УДК 621.315.592

О статистически распределенных неоднородностях по данным о поперечном магнетосопротивлении при атмосферном и всестороннем давлении в узкозонных полупроводниках *n*-InSb и *n*-CdSnAs₂

© М.М. Гаджиалиев, М.И. Даунов, И.К. Камилов, А.М. Мусаев ¶

Институт физики им. Х.И. Амирханова Дагестанского научного центра Российской академии наук, 367003 Махачкала, Россия

(Получена 30 мая 2013 г. Принята к печати 26 сентября 2013 г.)

Проведен анализ экспериментальных барических при всестороннем давлении до 12 кбар и магнитополевых до 15 кЭ зависимостей удельного сопротивления, коэффициента Холла и поперечного магнетосопротивления при 77 К в макроскопически однородных объемных сильно легированных и сильно вырожденных кристаллах *n*-InSb и *n*-CdSnAs₂. Установлено, что поперечное магнетосопротивление в исследованных полупроводниках как в области слабых, так и в области классически сильных магнитных полей определяется статистически распределенными неоднородностями.

Согласно основам статистической теории, специфические взаимодействия в полупроводниках приводят к возникновению микронеоднородностей, которые, очевидно, должны заметным образом сказаться на кинетических эффектах и на характере фазовых переходов. В частности, полиморфный переход полупроводник-металл (фазовый переход первого рода) всегда характеризуется размытием в окрестности перехода по управляющему параметру (по зависимости удельного сопротивления от всестороннего давления, $\rho(P)$) [1,2]. Известно также, что экспериментально наблюдаемая линейная зависимость поперечного магнетосопротивления от напряженности магнитного поля, $\Delta \rho / \rho_0 = f(H)$, в области классически сильного поля Н в объемных макроскопически однородных сильно легированных кристаллах n-InSb, n-InAs и др. в области примесной проводимости противоречит теории, предсказывающей насыщение $\Delta \rho / \rho_0 = f(H)$ [3].

С целью изучения влияния статистически распределенных неоднородностей на процессы проводимости в однофазных объемных макроскопически однородных полупроводниках представляется целесообразным привлечение эффективного возмущающего воздействия всестороннего давления. Уместно отметить, что в [4,5] анализируются магнетотранспортные свойства сильно неоднородных двухфазных систем.

На серии объемных, макроскопически однородных, сильно легированных и сильно вырожденных кристаллов *n*-InSb и *n*-CdSnAs₂ с концентрацией электронов $10^{17}-10^{18}$ см⁻³ при температурах T = 77 и 300 К измерены барические и полевые зависимости поперечного магнетосопротивления, $\Delta \rho / \rho_0 = f(P, H)$, и коэффициента Холла, $R_{\rm H}(P, H)$. Всестороннее гидростатическое давление генерировалось в камере, описанной в [6], по методике, изложенной в [7]. С целью исключения побочных факторов особое внимание уделено состоянию поверхности образцов, отсутствию градиентов концентрации n и проводимости σ вдоль и поперек образца. Образцы имели форму прямоугольного параллелепипеда, размеры которого соотносятся как 1 : 2 : 12. Потенциальные зонды отстояли от торцов образца на расстоянии не менее, чем удвоенная ширина образца.

Характерные экспериментальные результаты представлены на рис. 1–4 для образца 1 *n*-InSb с концентрацией электронов $n = 10^{18}$ см⁻³, холловской подвижностью при атмосферном давлении, T = 77 К $R_{\rm H}\sigma = 2.67 \cdot 10^4$ см²/B·с и для образцов 2, 3 *n*-CdSnAs₂ с $n = 4.82 \cdot 10^{17}$, $4.78 \cdot 10^{17}$ см⁻³, $R_{\rm H}\sigma = 9650$, 9600 см²/B·с соответственно при атмосферном давлении и T = 300 К. Исследованные образцы были сильно легированными и сильно вырожденными. Проводимость — примесная, коэффициент Холла не зависит

Рис. 1. Зависимость поперечного магнетосопротивления от эффективной холловской подвижности $v = R_{\rm H}\sigma H$ для образца *n*-InSb при 77 К и давлении *P*, кбар: *I* — 0.48, *2* — 1.28, *3* — 2.5, *4* — 4.7, *5* — 6.9, *6* — 8.9, *7* — 11.3.

[¶] E-mail: akhmed-musaev@yandex.ru

Рис. 2. Зависимость $\rho_{\nu} = (\Delta \rho / \rho_0)(1 + \nu^2) / \nu^2$ от $\nu = R_{\rm H} \sigma H$ при атмосферном давлении и 77 K для образца *n*-InSb: *I* — теория, *2* — эксперимент.

Рис. 3. Зависимость $\rho_{\nu} = (\Delta \rho / \rho_0)(1 + \nu^2) / \nu^2$ от давления при $\nu = R_{\rm H} \sigma H = 2$ для образца *n*-InSb при 77 К: 1 — теория, 2 — эксперимент.

Рис. 4. Зависимости $\rho_{\nu} = (\Delta \rho / \rho_0)(1 + \nu^2) / \nu^2$ от H при P = 0 и (вставка) от давления при $\nu = R_{\rm H}\sigma H = 1$ и 300 K для образцов *n*-CdSnAs₂ 1 (1) и 2 (2).

от температуры *T*, напряженности магнитного поля *H* и давления *P*. Поперечное магнетосопротивление $\Delta \rho / \rho_0 \propto H^2$ в слабом магнитном поле и $\Delta \rho / \rho_0 \propto H$ в классически сильном поле (рис. 2, 4). Выяснено также, что $\Delta \rho / \rho_0$ не зависит от всестороннего давления при фиксированной величине $v = R_{\rm H}\sigma H$ (рис. 1, 3, 4). Аппроксимируя зависимость $\Delta \rho / \rho_0 = f(v)$ (рис. 1) функцией $\Delta \rho / \rho_0 = Av^2(1 + Bv)(1 + Cv^2)^{-1}$, для *n*-InSb с $n = 10^{18}$ см⁻³ при 77 К получили: $A = 4.6 \cdot 10^{-3}$, B = 0.1, C = 0.26. Отсюда, когда $v \gg 1$, $\Delta \rho / \rho_0 = 1.8 \cdot 10^{-3}v$.

Экспериментальные данные $\Delta \rho / \rho_0 = f(P, H)$ для *n*-InSb с $n = 10^{18}$ см⁻³ при 77 К сопоставлялись с теоретически рассчитанными зависимостями $\Delta \rho / \rho_0 = f(P, H)$ с использованием известных данных о характеристических параметрах и их эволюции в зависимости от всестороннего давления с учетом непараболичности зоны проводимости по Кейну [8]. При атмосферном давлении и 77 К ширина запрещенной зоны $\varepsilon_g = 0.23$ эВ, эффективная масса электронов на дне зоны проводимости $m_n/m_0 = 0.016$, спин-орбитальное расщепление $\Delta_0 = 0.9$ эВ, барический коэффициент ширины запрещенной зоны составлял $\partial \varepsilon_g / \partial P = 0.16$ эВ/ГПа.

Для случая сильного вырождения в области примесной проводимости при условии, что в проводимости принимает участие один тип носителей заряда и доминирующим механизмом их рассеяния является рассеяние на ионизированных примесях [3,9],

$$\Delta \rho / \rho_0 = 3\pi^2 \left(k_0 T / \xi \right)^2 \gamma_r^2 \nu^2 / \left(1 + \nu^2 \right),$$

 k_0 — постоянная Больцмана, $\xi = \hbar^2 (3\pi^2 n)^{2/3} / 2m_n(\eta)$, $\gamma_r = 2/3(1/2 - \gamma)$, $\gamma = 1 - [m_n/m_n(\eta)]^2$, $\nu = R_H \sigma H$, $m_n(\eta)$ — эффективная масса электронов на уровне Ферми, $\eta = \varepsilon_F / k_0 T$ — приведенная энергия Ферми.

Приведенная энергия Ферми для *n*-InSb с $n = 10^{18}$ см⁻³ при 77 K с ростом давления от атмосферного до 12 кбар уменьшается от $\eta = 21$ до 15.7.

Результаты количественного анализа для *n*-InSb с $n = 10^{18}$ см⁻³ представлены на рис. 2, 3. В *n*-InSb и *n*-CdSnAs₂ экспериментально наблюдаемая зависимость $\Delta \rho / \rho_0 \propto H^2$ в слабом магнитном поле (рис. 2, 4) на первый взгляд согласуется с теорией [3]. Однако предсказываемое этой же теорией насыщение $\Delta \rho / \rho_0$ в классически сильном магнитном поле не обнаружено. Согласно экспериментальным данным, $\Delta \rho / \rho_0 \propto H$ (рис. 2, 4). Как отмечалось выше, при фиксированной величине $\nu = R_H \sigma H$ поперечное магнетосопротивление от давления не зависит как в области слабого, так и в области сильного магнитных полей (рис. 2–4). Согласно же теории, параметр $\rho_{\nu}(P) = (\Delta \rho / \rho_0)(1 + \nu^2)/\nu^2$ при фиксированном ν линейно растет с P (рис. 3).

Таким образом, как в области слабых, так и в области классически сильных магнитных полей, поперечное магнетосопротивление в сильно легированных и сильно вырожденых n-InSb и n-CdSnAs₂ определяется статистически распределенными неоднородностями, согласно [10].

По экспериментальным данным магнетотермоэдс в отличие от магнетосопротивления в полупроводниках с характеристиками, аналогичными характеристикам исследованных образцов *n*-InSb и *n*-CdSnAs₂, в области примесной проводимости в классически сильном магнитном поле от *H* не зависит [10]. Это обусловлено стремлением к нулю поперечного поля Нернста—Эттингсгаузена с ростом *H*. Поэтому присутствие статистически распределенных неоднородностей на магнетотермоэдс практически не сказывается.

Список литературы

- I.K. Kamilov, M.I. Daunov, R.K. Arslanov, D.M. Daunova, S.F. Gabibov. J. Phys. Condens. Matter, 15, 2335 (2003).
- [2] И.К. Камилов, М.И. Даунов, А.Ю. Моллаев, С.Ф. Габибов. ФТТ, 55 (6), 1152 (2013).
- [3] О. Маделунг. Физика полупроводниковых соединений элементов III и V групп (М., Мир, 1967).
- [4] S.A. Bulgadaev, F.V. Kusmartsev. Phys. Lett. A, 342 (1–2), 188 (2005).
- [5] S.A. Bulgadaev. Phys. Lett. A, 344 (2-4), 280 (2005).
- [6] Е.С. Ицкевич. ПТЭ, 4, 148 (1963).
- [7] Е.С. Ицкевич, А.Н. Вороновский, А.Ф. Гаврилов, В.А. Сухопаров. ПТЭ, 6, 161 (1966).
- [8] E.O. Kane. J. Phys. Chem. Sol., 1, 249 (1957).
- [9] Б.М. Аскеров. Кинетические эффекты в полупроводниках (М., Наука, 1970).
- [10] C. Herring. J. Appl. Phys., 31, 107 (1960).

Редактор Л.В. Шаронова

About statistically distributed heterogeneities on the base of transverse magnetoresistance data at atmospheric and hydrostatic pressures in narrow-gap semiconductors *n*-InSb and *n*-CdSnAs₂

M.M. Gadjialiev, M.I. Daunov, I.K. Kamilov, A.M. Musaev

Institute of Physics, Daghestan Scientific Center, Russian Academy of Sciences, 367003 Makhachkala, Russia

Abstract Experimental data on baric (up to 12 kbar of hydrostatic pressure) and magnetic field (up to 15 kOe) dependences of the specific resistance, Hall coefficient, and transverse magnetoresistance at 77 K in macroscopically homogeneous bulk heavily doped and highly degenerated crystals *n*-InSb and *n*-CdSnAs₂ have been analyzed. We have found that the transverse magnetoresistance in investigated semiconductors both under weak and high magnetic fields is governed by statistically distributed heterogeneities.