Исследование колебательных состояний решеток CdTe, CdHgTe в условиях адсорбции аммиака и углекислого газа

© О.А. Федяева¶

Омский государственный технический университет, 644050 Омск, Россия

(Получена 6 февраля 2014 г. Принята к печати 11 марта 2014 г.)

Проведен сравнительный анализ спектров комбинационного рассеяния света в монокристаллах CdTe и $Cd_{0.2}Hg_{0.8}Te$, выдержанных на воздухе, в аммиаке и углекислом газе. Установлено, что химическая адсорбция газов вызывает деформацию поверхности полупроводников — изменяется форма сигнала рекомбинационной люминесценции, появляются скрытые моды колебаний акустических и оптических фононов. Изменение спектра решеточных колебаний подтверждает существование в материалах $A^{X}B^{8-X}$, в частности в CdTe и $Cd_{0.2}Hg_{0.8}Te$, обратного адсорбционного пьезоэлектрического эффекта.

1. Введение

Твердые растворы $Cd_x Hg_{1-x}$ Те обладают чрезвычайной чувствительностью к механическим, температурным, радиационным и другим воздействиям, являются базовыми материалами для инфракрасной (ИК) оптики, представляют особый интерес для физической химии полупроводников, полупроводникового газового анализа и гетерогенного катализа.

Настоящая работа составляет часть цикла исследований обратного адсорбционного пьезоэлектрического эффекта в материалах CdTe, $Cd_xHg_{1-x}Te$ [1,2]. Целью явилось изучение колебательных состояний кристаллических решеток монокристаллов CdTe и Cd_{0.2}Hg_{0.8}Te, выдержанных на воздухе, в аммиаке и углекислом газе, методом комбинационного рассеяния света (KPC).

2. Методика эксперимента

Объекты исследования представляли собой порошки, приготовленные измельчением монокристаллов CdTe и Cd_{0.2}Hg_{0.8}Te, легированного индием (концентрация электронов $n = 2.04 \cdot 10^{14}$ см⁻³, подвижность $\mu_n = 22\,400$ см²/В·с). Аммиак и углекислый газ получали по методикам, изложенным в [3]. Чистоту газов контролировали методом ИК спектроскопии.

Съемку спектров КРС исходных образцов и экспонированных в газах проводили на фурье-спектрометре RFS-100/S фирмы Bruker со спектральным разрешением 1 см⁻¹. Образцы возбуждали излучением лазера на иттрий-алюминиевом гранате с неодимом YAG : Nd³⁺ с длиной волны $\lambda = 1064$ нм. Наблюдение рассеянного света проводили в направлении, перпендикулярном к возбуждающему излучению, при комнатной температуре. Для регистрации использовали схему накопления в интервале частот от -2000 до 3500 см^{-1} . Запись спектров осуществляли в память компьютера в автоматическом режиме. Спектры анализировали в стоксовой и антистоксовой областях рассеяния света в обзорном диапазоне и в узком интервале частот LO- и ТО-колебаний кристаллической решетки. Предел обнаружения в методе составил 0.1–10% по массе, относительная ошибка не более 3%.

3. Экспериментальные результаты

На рис. 1,2 представлены спектры КРС образцов CdTe, Cd_{0.2}Hg_{0.8}Te, хранившихся на воздухе. В спектре CdTe в области оптических колебаний наблюдаются две моды, отвечающие продольным (LO, частота $\omega_{\text{LO}} = 167.3049 \,\text{см}^{-1})$ и поперечным (TO частота $\omega_{\rm TO} = 141.7515 \,{\rm cm}^{-1})$ оптическим фононам. Согласно [4,5], эти значения для CdTe составляют $\omega_{\text{LO}} = 171 \,\text{см}^{-1}, \ \omega_{\text{TO}} = 140 \,\text{см}^{-1}.$ Небольшие расхождения с литературными данными можно объяснить различными условиями проведения эксперимента (тип лазера, физическое состояние объекта и др.). В интервале больших частот (ω) в спектре CdTe наблюдаются слабая полоса с максимумом при $\omega = 328.8218 \, {\rm cm}^{-1}$, которая может быть идентифицирована как полоса продольных оптических фононов второго порядка 2LO (энергия $E_{\text{LO}} = 0.0407 \text{ эB}$), и очень слабая полоса с частотой $\omega = 287.3577 \,\mathrm{cm}^{-1}$. В области низких частот (< 141 см⁻¹) основной вклад вносят акустические фононы ТА (частота $ω_{\text{TA}} = 71.8411 \text{ cm}^{-1}$), LA (частота $ω_{\text{LA}} = 84.8589 \text{ cm}^{-1}$), 2LA (частота $\omega_{LA} = 111.8588 \,\mathrm{сm}^{-1}$).

В спектре $Cd_{0.2}Hg_{0.8}$ Те из решеточных колебаний выраженный характер имеет только полоса продольных акустических фононов LA ($\omega_{LA} = 84.8589 \text{ см}^{-1}$). Из литературных источников (см., например, [6–9]) известно, что для твердых растворов Cd_xHg_{1-x} Те при комнатной температуре характерна одна HgTe-подобная мода с частотой ~ 96 см⁻¹. Эту моду относят к "дефектной" и единого мнения о ее природе пока не существует.

При сравнении спектров КРС образцов $Cd_{0.2}Hg_{0.8}$ Те и CdTe, хранившихся на воздухе (рис. 1, 2) и выдержанных в газах (рис. 3–6), можно отметить следующее. Адсорбция аммиака вызывает появление в спектре КРС

[¶] E-mail: kosatine@mail.ru

0.5

0.4

0.5 0.6

0.6

0.7

0.8

167.3049

0.7 0.80.9

- 0.00229

0.9

Рис. 3. Спектр КРС образца Cd_{0.2}Hg_{0.8}Te, выдержанного в NH₃ при 293 K и давлении 101 300 Па.

Рис. 4. Спектр КРС образца СdTe, выдержанного в NH₃ при 293 К и давлении 101 300 Па.

 $Cd_{0.2}Hg_{0.8}$ Те полос, отвечающих поперечным оптическим (TO, $\omega_{TO} = 139.3408 \, {\rm cm}^{-1}$) и продольным акустическим (2LA, $\omega_{LA} = 119.0909 \, {\rm cm}^{-1}$) фононам. Максимум полосы фотолюминесценции сдвигается в сторону

больших частот на $\Delta \omega = 296 \,\mathrm{cm^{-1}}$. В соответствии с исследованиями [6–9], моду в окрестности 120 см⁻¹ можно отнести к НgTe-подобным колебаниям. Многие авторы при исследовании решеточных колебаний

Рис. 5. Спектр КРС образца Сd_{0.2}Нg_{0.8}Те, выдержанного в CO₂ при 293 К и давлении 101 300 Па.

Рис. 6. Спектр КРС образца СdTe, выдержанного в CO₂ при 293 К и давлении 101 300 Па.

 Cd_xHg_{1-x} Те в области низких температур отмечали наличие моды с частотой ~ 137 см⁻¹. Природа этой моды окончательно не выяснена. По мнению авторов [10,11], мода с частотой ~ 137 см⁻¹ принадлежит колебаниям

Cd-Те упорядоченной фазы Cd_{0.5}Hg_{0.5}Te, возникающей из-за сильной корреляции в катионном распределении в сплавах, образованных бинарными компонентами с очень близкими длинами связи (для HgTe и CdTe они

равны 2.798 и 2.806 Å соответственно). Действительно, моды с частотами $\omega_{\rm TO} = 139.3408 \,{\rm cm^{-1}}$ в CdHgTe и $\omega_{\rm TO} = 141.7515 \,{\rm cm^{-1}}$ в CdTe можно отнести к CdTe-подобным колебаниям.

При адсорбции аммиака на CdTe количество полос в спектре KPC не изменяется. Положение полос, отвечающих модам продольных оптических колебаний LO и вторичных акустических 2LA, остается прежним, а полосы TA-, LA-, TO-фононов кристаллической решетки немного смещаются в низкочастотную область. Незначительно возрастает частота полосы 2LO. Интенсивность всех полос акустического и оптического диапазонов увеличивается примерно на 37–38%. Также увеличивается в 2.2 раза сигнал фотолюминесценции.

Взаимодействие углекислого газа с $Cd_{0.2}Hg_{0.8}$ Те приводит к уменьшению роста фонового излучения, связанного с фотолюминесценцией из объема образца. При этом наблюдается смещение максимума пика фотолюминесценции на $\Delta \omega = 291 \text{ см}^{-1}$ в сторону больших частот, уменьшается в 2.4 раза его интенсивность и изменяется форма. В области малых частот, так же как и в случае адсорбции аммиака, наблюдаются вторичные акустические 2LA (121.9837 см⁻¹) и оптические TO (139.8229 см⁻¹) моды колебаний решетки. При подобии параметров решеточных мод 2LA и TO в аммиаке и углекислом газе положение их в спектре решеточных колебаний Cd_{0.2}Hg_{0.8}Te различается, что указывает на изменение стехиометрического состава поверхности в условиях адсорбции газов [12].

В спектре КРС CdTe при адсорбции CO_2 дополнительные полосы вторичного рассеяния света не возникают. Наблюдается лишь небольшое смещение имеющихся полос в акустическом и оптическом диапазонах в низкочастотную область и снижение их интенсивности на 7-12%.

4. Заключение

Таким образом, проведенные исследования дополнили имеющиеся сведения о природе обратного адсорбционного пьезоэлектрического эффекта в алмазоподобных полупроводниках. Эффект характеризуется не только появлением синусоидальных электрических волн в объеме полупроводника, возникающих вследствие адсорбционного заряжения поверхности и упругих взаимодействий подвижных точечных дефектов с дислокациями [1,2], но и возбуждением фононов. При этом изменяется форма сигнала рекомбинационной фотолюминесценции, появляются скрытые моды акустических и оптических фононов, свидетельствующие о реконструкции поверхности. Небольшой частотный сдвиг в спектрах КРС указывает на изменение состояния адсорбированного вещества, вызванного ее релаксацией.

Список литературы

- [1] О.А. Федяева. ФТП, 46, 164 (2012).
- [2] О.А. Федяева. ФТП, 46, 1121 (2012).
- [3] Ф.М. Рапопорт, А.А. Ильинская. Лабораторные методы получения чистых газов (М., Госхимиздат, 1963).
- [4] Ю. Питер. Основы физики полупроводников, пер. с англ. под ред. Б.П. Захарчени (М., Физматлит, 2002).
- [5] Р.С. Тобиас. Применение спектров КР, пер. с англ. под ред. К.И. Петрова (М., Мир, 1977).
- [6] С.П. Козырев. ФТТ, 53, 153 (2001).
- [7] С.П. Козырев. ФТТ, 50, 2073 (2008).
- [8] С.П. Козырев. ФТТ, 52, 531 (2010).
- [9] А.С. Васин, М.И. Василевский. ФТТ, 48, 36 (2006).
- [10] С.П. Козырев, И.В. Кучеренко, М. Cestelli Gnidi, R. Triboulet. ФТТ, 49, 2199 (2007).
- [11] С.П. Козырев, В.Н. Пырков, Л.К. Водопьянов. ФТТ, 37, 1293 (1995).
- [12] И.А. Кировская, О.А. Старцева (Федяева). Неорг. матер., 29, 1 (1993).

Редактор Л.В. Шаронова

Study of vibration states of CdTe, CdHgTe lattices under conditions of adsorption ammonia and carbon dioxide

O.A. Fedyaeva

Omsk State Technical University, 644050 Omsk, Russia

Abstract The comparative analysis of Raman spectra of CdTe and $Cd_{0.2}Hg_{0.8}Te$ single crystals sustained in air, ammonia and carbon dioxide is carried out. It is established that chemical adsorption of gases causes deformation of a semiconductor surface — the form of recombinational luminescence signal changes, there are hidden fashions of fluctuations of acoustic and optical phonons. Change in the spectrum of lattice vibrations confirms existence in materials $A^{X}B^{8-X}$, and in particularly in CdTe and $Cd_{0.2}Hg_{0.8}Te$, the inverse adsorptive piezoelectric effect.