ЭПР и оптическая спектроскопия сегнетоэластиков K₃Na(CrO₄)₂, активированных молекулярными примесными ионами MnO₄²⁻

© Г.Р. Асатрян, В.С. Вихнин, Т.И. Максимова, М. Maczka*, К. Hermanowicz*, J. Hanusa*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия *Institute for Low Temperature and Structure Research, Polish Academy of Sciences, 50950 Wroclaw, Poland

E-mail: hike.asatryan@mail.ioffe.ru, valentin.vikhnin@uos.de, t.maksimova@mail.ioffe.ru

Кристаллы собственного сегнетоэлектрика K₃Na(CrO₄)₂, содержащие молекулярные примесные ионы MnO_4^{2-} , исследованы методами ЭПР и оптической спектроскопии. При низких температурах ($T \le 20$ K) идентифицирован спектр ЭПР иона Mn^{6+} , входящего в состав молекулярного примесного иона MnO_4^{2-} . Интенсивность этого спектра необычно быстро уменьшается с ростом температуры. Обнаружена широкая полоса ИК-люминесценции с хорошо разрешенной при 8 K вибронной структурой. Проведенное теоретическое рассмотрение иона Mn^{6+} в молекулярной примеси MnO_4^{2-} в сегнетоэластике K₃Na(CrO₄)₂ привело к выводу о важности вклада псевдоэффекта Яна–Теллера (ПЭЯТ) в этом случае. Эффект ПЭЯТ позволяет объяснить как появление тонкой структуры вибронных повторений в спектре люминесценции, с одной стороны, так и быстрое уменьшение с ростом температуры интенсивности спектра ЭПР кристалла K₃Na(CrO₄)₂: MnO_4^{2-} , с другой.

Работа выполнена в рамках проектов Российского фонда фундаментальных исследований № 04-02-17633, 05-02-17766.

PACS: 77.80.-e, 76.30.Fc

1. Введение

Собственный сегнетоэластик K₃Na(CrO₄)₂ является предметом многочисленных экспериментальных (в области рентгеновской, ЭПР и акустической спектроскопии [1–3]) и теоретических [1,4] исследований. В большинстве случаев целью работ являлось изучение природы и свойств сегнетоэластического фазового перехода, температура которого T_c , согласно [5], равна 239 К. Так, в работе [3] на основе ультразвуковых исследований и теоретического анализа было показано, что первичным параметром порядка η_1 здесь является компонента тензора деформаций $\varepsilon_4 = \eta_1$, в то время как в качестве вторичного параметра порядка η_2 выступает компонента тензора деформаций [$(\varepsilon_2 - \varepsilon_1)/2$] = η_2 .

Особый интерес вызывает исследование этого сегнетоэластического кристалла, содержащего молекулярные примесные ионы MnO_4^{2-} [6]. Такой тип примесей был исследован ранее методами ЭПР [7] и оптической спектроскопии [8–10] в кристаллах, не обладающих структурными фазовыми переходами. Эти работы продемонстрировали свойства молекулярных примесных ионов MnO_4^{2-} как эффективных парамагнитных и оптических зондов для исследования внутренних полей в кристаллах.

В настоящей работе приведены результаты экспериментальных исследований и теоретического анализа спектров ЭПР и ИК-люминесценции сегнетоэластика $K_3Na(CrO_4)_2$ с молекулярными примесными ионами MnO_4^{2-} .

2. Экспериментальные результаты и обсуждение

2.1. Оптические исследования. Были выращены оптически однородные монокристаллы сегнетоэластиков K₃Na(CrO₄)₂ с примесью молекулярных ионов MnO₄²⁻. В этих кристаллах был впервые обнаружен широкополосный спектр ИК-люминесценции с хорошо разрешенной вибронной структурой в спектральном диапазоне 8500-1100 ст⁻¹. Наблюдаемый спектр ИК-люминесценции был интерпретирован как результат d-d $(^2T_2 \rightarrow {}^2E)$ -перехода $3d^1$ -электрона иона Mn^{6+} в MnO₄²⁻, что согласуется с данными [8,9]. При 8 К спектр состоял из двух основных прогрессий узких эквидистантных повторений (с частотой ~ 335 cm⁻¹) и двух бесфононных линий ($\Delta = 148 \, \mathrm{cm}^{-1}$) (рис. 1). Вибронные прогрессии обусловлены сильным взаимодействием электрона с деформационным локальным колебанием симметрии (e) иона MnO_4^{2-} . Наличие двух бесфононных линий мы рассматриваем как результат расщепления основного (симметрии Е) электронного состояния примесного иона MnO₄²⁻ в моноклинном кристаллическом поле матрицы в низкотемпературной фазе кристалла. Это связано с искажением примесного иона и понижением его симметрии с T_d до C_s . Наличие дополнительной (тонкой) структуры вибронных повторений, обозначенной на рис. 1 цифрами 1-4, может быть объяснено как следствие псевдоэффекта Яна-Теллера (ПЭЯТ), который ответствен за формирование анизотропных вибронных конфигураций. В области ПЭЯТкластера может возникать набор связанных колебаний

Рис. 1. Неполяризованный спектр ИК-люминесценции иона MnO_4^{2-} в кристалле $K_3Na(CrO_4)_2$ при T = 8 К. Спектр возбуждался лазером $\lambda = 632$ nm. ZPL(1) и ZPL(2) — бесфононные линии. Вибронные повторения по деформационному колебанию (*e*) указаны стрелками. В спектре показано также положение вибронного максимума, связанного с полносиммеричным колебанием (*a*₁).

Рис. 2. Спектр ЭПР молекулярного примесного иона MnO_4^{2-} в сегнетоэластике $K_3Na(CrO_4)_2$ при T = 3.5 K, $\nu = 9.35 \text{ GHz}$ и угле θ между направлениями оси *с* кристалла и внешнего магнитного поля в плоскости (*cb*), равным $\theta = 85^{\circ}$.

"квазилокальное колебание + фонон", существенно обогащающих спектры вибронных повторений, обусловленных взаимодействием электрона с деформационным колебанием молекулярного иона MnO₄²⁻.

2.2. Исследования ЭПР. ЭПР кристалла $K_3Na(CrO_4)_2:MnO_4^{2-}$ изучался в трехсантиметровом диапазоне в широком интервале температур от 3.5 до 300 К. При *T* < 25 К нами был обнаружен интенсивный спектр ЭПР, состоящий из большого числа частично наложенных друг на друга узких (4G) линий. Вид спектра при температуре 3.5 К и $\theta = 85^{\circ}$ (где θ угол между осью с кристалла и направлением внешнего магнитного поля в плоскости (cb)) приведен на рис. 2. Анализ ориентационных зависимостей показал, что эти линии представляют собой компоненты сверхтонкой структуры от двенадцати секстетов, обусловленных 3d'-молекулярным комплексом MnO_4^{2-} с S = 1/2 и ядерным спином I = 5/2 (на рис. 2 показаны также четыре хорошо разрешенных секстета). Наблюдается сильная анизотропия сверхтонкого расщепления (в максимуме — порядка 149 G, в минимуме — 15 G). На рис. 3 приведены экспериментальные угловые зависимости спектров ЭПР. Таким образом, парамагнитным центром здесь является ион Mn^{6+} в MnO_4^{2-} молекулярной примеси, имеющий двенадцать магнитнонеэквивалентных положений, образующихся в кристалле

Рис. 3. Экспериментальные угловые зависимости спектров ЭПР иона MnO_4^{2-} в плоскости (*cb*) (0° соответствует направлению оси *c*) кристалла K₃Na(CrO₄)₂ при *T* = 3.5 K и $\nu = 9.35$ GHz.

при температурах ниже точки фазового перехода. Эти выводы согласуются с рентгеновскими данными работы [1], согласно которым в сегнетоэластической фазе монокристаллы К₃Na(CrO₄)₂ характеризуются двойникованием и образуют шесть доменов с 60° ориентацией, при этом тетраэдры CrO₄ искажаются и поворачиваются относительно оси с кристалла. Следует отметить, что наблюдаемое существенное уменьшение интенсивности спектра ЭПР с ростом температуры в достаточно узкой температурной области (примерно от 10 до 25 К) может быть объяснено как результат динамического усреднения спектра ЭПР, а именно как результат экспоненциального ускорения прыжкового движения между различными вибронными конфигурациями, обусловленными ПЭЯТ. Тем не менее здесь нельзя исключить также возможную роль локального перехода.

3. Выводы

Методами ЭПР и оптической спектроскопии показано, что в собственном сегнетоэластике $K_3Na(CrO_4)_2$ молекулярный ион MnO_4^{2-} (с ионом Mn^{6+} в центре тэтраэдра из атомов кислорода) находится в качестве примеси замещения на месте CrO_4 . Проведенное теоретическое рассмотрение привело к выводу о важности связанного с мягкой акустической модой вклада псевдоэффекта Яна–Теллера как при интерпретации сложной структуры спектра люминесценции, так и для объяснения особенностей температурной зависимости спектра ЭПР.

Авторы благодарны А.А. Каплянскому за внимание к работе и П.Г. Баранову за полезные дискуссии.

Список литературы

- J. Fabry, T. Breczewski, G. Madariaga. Acta Cryst. B 50, 13 (1994).
- [2] S. Jerzak. J. Phys.: Cond. Matter 15, 8725 (2003).
- [3] А.К. Раджабов, Е.В. Чарная, В. Mroz, C. Tien, Z. Tylczynski, C.-S. Wur. ФТТ 46, 754 (2004).
- [4] P. Toledano, M.M. Fejer, B.A. Auld. Phys. Rev. B 27, 5717 (1983).
- [5] T. Krajewski, B. Mroz, P. Piskunowicz, T. Breczewski. Ferroelectrics 106, 225 (1990).
- [6] H.R. Asatryan, V.S. Vikhnin, T.I. Maksimova, M. Maczka, J. Hanuza. Abstracts of XII Feofilov Symp. on Spectroscopy of Crystals Activated by Rare Earth and Transition Ions. Ekaterinburg–Zarechnij (2004). P. 75.
- [7] А.Г. Бадалян, Т.И. Максимова, Я. Роса. ФТТ 29, 2840 (1987).
- [8] T.C. Brunold, H.U. Guedel. Inorganic Chem. 36, 1946 (1997).
- [9] T. Maksimova, K. Hermanovwicz, J. Hanuza, U. Happek. J. Alloys Comp. 341, 239 (2002).
- [10] T.I. Maksimova, K. Hermanowicz, J. Hanuza, U. Happek. Phys. Stat. Sol. (c) 2, 322 (2004).