Влияние ионно-лучевой обработки в процессе реактивного высокочастотного магнетронного распыления на макронапряжения ITO пленок

© П.Н. Крылов[¶], Р.М. Закирова, И.В. Федотова

Удмуртский государственный университет, 426034 Ижевск, Россия

(Получена 15 октября 2013 г. Принята к печати 21 октября 2013 г.)

Прозрачные проводящие пленки оксида индия, легированного оловом, получены методом чередующихся процессов реактивного ВЧ магнетронного распыления и ионной обработки. Рентгенографически исследованы напряженные состояния ITO пленок. Показано влияние технологических режимов на изменение макронапряжений в пленках ITO.

1. Введение

Качественные пленки оксида индия, легированного оловом (с низким сопротивлением и высоким оптическим пропусканием), традиционно наносятся при повышенных (до 500°C) температурах или отжигаются после нанесения для улучшения структуры пленки и снижения сопротивления. Однако в качестве материалов гибких подложек все чаще используются полимеры (ПЭТ, ПЭН, майлар, поликарбонат и т.п.). По причине низкой термической стойкости этих материалов температура в процессе нанесения пленок прозрачных проводящих оксидов не должна превышать 80-120°С [1]. В печати имеются статьи о нанесении пленок оксида индия, легированного оловом (ITO), различными методами при низких температурах подложки, в особенности методами распыления [2-6]. Главной проблемой остается получение структур необходимого качества при комнатной температуре. Использование низкоэнергетических ионных пучков открывает новые возможности для управления процессом роста пленок. В настоящее время считается установленным, что рост пленок в присутствии низкоэнергетического ионного облучения (НИО) характеризуется снижением температуры эпитаксии, уменьшением высоты рельефа поверхности, увеличением коэффициента встраивания примеси в растущую пленку, сменой механизма роста пленки [7,8]. НИО успешно применяется для контролируемого изменения механических, электрических и структурных свойств тонких пленок различных материалов [8]. С другой стороны, облучение низкоэнергетическими ионами твердотельного покрытия приводит к возникновению в последнем напряжений сжатия, играющих существенную роль в кинетике образования разрушений покрытия [9]. Помимо воздействия ионов на развитие напряжений могут оказывать влияние различия характеристик пленки и подложки (коэффициентов термического расширения, модулей упругости, постоянных решеток и др.) [10].

Возможность учета напряжений и управления ими в результате обоснованного выбора технологического процесса является актуальной задачей. Цель работы заключалась в исследовании влияния процесса ионной обработки в процессе получения пленок на напряженное состояние ITO покрытий.

2. Экспериментальная часть

Для проведения процессов формирования пленок использовали модернизированную установку УРМ 3.279.029 [11], позволяющую в едином технологическом цикле производить магнетронное напыление и ионную обработку как во время нанесения, так и после. Напыление проводили в кислородно-аргоновой атмосфере при 10% содержании кислорода. Суммарное давление газовой смеси при напылении составляло 0.25 Па, ВЧ мощность магнетронного разряда 300 Вт, время напыления 2 ч. Обработку осуществляли при токе разряда 30, 50 и 70 мА. Температура стеклянных подложек составляла 25, 50, 100 и 150°С [12].

Рентгенографические исследования образцов проводили на дифрактометре ДРОН-6 в Со- K_{α} -излучении. Съемка велась по точкам с шагом $\Delta 2\theta = 0.02^{\circ}$ и временем набора импульсов 5 с. Параметр решетки *а* для дифракционных отражений (222) и (400) и макронапряжения ($\sigma_1 + \sigma_2$) рассчитывали по стандартным методикам [13]. Для определения параметра решетки проводили съемку образцов с внутренним эталоном.

Для расчета макронапряжений использовали значения модуля Юнга $E = 1.8 \cdot 10^{11}$ Па и коэффициента Пуассона $\nu = 0.35$ [14]. В качестве ненапряженного параметра решетки использовали значение 10.118 Å [14,15].

3. Результаты и их обсуждение

Рентгенофазовый анализ показал [12], что ITO-пленки, полученные без ионной обработки при температуре конденсации 25 и 50°С, являются рентгеноаморфными (p/a). Пленки ITO, полученные при температуре конденсации 100 и 150°С, являются поликристаллическими. В результате ионной обработки пленки становятся текстурированными. Увеличение тока ионного разряда

[¶] E-mail: ftt@uds.ru

N₂	Режим получения, <i>T</i> °C/J, мА	Параметр решетки, Å		$\sigma_1 + \sigma_2, \Gamma \Pi a$		$(\sigma_1 + \sigma_2)/t, \ 10^{-2}$ ГПА/нм	
		a ₂₂₂	a 400	(222)	(400)	(222)	(400)
1	25/0	p/a	p/a	—	_	_	—
2	25/30	10.200	10.231	-4.1	-13.2	-1.3	-4.1
3	25/50	_	10.376	_	-13.1	_	-5.2
4	25/70	_	10.384	_	-13.5	_	-4.3
5	50/0	p/a	p/a	_	_	_	_
6	50/30	10.313	10.369	-9.9	-12.7	-3.2	-4.1
7	50/50	10.252	10.369	-6.8	-12.7	-2.3	-4.3
8	50/70	_	10.384	_	-13.5	_	-3.7
9	100/0	10.236	10.231	-6.0	-5.7	-1.6	-1.5
10	100/30	10.385	10.371	-13.5	-12.9	-2.4	-2.3
11	100/50	10.270	10.320	-7.7	-10.3	-2.7	-3.5
12	100/70	10.307	10.360	-9.6	-12.3	-2.6	-3.4
13	150/0	10.208	10.207	-4.6	-4.5	-0.8	-0.8
14	150/30	10.333	10.308	-10.9	-9.6	-1.8	-1.6
15	150/50	10.284	10.346	-8.5	-11.6	-1.6	-2.3
16	150/70	10.208	10.313	-4.58	-9.9	-1.2	-2.5

вызывает смену преимущественной ориентации кристаллитов: они начинают выстраиваться вдоль направления [100], перпендикулярного поверхности пленки. Кроме того, ионная обработка в процессе получения увеличивает ширину дифракционных максимумов, что говорит об уменьшении размеров зерен. Вероятно, это связано с тем, что увеличение потока ионов на подложку усиливает ее бомбардировку ионами, которая в свою очередь увеличивает подвижность атомов на подложке и количество мест кристаллизации, что приводит к увеличению плотности пленок и уменьшению размера кристаллических зерен [16]. Также ионная обработка приводит к смещению дифракционных максимумов в сторону меньших углов.

В таблице представлены найденные параметры решетки и значения макронапряжений.

Параметр решетки a_{222} , рассчитанный для межплоскостного расстояния (222), больше параметра a_{400} , рассчитанного для (400) при температурах осаждения 25 и 50°С без ионной обработки и с ней. При температуре конденсации 100 и 150°С параметр решетки, рассчитанный для плоскости (222), меньше, чем для плоскости (400) в случае пленок ITO, осажденных без ионной обработки и при токе 30 мА. При токе ионной обработки 50 и 70 мА параметр решетки для плоскости (222) становится больше. С ростом температуры подложки (100 и 150°С) оба параметра решетки уменьшаются, но наблюдается увеличение параметров решетки с введением ионной обработки в процесс получения.

Уменьшение параметра решетки тонких пленок ITO с ростом температуры конденсации коррелирует с результатами работы [17], в которой наблюдали плавное уменьшение параметра решетки от 10.101 до 10.096 Å с ростом температуры подложки от 150 до 200°С, резкое уменьшение до 10.047 Å при 250°С и незначительное увеличение параметра решетки до 10.062 Å при повышении температуры до 350°С. Небольшое уменьшение

параметра решетки ITO-пленок, полученных без отжига, по сравнению со стандартным значением ITO-структуры $(a_0 = 10.118 \text{ Å})$ связывали с низким легированием Sn при температуре подложки ниже 200°С: ионный радиус Sn⁴⁺ (0.071 нм) меньше ионного радиуса In³⁺ (0.078 нм).

Увеличение параметра решетки ITO с введением ионной обработки коррелирует с результатами работы [18], согласно которой параметр решетки увеличивался от 10.080 до 10.122 Å с ростом напряжения смещения от 0 до -80 В. Для -60 В было получено стандартное значение 10.118 Å.

Изменение параметра решетки свидетельствует о наличии напряженного состояния в системе пленкаподложка. Полученные значения напряжений исследуемых пленок ITO свидетельствуют об их сжимающем характере (см. таблицу).

В работе [19] показано, что в проводящих пленках ITO преобладают внутренние сжимающие напряжения, которые зависят от температуры осаждения. Изменения остаточных напряжений с ростом температуры осаждения связываются со сложным изменением микроструктуры ITO пленок во время синтеза.

С ростом температуры осаждения напряжение уменьшается (рис. 1). Введение ионной обработки в процесс получения вызывает увеличение напряжения с ростом тока ионного источника, но при токе 70 мА напряженное состояние немного уменьшается для всех температур осаждения.

О наличии сжимающих напряжений при значениях межплоскостных расстояний больше стандартных в пленках оксида индия, изготовленных осаждением с ионным ассистированием, сообщается в работе [20]. О влиянии ионного ассистирования на внутренние сжимающие напряжения, увеличивающиеся с ростом уровня ионной бомбардировки, в пленках оксида тантала говорится и в работе [21]. Согласно работам [22,23], причиной

Рис. 1. Зависимости приведенного макронапряжения от силы тока ионной обработки для разных температур осаждения, °C: I - 25, 2 - 50, 3 - 100, 4 - 150.

возникновения напряжений сжатия может быть внедрение иона в межатомное пространство, объем которого меньше привнесенного объема иона. Пленка стремится расшириться, однако связь ее с твердой подложкой мешает процессу расширения, в результате чего в пленке устанавливаются макроскопические напряжения сжатия, действующие в плоскости пленки и уравновешивающие упругую реакцию подложки.

В случае пленок ITO, полученных ВЧ магнетронным реактивным распылением с ионной обработкой в процессе осаждения, можно предположить влияние технологических факторов на концентрацию кислорода и соотношение концентраций индия и олова. Ранее было показано [12], что имеется незначительный избыток кислорода по сравнению со стехиометрией и недостаток индия, даже если часть атомов индия замещена оловом. Вероятно, избыточный кислород располагается в межузельных положениях. Количество олова с увеличением интенсивности ионной обработки уменьшается. На рис. 2 представлены изменения концентрации кислорода и отношения концентраций олова к индию в зависимости от тока ионного источника.

При увеличении концентрации внедренного кислорода должно наблюдаться увеличение параметра решетки. При увеличении концентрации олова в замещающем положении параметр решетки должен уменьшаться, так как ионный радиус олова меньше радиуса индия. Таким образом, при магнетронном осаждении пленок ITO совместно с ионной обработкой имеются конкурирующие процессы, которые сложно влияют на изменения параметра решетки и, следовательно, на макронапряжения.

При температуре конденсации 50°С концентрация кислорода больше, чем при 100°С, соответственно параметр решетки пленок ITO уменьшается с ростом температуры осаждения. Тем не менее концентрация кислорода с ростом тока ионного источника до 50 мА увеличивается, это приводит к увеличению параметров

решетки. При ионном токе 70 мА уменьшаются и концентрация кислорода, и отношения концентраций олова к индию, что приводит к уменьшению макронапряжений.

Модель образования напряжений сжатия при ионном осаждении покрытия как результат двух конкурирующих процессов: (1) подповерхностного внедрения ионов, приводящего к возникновению и росту напряжений сжатия, и (2) релаксации напряжений в термических пиках, создаваемых падающими ионами, предложена в [9].

В [22] на основе модели нелокального термоупругого пика низкоэнергетического иона в веществе предложена модернизированная теория формирования напряжения сжатия в тонких пленках, осаждаемых при одновременном облучении потоком низкоэнергетических ионов. Согласно данной модели, величина сжимающих напряжений σ в тонком покрытии в зависимости от энергии бомбардирующих ионов E соответствует

$$\sigma(E) = B \frac{M}{\rho} \frac{Y}{1 - \nu_P} \frac{E^{1/2}}{(R/j) + w(E)},$$
 (1)

где B — постоянная, не зависящая от параметров иона и мишени, M — масса атомов мишени, ρ — плотность мишени, Y — модуль Юнга, v_P — коэффициент Пуассона,

Рис. 2. Изменения концентрации кислорода (a) и отношения концентраций олова к индию [8] (b) от тока ионного источника, °C: I - 50, 2 - 100.

R — плотность потока осаждаемых атомов, j — плотность потока бомбардирующих ионов, w(E) — число термоактивированных переходов, учитывающее убыль дефектов вследствие миграции, которое определяется выражением

$$w(E) = n_0 \nu \int_0^{t_c} V(t, E)$$

$$\times \exp\left[-\frac{U}{k_{\rm B}T(t, E)} - \nu \int_0^t \exp\left[-\frac{U}{k_{\rm B}T(t, E)}\right] d\tau\right] dt,$$
(2)

где V(t) — объем термоупругого пика, порождаемого падающим на мишень ионом, U — энергия миграции межузельных дефектов, $k_{\rm B}$ — постоянная Больцмана, v — частота колебаний атомов, τ_c — эффективное время интегрирования, T — температура, n_0 — число межузельных атомов в начальный момент времени.

В проводимых нами экспериментах плотность потока осаждаемых атомов не менялась, а менялась только плотность потока бомбардирующих ионов *j* при постоянной температуре подложки Т или температура подложки при постоянной плотности потока бомбардирующих ионов. Согласно (1), величина сжимающих напряжений с увеличением плотности потока ионов увеличивается, что удовлетворительно объясняет поведение напряжения сжатия в пленках ITO в зависимости от тока ионной обработки до 50 мА (рис. 1). Выражение (2) показывает, что концентрация межузельных атомов в зависимости от температуры должна убывать, что уменьшает параметр решетки пленки и величину сжимающих напряжений. Это и наблюдается в наших экспериментах. Таким образом, теория формирования напряжения сжатия в тонких пленках, осаждаемых при одновременном облучении потоком низкоэнергетических ионов, на основе модернизированной модели нелокального термоупругого пика низкоэнергетического иона в веществе удовлетворительно объясняет поведение сжимающих напряжений в исследуемых пленках.

Кроме учета процессов подповерхностного внедрения ионов и релаксации напряжений, в термических пиках следует учитывать и другие эффекты, производимые низкоэнергетическими ионами при соударениях с поверхностью. При бомбардировке атомно-ионных потоков поверхности в материале мишени и на его поверхности происходит сложная и длинная цепочка взаимосвязанных физических процессов. В первую очередь, это процессы поверхностной аккомодации, имплантации падающих ионов или их отражение от поверхности, распыление поверхности материала, развитие каскадов атоматомных столкновений, создание точечных дефектов и их скоплений, формирование дислокационных петель, вакансионных пор, объемная и поверхностная диффузия, макроскопические процессы распухания, охрупчивания и т.п. [24]. Экспериментальное исследование каждого отдельно взятого из этой цепочки процесса наталкивается на значительные трудности в связи с их быстротекучестью и маскировкой другими процессами, которые являются их ближайшим или отдаленным следствием [24].

Согласно [7], в местах соударения иона с кристаллизующейся поверхностью образуются точечные дефекты и локальные области возбуждения атомов, которые становятся центрами зарождения островков новой фазы. Ионы, сталкиваясь с центрами трехмерного роста, могут разрушать их, обеспечивая условия для двумерного роста. Также ионный пучок энергетически подпитывает процессы диффузии и фазового перехода.

Конкуренция процессов, происходящих при НИО, сказывается в появлении минимума на кривой зависимости величины напряжения сжатия от тока ионной обработки (рис. 1). Использование кратковременного ионного воздействия или, как в нашем случае, чередующихся процессов ВЧ магнетронного осаждения пленок и ионной обработки растущей поверхности позволяет менять скорости образования зародышей и их плотность, скорость диффузии атомов по поверхности, а также передавать атомам поверхности дополнительную энергию.

Считается, что низкоэнергетические ионы при взаимодействии с твердым телом создают структурные изменения преимущественно в поверхностном слое толщиной 1–2 монослоя, оставляя практически неизменной объемную часть материала. В представленной работе чередующиеся процессы напыления и обработки производятся на вращающиеся подложки. Данные процессы разнесены во времени. В режиме напыления толщина напыленного за один проход слоя сравнима с глубиной проникновения низкоэнергетических ионов, поэтому происходит однородная модификация материала по всей толщине растущей пленки.

При введении ионной обработки в процесс напыления [12,25] происходит уменьшение сопротивления пленок ITO, что может быть связано с влиянием упругих напряжений (релаксацией пленок), формированием более совершенной текстуры, изменениями концентрации кислорода и состояния олова в решетке In₂O₃, плотности и топографии поверхности пленок.

4. Заключение

Исследовано влияние ионной обработки в процессе реактивного ВЧ магнетронного напыления на макронапряжения ITO пленок.

Показано, что с ростом температуры подложки (100 и 150°С) параметр решетки пленок ITO уменьшается, но с введением ионной обработки в процесс получения параметр решетки увеличивается. Изменение параметра решетки связано в основном с изменением концентрации кислорода в пленках ITO.

Ионная обработка в процессе получения вызывает увеличение механических напряжений с ростом тока ионного источника, но при токе 70 мА напряженное состояние уменьшается для всех температур осаждения. Показано, что теория формирования напряжения сжатия в тонких пленках, осаждаемых при одновременном облучении потоком низкоэнергетических ионов на основе модернизированной модели [22] нелокального термоупругого пика низкоэнергетического иона в веществе, удовлетворительно объясняет поведение сжимающих напряжений в исследуемых пленках. Следует также учитывать и другие процессы, происходящие при НИО.

Уменьшение сопротивления пленок ITO при введении ионной обработки в процесс напыления может быть связано с влиянием упругих напряжений в пленках, формированием более совершенной текстуры, изменением концентрации кислорода и состояния олова в решетке In₂O₃.

Список литературы

- А.П. Достанько, С.М. Завадский, Д.А. Голосов, М.В. Евстафьева, Ли Динь Ви. Тез. док. VII Междунар. науч.-техн. конф. (Минск, 2012) с. 80.
- [2] J.C.C. Fan. Appl. Phys. Lett., 34, 515 (1979).
- [3] W.F. Wu, B.S. Chiou. Thin Sol. Films, 247, 201 (1994).
- [4] L. Kerkache, A. Layadi, E. Dogheche, D. Remiens. J. Phys. D: Appl. Phys., **39**, 184 (2006).
- [5] W. Wohlmutha, I. Adesida. Thin Sol. Films, 479, 223 (2005).
- [6] H.J. Kim, J.W. Bae, J.S. Kim, K.S. Kim, Y.C. Jang, G.Y. Yeom, N.-E. Lee. Thin Sol. Films, 377–378, 115 (2000).
- [7] В.А. Зиновьев. Автореф. канд. дис. (Новосибирск, 2004).
- [8] N.A.G. Ahmed. Surf. Coat. Technol., **71**, 82 (1995).
- [9] C.A. Davis. Thin Sol. Films, 226, 30 (1993).
- [10] А.Р. Шунгуров, А.В. Панин. Физ. мезомеханика, 12 (3), 23 (2009).
- [11] В.М. Ветошкин, Р.М. Закирова, П.Н. Крылов. ВТТ, 21 (1), 57 (2011).
- [12] П.Н. Крылов, Р.М. Закирова, И.В. Федотова, Ф.З. Гильмутдинов. ФТП, 47 (6), 859 (2013).
- [13] С.С. Горелик, Ю.А. Скаков, Л.Н. Расторгуев. Рентгенографический и электроннографический анализ (М., МИСИС, 2002).
- [14] А.И. Бажин, А.Н. Троцан, С.В. Чертопалов, А.А. Стипаненко, В.А. Ступак. ФИП, 10 (4), 342 (2012).
- [15] Z. Qiao, R. Latz, D. Mergel. Thin Sol. Films, 466, 250 (2004).
- [16] Е.В. Берлин, Л.А. Сейдман. Ионно-плазменные процессы в тонкопленочной технологии (М., Техносфера, 2010).
- [17] N. Boonyopakorn, N. Sripogpun, C. Thanachayanont, S. Dangtip. Chin. Phys. Lett., 27 (10), 108 103 (2010).
- [18] P. Mohan Babu, B. Radhakrishna, G. Venkata Rao, P. Sreedhara Reddy, S. Uthanna. J. Optoelectron. Adv. Mater., 6 (1), 205 (2004).
- [19] A. Užupis, B. Vengalis, V. Lisauskas, S. Tamulevičius, L. Augulis. Mater. Sci. (Medžiagotyra), 12(4), 297 (2006).
- [20] L.-J. Meng, J. Gao, V. Teixeira, M.P. dos Santos. Phys. Status Solidi A-applications and Mater. Sci., 205 (8), 1961 (2008).
- [21] K. Seshan. Handbook of Thin-Film Deposition Processes and Technologies (N.Y., Noyes Publication, 2002) chap. 11.
- [22] А.И. Калиниченко, С.С. Перепелкин, В.Е. Стрельницкий. ВАНТ, 91 (6), 116 (2007).
- [23] A.R. Gonzalez-Elipe, F. Yubero, J.M. Sanz. Low Energy Ion Assisted Film Growth (London, Imperial College Press, 2003).

- [24] В.И. Павленко, С.Н. Слепцов, В.И. Сафонов. ВАНТ, 93 (2), 31 (2009).
- [25] П.Н. Крылов, Р.М. Закирова, И.В. Федотова. ФТП, 47 (10), 1421 (2013).

Редактор Т.А. Полянская

Influence of ion beam processing in reactive RF magnetron sputtering on ITO films stress

P.N. Krylov, R.M. Zakirova, I.V. Fedotova

Udmurt State University, 426034 Izhevsk, Russia

Abstract Transparent conductive films of indium oxide doped with tin, obtained by alternating processes RF magnetron reactive sputtering and ion treatment. Strained states of ITO films were studied *X*-ray diffraction. It is shown that the technological regimes influence on ITO films stress.