffe.ru

(Поступила в Редакцию 3 октября 2006 г.)

Обнаружены спектры ЭПР редкоземельных ионов Er^{3+} в поликристаллическом корунде α -Al₂O₃, синтезированном методом золь-гель-технологии. Показано, что спектры ЭПР принадлежат ионам Er^{3+} в основном состоянии, соответствующем нижнему штарковскому подуровню подтерма ${}^{4}I_{15/2}$, и описываются спиновым гамильтонианом аксиальной симметрии с эффективным спином S = 1/2 и *g*-тензором: $g_{\parallel} = 12.176$, $g_{\perp} = 4.14$. Средняя величина *g*-тензора $\langle g \rangle = 6.82$ соответствует состоянию Γ_7 в кубическом поле. Предполагается, что в кристалле корунда Al₂O₃ эрбий замещает алюминий, при этом, несмотря на очевидное раздвижение решетки вокруг иона Er^{3+} , сохраняется локальная симметрия C_3 иона Al³⁺.

Работа поддержана РФФИ (гранты № 04-02-17632 и 05-02-17817), программой РАН "Спин-зависимые эффекты в твердом теле и спинтроника" и П-03 "Квантовая макрофизика".

PACS: 76.30.Kg, 78.55.Qr

Материалы, активированные эрбием, представляют большой интерес при изготовлении тонких пленок, интегрированных в оптоэлектронные технологии, из-за излучения внутри 4f-оболочки ионов Er^{3+} на стандартной телекоммуникационной длине волны 1.54 µm. Активированные эрбием диэлектрические тонкие пленки Al₂O₃ являются перспективными системами при создании плоских оптических усилителей или лазеров, которые могут быть интегрированы с другими устройствами на одном и том же чипе. Однако внедрение примесей больших ионов, таких как Er^{3+} , в решетку корунда α-Al₂O₃ при применении традиционных высокотемпературных методов выращивания кристаллов в настоящее время является нерешенной проблемой, очевидно из-за большого различия размеров ионов Er³⁺ и Al³⁺: ионный радиус $A1^{3+}$ равен 0.51 Å, в то время как радиус эрбия составляет 0.881 Å. Расстояние Er-O достигает 2.5 Å в ряде соединений, в то время как расстояние Al-O в Al₂O₃ равно 1.988 и 1.845 Å. Ситуация еще менее благоприятна в случае междоузельного замещения. Этим фактом обусловлено отсутствие до последнего времени работ по получению и исследованию данного материала. Только недавно появилась работа, в которой были обнаружены оптическими методами ионы Er³⁺ в поликристаллическом корунде [1].

Метод ЭПР позволяет получить наиболее детальную информацию о структуре и зарядовом состоянии примесных ионов в кристаллической матрице. ЭПР широко используется для изучения лазерных кристаллов, тем не менее в настоящее время в монокристаллах корунда из редкоземельных элементов изучен только гадолиний [2]. В настоящей работе мы приводим результаты исследования спектров ЭПР редкоземельного иона Er^{3+} в поликристаллическом корунде α -Al₂O₃. Насколько нам известно, методом ЭПР ионы Er^{3+} в Al₂O₃ обнаружены и исследованы впервые.

1. Методика эксперимента

В проведенных экспериментах были исследованы поликристаллы α-Al₂O₃, активированные ионами эрбия с концентрацией 1 wt.%. Поликристаллы синтезировались по золь-гель (ЗГ) технологии с использованием алкокси-метода, в котором исходными веществами были алкоксиды алюминия — Al(OR)₃, по методике, описанной в работе [1]. Эта технология позволяет вводить строго контролируемые количества солей редкоземельных элементов, которые равномерно распределяются по всему объему золя. Процессы роста сопровождаются хемосорбцией RE³⁺-ионов на поверхности коллоидных частиц моногидроксида алюминия с образованием мостиковых связей Al-O-RE. При традиционных методах выращивания кристаллов для образования таких связей требуются намного большие температуры, определяемые температурами плавления соответствующих оксидов (около 2000°С). На заключительной стадии образцы Al₂O₃ получались термическим отжигом ксерогелей. При температуре 450°С моногидрид алюминия теряет воду и переходит в *у*-Al₂O₃ — первую низкотемпературную модификацию оксида алюминия, стабильную до 900°С. При температуре отжига 750°С формировался монолитный твердый прозрачный высокопористый образец у-Al₂O₃-Er³⁺, построенный из близких по размеру кристаллических частиц нанометрового размера со структурно-разупорядоченной кубической решеткой у-фазы Al₂O₃. При нагревании выше 900°С γ -Al₂O₃ переходит в корунд через серию полиморфных превращений $\gamma \rightarrow \delta \rightarrow \theta \rightarrow \alpha$. Исследования проводились в основном на монофазных образцах α -Al₂O₃ с малой концентрацией примеси эрбия. Это монолитные очень прочные поликристаллические образцы. Они построены из плотноупакованных достаточно крупных $(0.1-0.5\,\mu\text{m})$ кристаллитов корунда. Благодаря разориентированности оптически одноосных кристаллов корунда поликристаллический образец оказывается оптически неоднородным и сильно рассеивает свет.

Эксперименты проводились на серийном спектрометре ЭПР Jeol на частоте 9.3 GHz (*X*-диапазон) с использованием проточного гелиевого криостата, изготовленного в лаборатории и позволяющего изменять температуру в области 4–300 К. Все спектры ЭПР, представленные на рисунках, зарегистрированы без накопления в результате одного сканирования.

2. Экспериментальные результаты

В работе [1] были проведены оптические исследования поликристаллического корунда *α*-Al₂O₃, активированного ионами Er³⁺. Наблюдались характерные для иона Er³⁺ узколинейчатые оптические спектры поглощения и люминесценции, соответствующие переходам внутри 4f-оболочки. Ион Er^{3+} характеризуется электронной конфигурацией $4f^{11}$, для которой нижним подтермом является ${}^{4}I_{15/2}$. На рис. 1 представлены спектры поглощения и люминесценции для переходов между штарковскими подуровнями подтермов ⁴*I*_{15/2} и ⁴*I*_{13/2}, которые представляют основной интерес с точки зрения применения, поскольку находятся в ИК-диапазоне в области 1.54 µm. Нижний спектр, зарегистрированный при 5К, соответствует оптическому поглощению с нижнего штарковского подуровня подтерма ⁴I_{15/2} (преимущественно заселенного при низкой температуре) на семь подуровней подтерма ⁴*I*_{13/2}. Наличие только семи узких линий позволяет утверждать, что имеется только один доминирующий излучающий центр Er³⁺, отвечающий за оптические переходы. В отличие от спектра поглощения спектр люминесценции (вверху) зарегистрирован при высокой температуре (300 К), поэтому линии люминесценции существенно шире линий поглощения. В принципе энергии переходов между нижними подуровнями подтермов ⁴*I*_{15/2} и ⁴*I*_{13/2} в спектрах поглощения и люминесценции, зарегистрированные при одной температуре, должны совпадать (низкоэнергетическая линия в спектре поглощения и высокоэнергетическая линия в спектре люминесценции). Однако ввиду различия в температурах регистрации поглощения и люминесценции имеется только качественное перекрытие низкоэнергетического края в спектре поглощения и высокоэнергетического края в спектре

Рис. 1. Спектры оптического поглощения и люминесценции в поликристаллическом корунде *α*-Al₂O₃.

люминесценции (рис. 1). Высокая температура регистрации люминесценции также приводит к наличию большего числа линий, что обусловлено переходами между всеми штарковскими подуровнями подтермов ${}^{4}I_{15/2}$ и ${}^{4}I_{13/2}$. В работе [1] установлена система энергетичских штарковских подуровней для основного ${}^{4}I_{15/2}$ состояния, расстояние между двумя нижними штарковскими подуровнями составляет 51 сm⁻¹. Поскольку это расстояние достаточно велико, при низких температурах, при которых возможно исследование спектров ЭПР редкоземельных ионов (исключая ионы в *S*-состоянии), может наблюдаться спектр ЭПР только самого нижнего штарковского подуровняя основного состояния ${}^{4}I_{15/2}$.

Представленные спектры люминесценции и поглощения свидетельствуют о том, что в исследуемых образцах действительно имеются ионы Er³⁺, однако из этих спектров не может быть получена информация о позициях указанных ионов в поликристаллическом образце, а также о локальной симметрии этих центров.

На рис. 2 показан спектр ЭПР, зарегистрированный в образце поликристаллического корунда α -Al₂O₃: Er³⁺ (1 at.% Er³⁺) в *X*-диапазоне (частота ~ 9.3 GHz) при T = 5 К. В области магнитных полей 20–200 mT наблюдается ряд сравнительно узких линий, накладывающихся на спадающий участок сильного фонового сигнала. Ниже показан тот же спектр без фонового сигнала. В спектре ЭПР можно выделить две пары линий, обозначенные на рис. 2 цифрами I и II, которые легко могут быть интерпретированы как сигналы ЭПР аксиальных центров с эффективным спином S = 1/2 и сильно анизотропными *g*-факторами, усредненные по всем ориентациям в поликристаллическом образце. Для описания спектров ЭПР использовался спиновый гамильтониан вида

$$H = \mu_{\rm B}[g_{\parallel}S_{z}B_{z} + g_{\perp}(S_{x}B_{x} + S_{y}B_{y})], \qquad (1)$$

где S = 1/2, g_{\parallel} и g_{\perp} -компоненты g-тензора вдоль аксиальной оси симметрии центра (ось z) и перпендикулярно ей, $\mu_{\rm B}$ — магнетон Бора.

Внизу сплошными линиями показаны симулированные спектры ЭПР для двух аксиальных центров I и II, характеризующихся сильно анизотропными *g*-факторами, которые были получены путем усреднения по всем ориентациям кристалла в поликристаллическом образце. Для симуляции спектра I использовались следующие *g*-факторы: $g_{\parallel} = 12.176$ и $g_{\perp} = 4.14$, для симуляции менее интенсивного спектра II — $g_{\parallel} = 17.2$, $g_{\perp} = 3.92$.

Внизу на этом же рисунке для сравнения штриховой линией показаны стимулированные спектры ЭПР для эрбия в Y₂O₃ [3], для которого $g_{\parallel} = 12.176$, $g_{\perp} = 3.319$.

На рис. 3 показаны спектры ЭПР в поликристаллическом корунде α -Al₂O₃, зарегистрированные в *X*-диапазоне при температурах 4, 7 и 15 К без фонового

Рис. 2. Спектры ЭПР, зарегистрированные в X-диапазоне в образце поликристаллического корунда α -Al₂O₃ при температуре 5 К с фоновым сигналом (верхний спектр) и без фонового сигнала. Внизу показаны симулированные для поликристаллического образца спектры ЭПР с параметрами, соответствующими парам линий, обозначенных I и II. Для сравнения показан симулированный спектр ЭПР для Er^{3+} в Y₂O₃. Звездочкой отмечен сигнал, не относящийся к образцу.

Рис. 3. Спектры ЭПР, зарегистрированные в *X*-диапазоне в образце поликристаллического корунда α -Al₂O₃ при температурах 4, 7 и 15 K без фонового сигнала.

сигнала. Видно, что в образце поликристаллов корунда α -Al₂O₃ наряду с сигналами I и II наблюдается также почти изотропный сигнал с $g \cong 6.85$ (линия III на рис. 2 и 3), который исчезает уже при температурах выше 10 К в отличие от сигналов с аксиальной симметрией I и II, которые наблюдаются вплоть до температуры 70 К.

3. Обсуждение результатов

Основу кристаллической структуры корунда Al₂O₃ составляет двухслойная плотная упаковка из атомов кислорода, 2/3 октаэдрических пустот которой заполнены катионами A1³⁺ таким образом, что в любом ряду октаэдрического слоя, перпендикулярного единственной оси третьего порядка, два заполненных октаэдра чередуются с одним пустым. Ионы Al³⁺ находятся между равноудаленными кислородными плоскостями. Они координированы сильно искаженным октаэдром (локальная симметрия C_3). Все ионы Al³⁺ структурно-эквивалентны, при этом имеется два магнитно-неэквивалентных положения. Однако магнитная неэквивалентность проявляется в ЭПР только для примесных ионов, замещающих Al³⁺, имеющих электронный спин S ≥ 2. Поскольку для нижнего крамерсова дублета ионов Er³⁺ эффективный спин S = 1/2, магнитная неэквивалентность не проявляется в спектрах ЭПР ионов Er^{3+} в корунде Al_2O_3 .

Ион Er^{3+} в свободном состоянии имеет электронную конфигурацию $4f^{11}$, для которой нижним подтермом

является ⁴*I*_{15/2}. Шестнадцатикратно вырожденный подтерм ${}^{4}I_{15/2}$ расщепляется в кубическом кристаллическом поле на три штарковских квартера Г₈ и два разных дублета Г₆ и Г₇ [4]. Основным состоянием в кубическом поле может быть один из дублетов (Г6 или Γ_7), относительное положение которых зависит от соотношения членов кристаллического поля четвертого и шестого порядков. В случае кубической симметрии дублеты Г₆ и Г₇ могут быть описаны спиновым гамильтонианом с эффективным спином S = 1/2 и изотропными g-факторами. Для Г₆ и Г₇, принадлежащих состоянию J = 15/2 (ион Er^{3+}), волновые функции и, следовательно, g-факторы определяются однозначно. Теоретические значения g-факторов для "изолированных" крамерсовых дублетов Г₆ и Г₇ ионов Er³⁺ в случае кубической симметрии равны 6 (Г₆) и 6.8 (Г₇) [4]. Отклонение от чистой LS-связи несколько изменяет эти величины. Кроме того, такие *g*-факторы могут наблюдаться, если резонанс имеет место в чистом основном состоянии; примесь волновых функций возбужденных состояний изменяет величину изотропного g-фактора. Картина ЭПР ионов Er³⁺ в кубическом кристаллическом поле в состояниях Г₆ и Г₇ весьма схожа с той, которую можно наблюдать при более низкой симметрии, поскольку Г₆ и Г₇ соответствуют крамерсовым дублетам.

При симметрии кристаллического поля ниже кубической *g*-факторы становятся анизотропными, и в случае аксиальной симмерии, которая имеет место в корунде Al₂O₃, спектры ЭПР ионов Er³⁺ характеризуются *g*-тензором с параметрами g_{\parallel} и g_{\perp} . Однако известно, что, несмотря на значительные изменения g_{\parallel} и g_{\perp} , средние величины, определяемые как $\langle g \rangle = (g_{\parallel} + 2g_{\perp})/3$, достаточно стабильны и для случаев, когда аксиальное поле мало по сравнению с кубическим, средние *g*-факторы близки к значениям изотропных *g*-факторов в кубическом кристаллическом поле. Таким образом, величина $\langle g \rangle$ позволяет сделать вывод об основном состоянии иона Er³⁺ в корунде Al₂O₃ и положении в кристаллической решетке.

Следует отметить, что основной характеристикой для проведения химической идентификации эрбия является наблюдение сверхтонкой структуры в спектре ЭПР иона Er^{3+} для изотопа ¹⁶⁷ Er (22.9%, I = 7/2). Однако в поликристаллическом материале из-за усреднения по всем ориентациям наблюдение сверхтонкой структуры, как правило, затруднено. Поэтому следует использовать другие свойства ионов Er³⁺, позволяющие идентифицировать эрбий в корунде Al₂O₃. Такими свойствами являются, с одной стороны, характерные оптические спектры поглощения и люминесценции, присущие только ионам Er³⁺, которые, однако, не позволяют идентифицировать положение ионов эрбия в образце. С другой стороны, величина среднего g-фактора $\langle g \rangle$ позволяет сделать определенный вывод об основном состоянии иона и его положении в решетке корунда Al₂O₃.

Для наиболее интенсивного сигнала ЭПР, обозначенного на рис. 2 и 3 как I, величина $\langle g \rangle = 6.82$. Эта величина соответствует изотропному *g*-фактору состояния Г₇ для ионов Er^{3+} в кубическом окружении. Близость $\langle g \rangle$ и $g(\Gamma_7)$ указывает на то, что мы наблюдаем резонанс в чистом основном состоянии иона Er³⁺. Наблюдаемая аксиальная симметрия спектра ЭПР показывает, что ион Er³⁺ находится в аксиальном кристаллическом поле, направление которого, весьма вероятно, совпадает с осью третьего порядка корунда Al₂O₃ и соответствует локальной симметрии С₃ для искаженного октаэдра, в котором располагается ион Al³⁺. Таким образом, ион Er^{3+} , как и можно было ожидать, входит в Al_2O_3 посредством замещения. Очевидно, из-за большего размера иона Er³⁺ замещение невозможно без определенного искажения локального окружения. Однако, несмотря на ожидаемое искажение, локальная точечная симметрия сохраняется. Дополнительным подтверждением правильности выбранной нами модели служит представленный на рис. 2 симулированный путем усреднения по всем ориентациям сигнал ЭПР для ионов Er³⁺ в близком к Al₂O₃ соединении Y₂O₃, для которого $g_{\parallel} = 12.176$, $g_{\perp} = 3.319$ и средний g-фактор $\langle g \rangle = 6.27$. Существенное отклонение величины (g) от значений g-фактора для чистых состояний Г₆ и Г₇ свидетельствует о малой величине расщепления между основным состоянием (по-видимому, Γ_6) и первым возбужденным крамерсовым дублетом.

Низкотемпературный изотропный сигнал III (рис. 2 и 3) характеризуется почти изотропным g-фактором с g = 6.85, который также характерен для состояния Γ_7 ионов Er³⁺ в кубическом окружении. Возможно, этот сигнал принадлежит ионам Er³⁺, занимающим пустоты в кристалле Al₂O₃, при этом в результате релаксации решетки симметрия окружения является близкой к кубической. Для таких центров из-за высокой симметрии окружения оптические переходы внутри 4f-оболочки могут быть запрещены. Природа менее интенсивного сигнала II не ясна, поскольку величина среднего g-фактора $\langle g \rangle = 8.35$ не соответствует ионам Ег³⁺. Также не ясна природа широкого фонового сигнала, который может быть связан с наличием в образце малой примеси магнитной фазы соединения эрбия, например оксида эрбия. Вполне вероятно, что в исходном материале, используемом для активирования эрбием, присутствовали неконтролируемые примеси других редкоземельных элементов. Аналогичный результат наблюдался, например, в случае Y₃Al₅O₁₂: Er, где в дополнение к спектрам ЭПР центров Er³⁺ наблюдались сигналы от неконтролируемых примесей других редкоземельных элементов, таких как Nd³⁺ и Yb³⁺ [5].

Таким образом, в настоящей работе обнаружены спектры ЭПР редкоземельных ионов Er^{3+} в поликристаллическом корунде α -Al₂O₃. Эти спектры связаны с основным состоянием ионов Er^{3+} , соответствующим нижнему штарковскому подуровню подтерма ${}^{4}I_{15/2}$, и описываются спиновым гамильтонианом аксиальной симметрии с эффективным спином S = 1/2 и *g*-тензором: $g_{\parallel} = 12.176$, $g_{\perp} = 4.14$. Средняя величина *g*-тензора

 $\langle g \rangle = 6.82$ соответствует состоянию Γ_7 в кубическом поле. Сделано предположение, что в кристалле корунда Al₂O₃ эрбий замещает алюминий, при этом, несмотря на очевидное раздвижение решетки вокруг иона Er³⁺, сохраняется локальная симметрия C_3 иона Al³⁺.

Список литературы

- А.А. Каплянский, А.Б. Кулинкин, А.Б. Куценко, С.П. Феофилов, Р.И. Захарченя, Т.Н. Василевская. ФТТ 40, 1442 (1998).
- [2] S. Geschwind, J.P. Remeika. Phys. Rev. 122, 757 (1961).
- [3] W. Schafer. Phys. Kondens. Mater. 9, 935 (1969).
- [4] A. Abragam, B. Bleaney. 1970 Electron Paramagnetic Resonance of Tracsition Ions. Oxford University Press, Oxford (1970).
 [А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов. Мир, М. (1972). Т. І. 651 с.]
- [5] Г.Р. Асатрян, П.Г. Баранов, В.И. Жеков, Т.М. Мурина, А.М. Прохоров, В.А. Храмцов. ФТТ **33**, 976 (1991).