Сенсибилизация фотоэффекта в карбазоли индолокарбазолсодержащих полифенилхинолинах акцепторными молекулами бензотиадиазола

© Е.Л. Александрова[†], В.М. Светличный*[¶], Н.В. Матюшина*, Л.А. Мягкова*, В.В. Кудрявцев*, А.Р. Тамеев•

* Институт высокомолекулярных соединений Российской академии наук,

199004 Санкт-Петербург, Россия

† Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук,

119071 Москва, Россия

(Получена 25 марта 2014 г. Принята к печати 1 апреля 2014 г.)

Установлена эффективная сенсибилизация фотоэффекта в смесевых композициях полифенилхинолинов (ПФХ) с молекулами 2,1,3-бензотиадиазола (БТДЗ). Введение 10 мас% БТДЗ приводит к расширению спектральной области чувствительности ПФХ и возрастанию светочувствительности в 4.5 раза, а фототока — более чем в 6 раз. Показано, что эффект обусловлен комплексообразованием между донорными фрагментами ПФХ и акцепторными молекулами БТДЗ, а более сильное по сравнению со светочувствительностью увеличение фототока, по-видимому, определяется переносом свободных фотогенерированных носителей заряда (электронов) по введенным в полимер молекулам сенсибилизатора.

1. Введение

Известно, что мономерное звено 2,6-полифенилхинолинов (ПФХ) общей формулы

где X — мостиковая группа, Ar — ариленовый фрагмент, представляет собой внутримолекулярный комплекс с переносом заряда (ВКПЗ), или донорноакцепторный (Д-А), между донорным (Д) ариленовым Ar фрагментом и акцепторными (A) фенилхинолиновыми (ФХ) циклами. Такие комплексы, особенно, если в них ариленовый фрагмент является сильным донором типа карбазола (К) или индолокарбазола (ИК), способны, как известно [1-6], взаимодействовать с электроноакцепторными молекулами, близкими по пространственной структуре К или ИК. Такая сенсибилизация фотоэффекта приводит к усилению фотофизических свойств ПФХ — их светочувствительности или фотопроводимости — и расширению спектральной области чувствительности. Одним из электороноакцепторов, близких по пространственной структуре К или ИК, является 2,1,3бензотиадиазол (БТДЗ).

Цель данной работы — исследовать фотофизические свойства сенсибилизированных БТДЗ К- и ИК-содержащих ПФХ и оценить перспективность такой сенсибилизации для создания на их основе регистрирующих сред оптоэлектронных устройств.

¶ E-mail: valsvet@hq.macro.ru

2. Объекты и методики исследования

Исследования выполнены на ПФХ общей формулы (1), в которых мостиковой группой (-X-) были кислородный атом -O- или фениламинная Ph-N=группировка (ФА), а в качестве (-Ar-) фрагментов — производные карбазола (К) с более длинными, чем изученные ранее [7,8], алкильными боковыми цепями (C_{18}):

и производные индолокарбазола (ИК) с алкильными боковыми цепями (*C*₈) и (*C*₁₂):

Исследования фотофизических свойств (светочувствительность, фотопроводимость) для синтезированных

		•						
Полимер	Максимум поглощения λ_{\max} , нм, в диапазоне		Фотогенерация				$\mu \cdot 10^{6}$, см $^{2}B^{-1}c^{-1}$	
Полимер	УФ	видимый	$S_{0.1} \cdot 10^3$, $($ лк·с $)^{-1}$	η	r_t , HM	η_0	дырки, <i>µ</i> _h	электроны, <i>µ</i> _e
$\Pi BX - (O-K_{18})$	360	395	0.48	0.057	2.2	0.12	2.0	1.5
$\Pi BX - (O-K_{18}) + (БТДЗ)$	360	395, 492, 503, 725-745	0.95	0.046	2.2	0.10	_	—
$\Pi BX - (O-ИK_{12})$	340, 360	400, $\sim 520($ слабый $)$	0.75	0.085	2.4	0.17	15	6.0
$\Pi BX - (O-ИK_{12}) + (БТД3)$	340, 360	400, \sim 520 (слабый), 525, 580	1.2	0.08	2.4	0.16	_	—
$\Pi BX - (\Phi A - K_{18})$	-	440	0.89	0.12	2.6	0.21	3.5	10
$\Pi BX - (\Phi A - K_{18}) + (БТДЗ)$	—	440, 595, 730, 810	1.1	0.115	2.6	0.20	—	—

Таблица 1

Примечание. Значения интегральной светочувствительности $S_{0.1}$; параметры процесса фотогенерации (при длине волны λ_0 , соответствующей краю полосы поглощения полимера): η — квантовый выход фотогенерации свободных носителей заряда, η_0 — квантовый выход образования связанных пар, r_t — радиус термализации; длины волн максимумов поглощения λ_{max} , дрейфовая подвижность носителей заряда (электронов μ_e и дырок μ_b) при напряженности электрического поля $1.6 \cdot 10^5$ В/см для ПФХ различной структуры и их же, сенсибилизированных БТДЗ.

ПФХ выполнены на тонких покрытиях, полученных нанесением растворов ПФХ в хлороформе на плоскую, прозрачную проводящую подложку, которую вращали в горизонтальной плоскости (метод центрифугирования, spin coating). В нпервом случае это были слои со свободной поверхностью, нанесенные на стеклянную подложку с прозрачным электропроводящим слоем ITO (In₂O₃, легированный SnO₂), во втором — планарные ячейки с двумя Al-электродами, нанесенными на пленочные покрытия. Покрытия сушили при 70°C в течение 1 ч, их толщина составляла ~ 1 мкм — для измерения светочувствительности и квантового выхода фотогенерации носителей заряда η и 0.2 мкм — для исследования фотопроводимости.

Электронные спектры поглощения растворов концентрации $c_v = (1.3-2.5) \cdot 10^{-5}$ М в кварцевых кюветах толщиной 1 см записывали на спектрофотометре СФ-2000 ("ЛОМО").

Светочувствительность S и квантовый выход фотогенерации свободных носителей заряда η измеряли в электрофотографическом (ЭФ) режиме по методике [1,4,5] в области спектра 400–700 нм при напряженности электрического поля $0.2E_0 < E < E_0$, где E_0 — предельная для данного материала напряженность. Светочувствительность S определяли в ЭФ режиме по критерию спада поверхностного потенциала заряженного в темноте слоя на 0.1 от начальной величины ($S_{0.1}$). Интегральная светочувствительность $S_{0.1}$ определена при освещении образца белым светом галогеновой лампы КГМ-300.

Поскольку в слоях ПФХ подвижность электронов и дырок не сбалансированная, или ее значения относительно невысокие [9,10], для повышения фотопроводимости материала ПФХ смешивали в отношении 1:1 с акцепторными молекулами производного фуллерена РСВМ ([6,6]-фенил С71 метиловый эфир бутановой кислоты, поставщик SES Research). Для измерения фотопроводимости образцы ПФХ-РСВМ с АІ-электродами, нанесенными на пленочные покрытия на расстоянии 0.5 мм при постоянном напряжении 100 В, освещали полным спектром ксеноновой лампы (Newport, Oriel Instruments) с мощностью падающего излучения $P = 90 \text{ MBT/cm}^2$, фототок i_{ph} регистрировали с помощью источникаизмерителя Keithley 2400. Измерения выполняли в перчаточном боксе с Ar, т. е. в условиях сухой, инертной атмосферы.

3. Результаты и их обсуждение

При введении 2,1,3-бензотиадиазола (БТДЗ) в композиции с полифенилхинолинами наибольший эффект наблюдается для ПФХ (О- K_{18}) — возрастание S^s в 4.5 раза с расширением области спектральной чувствительности до 500 нм (рис. 1, *a*, кривая I'). Для более светочувствительных ПФХ эффект был выражен слабее: для ПФХ (ФА- K_{18}) S^s возрастает в ~ 2 раза, для ПФХ (О- $ИK_{12}$) в 3.2 раза.

Для ПФХ (О- K_{18}) при возрастании $S_{0,1}$ и расширении области светочувствительности в области сенсибилизации БТДЗ квантовый выход η, определяющий светочувствительные свойства, снижается с 0.057 (для области собственной светочувствительности) до 0.046 (рис. 1, b, кривая 1' относительно кривой 1 и табл. 1), причем величина η не зависит от длины алкильного заместителя ариленового фрагмента, так как и для К₁₈-, и для ИК₁₂-содержащих ПФХ квантовый выход η был равен η для К₈-, К₁₂- и ИК₈-содержащих [7,8]. Для более светочувствительных полимеров ПФХ (О-ИК12) и ПФХ (ФА-К₁₈) квантовый выход η в области максимальной светочувствительности не отличается от такового для области собственной светочувствительности (рис. 1, b, кривые 2' и 3' относительно кривых 2 и 3), а только область чувствительности S и η смещаются в область бо́льших длин волн на $\sim 20-30$ нм.

Установленные закономерности, очевидно, обусловлены комплексообразованием мономерного звена ПФХ с молекулами БТДЗ, доказательством которого служит появление в спектре поглощения (рис. 2 и табл. 1) полос с максимумами 492 и 503 нм (и слабыми при 725 и 745 нм; на рис. 2 не показаны) —

Рис. 1. Спектры светочувствительности $S_{0.1}(a)$ и квантового выхода фотогенерации свободных носителей заряда $\eta(b)$ пленочных покрытий гомополимеров полифенилхинолинов и их композиций с 2,1,3-бензотиадиазолом: $I - (O-K_{18}), I' - [(O-K_{18}) + БТДЗ]], 2 - (O-ИК_{12}), 2' - [(O-ИК_{12}) + БТДЗ], 3 - (ФА-К_{18}), 3' - [ФА-К_{18}) + БТДЗ].$

Рис. 2. Спектры поглощения полифенилхинолинов и их композиций с 2,1,3-бензотиадиазолом: $1 - (O-K_{18}), 2 - (\Phi A-K_{18}), 3 - (O-ИK_{12}), 4 - (БТДЗ), 5 - [(O-K_{18}) + (БТДЗ)], 6 - [(\Phi A-K_{18}) + (БТДЗ)], 7 - [(O-ИK_{12}) +],(БТДЗ)].$

Таблица 2. Фотопроводимость P_c полимерных композиций на основе ПФХ и РСВМ и их же, сенсибилизированных БТДЗ (10 мас%), а также эффективность их сенсибилизации, характеризуемая отношением величин фотопроводимости сенсибилизированных ($P_{c\,0.1}$) и несенсибилизированных ($P_{c\,0}$) композиций

1519

Полимер	БТДЗ, 10 мас%	$P_c(i_{\rm ph}/P)$, A/BT	$P_{c0.1}/P_{c}$
ПВХ-(ФА-ИК ₈)	_	$6.07\cdot 10^{-6}$	
ПВХ-(ФА-ИК ₈)	+	$1.11\cdot 10^{-5}$	1.82
ПВХ-(О-ИК ₈)	_	$1.47\cdot 10^{-6}$	
ПВХ-(О-ИК ₈)	+	$5.39\cdot 10^{-6}$	3.66
$\Pi BX - (\Phi A - K_{18})$	_	$4.72\cdot 10^{-6}$	
$\Pi BX - (\Phi A - K_{18})$	+	$2.86 \cdot 10^{-5}$	6.05
$\Pi BX - (O-K_{18})$	—	$8.94\cdot 10^{-6}$	
$\Pi BX - (\text{O-}K_{18})$	+	$1.13 \cdot 10^{-5}$	1.26
	-		=

для $[\Pi \Phi X (O-K_{18}) + БТДЗ]$ (рис. 2, кривая 5), полосы ~ 525 и 580 нм — для $[\Pi \Phi X (O-ИK_{12}) + БТД3]$ (рис. 2, кривая 7) и полосы $\sim 595\,{\rm нм}$ (и слабые при 730 и 810) — для [ПФХ (ФА-К₁₈) + БТДЗ] (рис. 2, кривая 6), отсутствующих в спектрах исходных компонент (рис. 2, кривые 1-4). Из сравнения энергий максимумов длинноволновых полос видно, что при одной и той же мостиковой группе Х = О для К- и ИК-содержащих ПФХ они различаются на 0.16 и 0.3 эВ. Последняя из этих величин равна разности потенциалов ионизации соответствующих молекул К и ИК [7,10], а для ПФХ с одним и тем же Ar (карбазольным) фрагментом (для ПФХ (О-К) и ПФХ (ФА-К)) различие энергий максимумов длинноволновых полос составляет 0.45-0.51 эВ, что согласуется со смещением края собственного поглощения при переходе от кислород- к ФА-содержащим ПФХ с 380 до 440 нм [11].

Добавление 10 мас% БТДЗ в композицию ПФХ-РСВМ повышает ее фотопроводимость. Наибольшее усиление фотопроводимости $P_c = i_{\rm ph}/P$, примерно в 6 раз, наблюдали в слое композиции на основе ПФХ (ФА-К₁₈). Поскольку явление фотопроводимости (величина фототока $i_{\rm ph}/P$) помимо процесса фотогенерации свободных носителей заряда обусловлено и переносом фотогенерированных носителей через слой, следует учитывать полученные ранее данные по подвижности носителей заряда [9,10]. Транспорт носителей заряда определяется подвижностью дырок μ_h в случае переноса по донорным фрагментам и подвижностью электронов μ_e при переносе по акцепторным молекулам. При введении в ПФХ сильных акцепторов электронов РСВМ и БТДЗ осуществляется, очевидно, перенос электронов по введенным молекулам, и следует анализировать корреляцию $P_c = i_{\rm ph}/P$ с электронной подвижностью μ_e . Видно, что наибольшее возрастание фототока наблюдается для ПФХ (ФА-К) (табл. 2), имеющего наибольшую величину электронной подвижности зарядов μ_e (табл. 1), в то время как возрастание светочувствительности S, обусловленное в основном квантовым выходом η , зависящим от эффективности переноса связанных зарядов на стадии фотогенерации, невелико (~ 2 раза). Для ПФХ (О-ИК) с электронной подвижностью, в 2 раза меньшей, эффект возрастания фотопроводимости достигает 3.5 раза, а для ПФХ (ФА-ИК) и ПФХ (О-К) с наименьшими в данном ряду изученных ПФХ подвижностями электронов — 1.8–2 раза.

Таким образом, сенсибилизация фотоэффекта в композициях ПФХ с молекулами БТДЗ достаточно эффективна: введение 10 мас% этого акцептора приводит к расширению спектральной области чувствительности и возрастанию интегральной $S_{0.1}^{u}$ в 4.5 раза, а фототока более чем в 6 раз. Эффект обусловлен комплексообразованием между донорными ариленовыми фрагментами и акцепторными молекулами БТДЗ, а более сильное по сравнению с $S_{0.1}$ увеличение фототока, по-видимому, определяется переносом свободных фотогенерированных носителей заряда (электронов) по введенным в полимерную композицию молекулам сенсибилизатора.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта 14-03-01137_а.

Список литературы

1520

- [1] И.А. Акимов, Ю.А. Черкасов, М.И. Черкашин. Сенсибилизированный фотоэффект (М., Наука, 1980).
- [2] M. Pope, Ch.E. Swenberg. *Electronic processes in organic crystals and polymers*, 2nd ed. (Oxford University Press, N.Y.–Oxford, 1999) p. 1328.
- [3] А.В. Ванников, А.Д. Гришина. Фотохимия полимерных донорно-акцепторных комплексов (М., Наука, 1984).
- [4] Е.Л. Александрова, Ю.А. Черкасов. Оптика и спектр., 64 (5), 1047 (1988).
- [5] Е.Л. Александрова, Ю.А. Черкасов. Оптика и спектр., 84 (3), 455 (1998).
- [6] Е.Л. Александрова. ФТП, **38** (10), 1153 (2004).
- [7] В.М. Светличный, Е.Л. Александрова, Л.А. Мягкова, Н.В. Матюшина, Т.Н. Некрасова, Р.Ю. Смыслов, А.Р. Тамеев, С.Н. Степаненко, А.В. Ванников, В.В. Кудрявцев. ФТП, 45 (10), 1392 (2011).
- [8] В.М. Светличный, Е.Л. Александрова, Т.Н. Некрасова, Р.Ю. Смыслов, Л.А. Мягкова, Н.В. Матюшина. ФТП, 46 (4), 512 (2012).
- [9] В.М. Светличный, Е.Л. Александрова, А.Р. Тамеев, Л.А. Мягкова, Н.В. Матюшина. ФТП, 46 (4), 507 (2012).
- [10] Е.Л. Александрова, В.М. Светличный, Л.А. Мягкова, Н.В. Матюшина, Т.Н. Некрасова, Р.Ю. Смыслов, В.Д. Паутов, А.Р. Тамеев, А.В. Ванников, В.В. Кудрявцев. Оптика и спектр., **114** (5), 803 (2013).
- [11] В.М. Светличный, Е.Л. Александрова, Л.А. Мягкова, Н.В. Матюшина, Т.Н. Некрасова, А.Р. Тамеев, С.Н. Степаненко, А.В. Ванников, В.В. Кудрявцев. ФТП, 44 (12), 1629 (2010).

Редактор Т.А. Полянская