# Температурная селективность радиационного воздействия на кремниевые МОП-транзисторы

#### © Б.П. Коман¶

Львовский национальный университет им. Ивана Франко (факультет электроники), 79005 Львов, Украина,

(Получена 20 июня 2013 г. Принята к печати 19 августа 2013 г.)

С использованием методики подпороговых токов МОП-транзисторов в интервале температур (290–450) К исследовано влияние температурных режимов рентгеновского облучения на кинетику изменения параметров  $U_{th}$  и  $D_{it}$  кремниевых МОП-транзисторов с длиной канала 2–10 мкм. Установлено, что по исследуемым параметрам при температурах облучения выше 360 К (температура низкотемпературного максимума в спектре ТСД транзистора) наблюдается снижение радиационной чувствительности транзисторов, которая достигает своего максимального значения в области 430 К (соответствует высокотемпературному максимуму). Полученные результаты интерпретируются с позиции модели существования двух типов ловушек для носителей заряда и перераспределения под действием облучения электрическиактивных ионов Na<sup>+</sup>, K<sup>+</sup>, Li<sup>+</sup> и H<sup>+</sup> между ними, а также эффекта частичной нейтрализации зарядов на межфазной границе.

## 1. Введение

Многоплановые фундаментальные и прикладные исследования радиационных воздействий на полупроводниковые кристаллы и приборы электронной техники на их основе в настоящее время позволили сформулировать два основных направления современных работ в этом аспекте: 1) исследование радиационной стойкости структур и изделий электронной техники; 2) вопросы радиационной и элионной технологий, как составляющих этапов технологических маршрутов изготовления электронных полупроводниковых устройств [1,2].

Традиционный подход, который использовался многими исследователями для повышения радиационной стойкости, а именно легирование кристаллов и отдельных областей приборов определенными типами примесей, в современной микро- и наноэлектронике, как правило, не всегда реализуем на практике и зачастую малоэффективен. Температурные исследования в этом аспекте проводились в основном лишь с целью возможного отжига радиационных дефектов для минимизации радиационных воздействий на структуру путем перевода ее в термодинамически стабильное состояние, что в конечном итоге приводит к некоторым положительным результатам по временной стабилизации ее определенных параметров.

Применение данного подхода для современных кремниевых МОП транзисторов, как правило, затруднительно, поскольку исследуемый прибор по своей структуре является сложной гетерогенной системой и регистрируемые изменения электрофизических параметров являются интегральным результатом сложного дефектообразования, происходящего по различным механизмам в полупроводнике, диэлектрике и на их межфазных границах. Кроме того, ситуация усугубляется еще и тем, что в радиационном дефектообразовании активное участие принимают ионы Na<sup>+</sup>, K<sup>+</sup>, H<sup>+</sup>, Li<sup>+</sup> [3–5], локализованные в различных структурных областях МОПструктуры, обладающие различными энергиями активации и способные принимать активное участие в электропереносе. Последние также, в значительной мере, определяют стабильность МОП приборов в условиях термополевых и радиационных воздействий [6].

Некоторые фрагментарные исследования влияния температуры облучения на свойства структур Si–SiO<sub>2</sub> ( $\gamma$ -облучение) и МОП транзисторов (e-облучение) приведены в работах [7,8] соответственно.

Исследования спектров термостимулируемой деполяризации (ТСД) базовых структур Si-SiO<sub>2</sub> в интервале температур (290-500) К продемонстрировали наличие в них двух типов ловушек носителей заряда с энергиями  $(E_1 \pm \Delta_1)$  и  $(E_2 \pm \Delta_2)$ , которые отображаются двумя максимумами тока — условно низкотемпературным (HT) и высокотемпературным (BT) при температурах 360 и (430-450) К соответственно [9,10]. Они играют значительную роль в захвате и освобождении носителей заряда при внешних воздействиях. Взаимосвязь этих ловушек при термополевых воздействиях, различная природа носителей (e,p, Na<sup>+</sup>, H<sup>+</sup>, Li<sup>+</sup>, K<sup>+</sup>) указывают на возможность планомерного изменения состояния дефектнопримесной структуры путем заполнения или перезаполнения существующих ловушек в процессах селективного энергетического воздействия. Поэтому весьма привлекательной является идея использования особенностей энергетического спектра дефектной структуры Si-SiO<sub>2</sub> с целью регулирования их радиационной чувствительности с использованием "резонансной" температуры согласно спектрам ТСД.

Целью данной работы является исследование влияния температурных режимов рентгеновского облучения на электрофизические параметры кремниевых МОП транзисторов для выбора оптимальных температурных режимов облучения, в пределах которых реализуется минимальное радиационное дефектообразование.

<sup>¶</sup> E-mail: bogdan\_28@mail.ru

Исходными данными для постановки и решения данной задачи послужили результаты исследований влияния рентгеновского облучения на спектры ТСД структур Si-SiO<sub>2</sub> [9,10], а также тестовых транзисторов с длиной канала 10 мкм. Результаты таких исследований отображают интегральный спектр ловушек для носителей заряда и дают возможность проследить вероятные процессы миграции, заполнения и освобождения носителей заряда с ловушек под влиянием термополевых воздействий.

## Методика экспериментальных исследований

Использовались кремниевые транзисторы с поликремниевым затвором и длиной каналов 2–10 мкм, шириной W = 50 мкм, толщиной окисла 0.16 мкм. Методика экспериментальных исследований спектров ТСД — согласно [9,11]. Поляризация транзисторных МОП структур с целью записи токов ТСД осуществлялась в вакуумном криостате путем приложения электрического поля в цепи исток-затвор при небольшом смещении 0.3–0.6 В в цепи исток-сток. Величина поля поляризации составляла 10<sup>4</sup> В/см. Спектры ТСД регистрировали путем линейной развертки температуры в диапазоне 293–450 К со скоростью 0.06–0.1 К/с и синхронной записью токов деполяризации автоматизированным измерительным комплексом на базе ПК.

Для контроля радиационно-индуцированных зарядовых изменений в структуре МОП транзистора использовались также кривые подпороговых токов стокозатворных характеристик  $I_d(U_{\varepsilon})$  исходных и облученных транзисторов. Измерения проводились с помощью зондового автомата "Зонд-А5" с использованием автоматизированного измерительного комплекса. Контролировались изменение порогового напряжения Uth, и плотность состояний  $D_{it}$  на межфазной границе Si–SiO<sub>2</sub>.

Согласно [12], подпороговый ток в режиме насыщения может быть рассчитан, как функция поверхностного изгиба зон согласно уравнению

$$I_d = \sqrt{2}C_m(qN_A L_\beta/\beta)(n_i/N_A)^2 \exp(\beta \Phi_s)^{-1/2},$$

где  $\Phi_s$  — поверхностный изгиб зон;  $N_A$  — уровень легирования канала;  $n_i$  — собственная концентрация носителей;  $L_\beta$  — длина Дебая, равная  $L_\beta = (\varepsilon_s / \beta q N_A)^{1/2}$ ;  $\beta = q/kT$ ;  $C_m = \mu W/2L$ .

Методика [12] позволяет разделить радиационноиндуцированный сдвиг порогового напряжения  $\Delta U_{th}$ , на его составляющие  $\Delta U_{Nit}$  — вклад заряда, локализованного на поверхностных ловушках границы Si–SiO<sub>2</sub>;  $\Delta U_{Not}$  — соответственно на объемно-встроенном заряде подзатворного диэлектрика SiO<sub>2</sub> в предположении, что общее изменение  $U_{th}$ , равно аддитивной сумме составляющих вкладов напряжений:  $\Delta U_{th} = \Delta U_{Nit} + \Delta U_{Not}$ .

Для оценки *D<sub>it</sub>* использовались кривые подпороговых токов, полученные при разных температурах облучения

транзистора. Плотность состояний оценивали согласно методике [13] за формулой

$$D_{it} = \frac{1}{q} \left( C_{0x} \left[ \frac{q}{kT} \middle/ \frac{\partial \ln I_d}{\partial U_g} - 1 \right] - C_d \right),$$

где  $C_{0x}$  — емкость единицы площади подзатворного диэлектрика;  $C_d$  — емкость области пространственного заряда, которая определяется:

$$C_d = \sqrt{q\varepsilon_s N_\beta/2(\Phi_s + kT/q)}.$$

## 3. Результаты экспериментов и их обсуждение

На рис. 1 приведены типичные спектры ТСД кремниевого транзистора исходного (1) и после рентгеновского облучения (2). В качестве источника облучения использовался аппарат РЕИС-И с медным антикатодом при напряжении 30 кВ и токе 10 мкА. Видно, что в исследуемом интервале температур наблюдаются два характерных максимума: в области 360 К и 430 К, аналогичные наблюдаемым в базовых структурах Si-SiO<sub>2</sub> [9,10]. Действие облучения сопровождается уменьшением ВТмаксимума и соответственного ростом НТ-максимума. Аналогичные закономерности наблюдались и в структурах Si-SiO<sub>2</sub> в широком диапазоне доз рентгеновского [9] и α-облучения [10]. Таким образом, наличие неэквивалентных температурных точек в спектре ТСД в предположении, что в транзисторной МОП структуре экспериментально регистрируемый ток j(T) формируется в основном процессами в Si-SiO2, явилось основанием для выбора особенных температурных точек облучения.

На рис. 2 приведены экспериментальные кривые подпороговых токов транзисторов, подвергнутых рентгеновскому облучению при различных температурах, согласно характерным температурным точкам рис. 1. Как

1.6



**Рис. 1.** Кривые токов термостимулированной деполяризации кремниевого МОП транзистора: I — исходный, 2 — после рентгеновского облучения 10 мин (L = 10 мкм, W = 50 мкм).

Физика и техника полупроводников, 2014, том 48, вып. 5

видно, облучение транзисторов при комнатной температуре приводит к сдвигу кривых подпороговых токов в сторону отрицательных смещений вследствие возрастания, согласно [12,14,15], положительного встроенного заряда в подзатворном диэлектрике SiO<sub>2</sub>, и аналогично действию  $\gamma$ - [12] и  $\alpha$ -облучения [16]. Однако, как видно, знак и величина сдвига неэквивалентны для разных температур облучения, что свидетельствует о различной чувствительности радиационно-индуцированных процессов в исследуемых транзисторах к температуре облучения. В частности, повышение температуры облучения до 360 К приводит к небольшому сдвигу кривой  $I_d(U_G)$  в сторону увеличения отрицательного смещения относительно аналогичной для 290 К, что свидетель-турует об увеличении положительного радиационно-индуцированного заряда. Однако дальнейшее повышение

индуцированного заряда. Однако дальнейшее повышение температуры сопровождается противоположным смещением кривых  $I_d(U_g)$  при облучении: в частности при температурах 380 и 430 К чувствительность к рентгеноиндуцируемому дефектообразованию уменьшается, причем минимальное ее значение достигается, как видим, в области ВТ-максимума (430 К) спектра ТСД транзистора (рис. 1).

Данный факт обусловлен немонотонной зависимостью изменения радиационно-индуцированной плотности состояний  $N_{ot}$  в объеме подзатворного диэлектрика SiO<sub>2</sub>, рассчитанной по сдвигу кривых подпорогового тока согласно [11], от температуры облучения (см. вставку на рис. 2). В частности, как видно, в исследованном интервале температур максимальное значение  $\Delta N_{ot}$  в объеме SiO<sub>2</sub> индуцируется в области температур 360 K, а минимальное — 430 K. В силу этого факта следует ожидать и различной радиационной чувствительности основных параметров МОП транзисторов от температуры облучения, поскольку их значения, как известно, определяются величиной и пространственным распределением зарядов, локализованных на индуцированные состояния.

Радиационно-индуцированный сдвиг порогового напряжения, рассчитанный из кривых подпорогового тока по методике [12], демонстрирует сложную зависимость от времени облучения при различных температурах (рис. 3). Как видно, поведение кривых  $\Delta U_{\rm th}(t)$  при температурах облучения 290 и 380К аналогично и характеризуется монотонным увеличением сдвига  $\Delta U_{\rm th}$ со временем облучения. В то же время облучение транзисторов при характерных температурах 360 и 430 К сопровождается многостадийностью поведения  $\Delta U_{\mathrm{th}}$  с ростом времени облучения: резким возрастанием сдвига порогового напряжения на протяжении первых 60 с облучения, его неизменность до 200 с. далее резким увеличением до времен 600 и 900 с (360 и 430 К) и последующим выходом на насыщение (кривые 2 и 4). Наличие описанных аналогичных стадий изменения  $\Delta U_{\rm th}(t)$  для температур облучения 360 и 430 К свидетельствует об общности механизмов рентгено-индуцированного дефектообразования в области этих температур.



**Рис. 2.** Кривые подпороговых токов МОП транзисторов: I -исходный; после рентгеновского облучения при температурах, К: 2 - 290, 3 - 360, 4 - 380, 5 - 430 (L = 10 мкм, W = 50 мкм).



**Рис. 3.** Кинетика рентгено-индуцированного сдвига порогового напряжения и его компонент  $(1-4 - U_{\text{th}}, 5-8 - U_{Nit})$  в МОП транзисторах при температурах облучения, К: 1 - 290, 2 - 360, 3 - 380, 4 - 430 (L = 10 мкм, W = 50 мкм).

Наиболее значительным результатом описанных изменений  $\Delta U_{\text{th}}$  является, как видно, снижение чувствительности порогового напряжения транзистора к действию рентгеновского облучения при температурах облучения выше 360 К. В частности, индуцированное уменьшение этого параметра достигает максимального значения при температуре радиационной обработки 430 К (область ВТ-максимума ТСД-спектра), достигая почти 3 раз по сравнению с облучением при комнатной температуре.

Приведенные результаты по селективному влиянию температуры облучения на пороговое напряжение хорошо коррелируют с аналогичными исследованиями влияния облучения на плотность состоянии  $D_{it}$  на межфазной границе (МФГ) Si–SiO<sub>2</sub> МОП транзисторов.

На рис. 4 приведены зависимости плотности состояний  $D_{it}$  от времени облучения при характерных температурах. Примечательно, что в кинетике облучения  $D_{it}(t)$  повторяются закономерности, наблюдаемые в зависимостях  $U_{th}(t)$ . В частности, наличие "зуба" после первых 60 с облучения, небольшое снижение плотности



**Рис. 4.** Кинетика рентгено-индуцированного изменения плотности состояний МОП транзисторов при температурах облучения, К: 1 - 290, 2 - 360, 3 - 380, 4 - 430 (L = 10 мкм, W = 50 мкм).

состояний, а затем резкое ее увеличение. Однако характер поведения  $D_{it}(t)$  для температур облучения 380 и 430 К несколько различный, что отображает особенности зарядовых изменений именно межфазной границы Si-SiO<sub>2</sub> в процессе облучения. В частности,  $D_{it}(t)$  при температуре 380 К в исследованном временном интервале не выявляет насыщения, в то же время облучение при 430 К сопровождается насыщением D<sub>it</sub> после 900 с действия радиации. Обращает на себя внимание сходный характер кинетики изменения D<sub>it</sub> с облучением при температурах 290 и 380 К. Общим, как и в предыдущем случае, является факт снижения радиационной чувствительности плотности состояний при температурах 380 и 430 К. Некоторые различия в кинетике поведения параметров  $U_{\text{th}}$  и  $D_{it}$  обусловлены тем, что  $U_{\text{th}}$  является интегральным параметром, изменения которого обусловлены сложными взаимосвязанными процессами в подзатворном диэлектрике SiO<sub>2</sub> и на межфазной границе Si-SiO<sub>2</sub>. В то же время изменения D<sub>it</sub> в большей мере отображают радиационно-индуцированные изменения зарядового состояния МФГ.

Описанные выше особенности радиационного воздействия на кремниевые МОП транзисторы могут быть интерпретированы, исходя прежде всего из представлений о природе МФГ Si–SiO<sub>2</sub>, распределения электрически активных ионов в структуре, а также механизмов формирования радиационно-индуцированных дефектов.

Наиболее приемлемой в настоящее время является модель строения МФГ Si–SiO<sub>2</sub>, согласно которой такой границе свойственны дефектно-примесные комплексы, характеризуемые наличием оборванных связей и владеющие амфотерными свойствами [17,18]. Характерным является также наличие молекул координатно-связанной воды  $(H_2O)_k$  [9] и водорода [18–20]. Из собственных структурных дефектов экспериментально идентифицированы центры:  $P_b$ ,  $P_{b0}$  и  $P_{b1}$  [21–23]. На МФГ Si–SiO<sub>2</sub> в приграничном слое SiO<sub>2</sub> существует положительный заряд неподвижных ионов Si<sup>3+</sup>, а также локализованный

заряд щелочных ионов Na<sup>+</sup>, K<sup>+</sup> и H<sup>+</sup>. Обнаружено наличие различных водородосодержащих комплексов как на МФГ, так и в объеме SiO<sub>2</sub> с участием ионов  $H^+$ , атомарного и молекулярного водорода [14.17.18,24]. Атомарный водород создает ловушки на границе раздела (медленные состояния), а также в объеме SiO2, причем эти дефекты имеют близкие свойства с нарушениями, созданными радиацией или инжектируемыми носителями заряда [18]. Проблема идентификации новых водородных формирований с участием Н<sup>+</sup>, генерируемых под воздействием внешних факторов, состоит не столько в их низкой энергии активации (~ 0.1 эВ), сколько в многообразии структурных связей, которые он может образовывать. Ионы щелочных металлов, по предположению, являются источником положительного заряда в окисле, причем их максимальная концентрация сосредоточена на границах металл-оксид и кремний-оксид [3-6,25]. Установлено, что в отличие от объема SiO<sub>2</sub>, где ионы Na<sup>+</sup>, K<sup>+</sup>, Li<sup>+</sup> создают высокий относительно дна зоны донорный уровень, локализованные возле границы раздела ионы модифицируют спектр поверхностных состояний в интервале энергий запрещенной зоны Si [26].

На рис. 5, *а* приведена модель классификации зарядов в исходной структуре Si–SiO<sub>2</sub>, используемая для интерпретации приведенных экспериментальных результатов и отображающая вышеописанные особенности распределения зарядов.



Рис. 5. Модель распределения зарядов в исходной структуре Si–SiO<sub>2</sub> (*a*) и после рентгеновского облучения (*b*). Обозначения зарядов: *1* — подвижный заряд ионов Na<sup>+</sup>, K<sup>+</sup>; *2* — подвижный заряд H<sup>+</sup> на структурных не совершенствах; *3* — положительный (фиксированный) заряд в окисле SiO<sub>2</sub>; *4* — локализированный заряд на поверхностных ловушках границы; 5 — отрицательный заряд, захваченный в окисле.

Физика и техника полупроводников, 2014, том 48, вып. 5

С позиции представленной модели и с учетом природы заряженных центров действие облучения на структуру Si–SiO<sub>2</sub> сводится к изменению их зарядового состояния, структурной перестройки дефектно-примесных комплексов на МФГ, а также перелокализации мобильных носителей заряда в энергетически более выгодные состояния.

Принято считать, что наблюдаемый ВТ-максимум в спектрах ТСД (рис. 1) идентифицируется с ловушками носителей заряда, локализованными на МФГ Si–SiO<sub>2</sub>, а НТ-максимум соответственно в объеме диэлектрика SiO<sub>2</sub> [4,11].

Поэтому объяснение изложенных экспериментальных результатов влияния облучения на параметры МОПтранзисторов в этом контексте следует интерпретировать исходя из представлений о существовании на границе раздела Si–SiO<sub>2</sub> классических ионных ловушек, для которых заполнение ионов не изменяет электронную подсистему полупроводника, а также с учетом объемного транспорта ионов сквозь диэлектрический слой. Механизмы такого транспорта проанализированы в [4].

Из сравнения максимумов ТСД (рис. 1) облученного и необлученного транзисторов следует, что облучение сопровождается уменьшением величины ВТ-максимума и синхронным увеличением НТ-максимума. Данный факт свидетельствует о том, что при облучении в области ВТ-максимума облучение стимулирует освобождение носителей заряда из высокоэнергетических (ВЭ) ловушек и их перелокализацию в область низкоэнергетических (НЭ). В частности, основные процессы будут доминировать прежде всего в пределах МФГ Si–SiO<sub>2</sub> и переходного слоя. Такими носителями могут быть ионы Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, а также H<sup>+</sup>, освобожденные облучением (рис. 5, *b*). Одним из многих вариантов такого процесса является освобождение ионов Na<sup>+</sup> со связанных комплексов типа

$$\rightarrow$$
Si – O – Na<sup>+</sup>,

которые мигрируют в область НЭ-ловушек. Кроме того, в области ВТ-максимумов вероятна реакция замещения Na—-H с участием молекулярного водорода:

$$\rightarrow$$
Si - O-Na<sup>+</sup> + (1/2)H<sub>2</sub>  $\rightarrow$   $\rightarrow$ Si - OH - Na

и выделением межузельного Na, который легко ионизируется, поскольку его уровень лежит от дна зоны проводимости SiO<sub>2</sub> на расстоянии 1.7 эВ [3].

Вероятным механизмом, ответственным за процессы при облучении в области ВТ-максимума являются эффекты нейтрализации ионов и ионных ловушек на границе Si–SiO<sub>2</sub>, которые характерны для этих структур [25]. Особенностью таких ловушек является наличие в них дальнодействующего кулоновского и (или) дипольного потенциалов, что приводит к полевой зависимости темпа эмиссии захваченных на них частиц  $\infty \exp(\alpha \varepsilon \gamma/kT)$ , где  $\varepsilon$ - внешнее поле,  $1/2 < \gamma < 2/3$ . В [26] показано, что эффективными ловушками для положительных мобильных ионов могут быть неоднородности границы раздела типа дипольных (заряженных) "пятен". Нейтрализация положительных ионов щелочных металлов может также осуществляться электронами, туннелирующими из подложки Si в процессе облучения [15,25]. В переходном слое Si–SiO<sub>2</sub> ловушками для электронов могут выступать также ионы Si<sup>3+</sup> и комплексы Si–OH, Si–H.

Вопрос об источнике протонов в настоящее время является дискуссионным. Однако принято считать, что таковыми являются координатно-связанные молекулы воды (H<sub>2</sub>O)<sub>k</sub>, локализованные на МФГ [24], а также водородосодержащие комплексы Si–OH, Si–H [14,15]. Не исключается также прямое освобождении с пассивируемых связей МФГ, а также структурной сетки SiO<sub>2</sub> под действием облучения или термических флуктуаций. В электрическом поле генерация протонов может происходить также по механизму полевого освобождения с последующим взаимодействием протонов со связями Si–O. Это сопровождается генерацией электрическиактивных центров согласно реакциям (1) [27].

Таким образом, при радиационном воздействии на МОП транзисторы в данном температурном режиме основные процессы трансформации зарядов происходят на МФГ Si-SiO<sub>2</sub>, результат которых и формирует поведение  $D_{it}$ ,  $U_{th}$  с облучением. Исходя из выше изложенных механизмов радиационно-индуцированных процессов, результирующие значения параметров транзисторов будут определяться двумя альтернативными процессами: 1) увеличением положительного заряда путем внедрения ионов Na<sup>+</sup>, K<sup>+</sup> в подзатворном диэлектрике SiO<sub>2</sub> по вышеописанным механизмам и положительного встроенного заряда с участием освобожденных протонов и генерируемых дырок  $h^+$  [14,15,18,28]; 2) туннелированием электронов из подложки Si, освобожденных облучением, и последующая нейтрализация с их участием трехвалентных ионов Si<sup>3+</sup> и Na<sup>+</sup>, K<sup>+</sup> (рис. 5, b). К аргументам в пользу действия этого механизма следует отнести также процессы освобождения и миграции ионов H<sup>+</sup> в объем SiO<sub>2</sub> с последующей пассивацией ими электрическиактивных центров, ответственных за радиационноиндуцированный сдвиг кривых подпороговых токов.

Очевидно, что при температуре облучения 430 К процессы нейтрализации электрическиактивных центров происходят более интенсивно, по сравнению с другими температурами облучения, чем в конечном итоге и объясняется снижение радиационной чувствительности исследованных МОП-транзисторов по параметрам  $D_{it}$  и  $U_{th}$ .

Действие облучения в температурном диапазоне НТмаксимума сопровождается также снижением радиационного влияния на МОП транзисторы (рис. 3 и 4), однако по абсолютной величине эффект изменения параметров  $D_{it}$  и  $U_{th}$  значительно меньше, чем при облучении в области 430 К. Радиационно-индуцированный сдвиг кривых подпорогового тока (рис. 2) свидетельствует также о введении в подзатворный диэлектрик SiO<sub>2</sub> в процессе облучения положительного заряда. Такое поведение указанных параметров при облучении может найти объяснение лишь исходя из природы ловушек, свойственных НТ-максимуму, а также особенностей радиационно- индуцированных процессов. Следует отметить, что в настоящее время отсутствует однозначная информация о природе ловушек для носителей, обусловливающих НТ-максимум в спектрах ТСД. Однако по установившимся мнениям наличие обсуждаемого максимума связывается с различными водородными комплексами, а также дефектами структурного происхождения сетки SiO<sub>2</sub> с участием протонов [3,4,11,18].

Поэтому облучение в области 360 К будет сопровождаться двумя альтернативными процессами: 1) депассивацией связей типа  $P_b$ H,  $P_{b0}$ H,  $P_{b1}$ H структурной сетки SiiO<sub>2</sub> и разрушением водородосодержащих комплексов; 2) образованием в переходном слое и в объеме SiO<sub>2</sub> положительных центров с участием ионов H<sup>+</sup>, согласно реакции [14,18]

$$Si - O - Si + H^+ \rightarrow SiOH + Si^{3+}$$
,

а также диффузией водорода, генерируемого в процессе радиолиза, в объем SiO<sub>2</sub> и осуществление обратного (к п. 1) процесса — пассивации структурных нарушений в объеме SiO2. Оценки показывают, что время такой диффузии на характерную глубину повышенной концентрации положительного заряда 3 нм составляет приблизительно 0.05 с, что является реальной величиной. Встроенный положительный заряд может быть генерирован также E'-центром, который представляет собой дефект O<sub>3</sub>–Si. вблизи границы раздела Si–SiO<sub>2</sub>[28]. Вероятным механизмом генерации радиационно-индуцированного заряда является разрыв под действием облучения слабых связей в водородосодержащих комплексах Si–H, Si-OH [29–32].

Предложенные механизмы наблюдаемых особенностей поведения параметров  $D_{it}$ ,  $U_{th}$  кремниевых МОП транзисторов вследствие облучения являются в некоторой мере приблизительными в силу отсутствия в настоящее время однозначной модели МФГ Si–SiO<sub>2</sub>, а также конкретных сведений о природе объемных (в SiO<sub>2</sub>) ловушек. Изучение закономерностей поведения зарядов при радиационных воздействиях открывает перспективы создания радиационно-стойких кремниевых МОП структур, а также новых типов элионных приборов на их основе.

#### 4. Заключение

На основе приведенных результатов показана возможность планомерного изменения радиационной чувствительности кремниевых МОП транзисторов в интервале 290–450 К. Используется изменение зарядового состояния дефектно-примесной системы структуры Si–SiO<sub>2</sub> под действием рентгеновского облучения при "резонансных" температурах, которые определяются спектрами

ТСД. Показано, что при облучении транзистора в области температур ВТ-максимума согласно спектру ТСД (430 K), исследуемые кремниевые МОП транзисторы по параметрам  $D_{it}$  и  $U_{th}$  демонстрируют наивысшую радиационную стойкость по сравнению с аналогичными транзисторами, облученными в исследованном интервале температур.

Полученные результаты могут быть объяснены с позиций модели делокализации электрическиактивных мобильных ионов Na<sup>+</sup>, K<sup>+</sup>, Li<sup>+</sup> и H<sup>+</sup> из высокоэнергетических ловушек (при облучении в области высокотемпературного максимума согласно спектру TCД) с их последующей локализацией в низкоэнергетические ловушки, а также частичной нейтрализацией электрическиактивных комплексов на межфазной границе Si–SiO<sub>2</sub> электронами, туннелирующими из подложки. При облучении в области низкотемпературного максимума предполагается водородная депассивация центров в объеме подзатворного диэлектрика SiO<sub>2</sub>.

### Список литературы

- И.В. Васильева, Г.А. Ефремов, В.В. Козловский, В.Н. Ломасов, В.С. Иванов. Радиационные процессы в технологии материалов и изделий электронной техники (М., Энергоатомиздат, 1997).
- [2] В.С. Вавилов, Б.М. Горин, Н.С. Данилин, А.Е. Кив, Н.Л. Куров, В.И. Шаховцов. Радиационные методы в твердотельной электронике (М., Радио и связь, 1990).
- [3] В.Н. Вертопрахов, Б.М. Кучумов, В.Г. Сальман. *Строение* и свойства структур Si–SiO<sub>2</sub> (Новосибирск, Наука, 1981).
- [4] В.Н. Вертопрахов, В.Г. Сальман. Термостимулированные токи в неорганических веществах (Новосибирск, Наука, 1981).
- [5] А.П. Барабан, В.В. Балавинов, П.П. Коноров. Электроника слоев SiO<sub>2</sub> на кремнии (Л. ЛГУ, 1988).
- [6] В.М. Гонтарь, М.Г. Султанов. Электрон. техн., 5, 48 (1991).
- [7] H. Ohyama, K. Hayama, K. Takakypa, T. Jono, C. Simoen, C. Claeys. Microelectron. Engin., 66, 530 (2003).
- [8] Ю.В. Баринов, В.Н. Безбородов, В.В. Емельянов, В.С. Першенков. ФТП, 29, 323 (1995).
- [9] Б.П. Коман. Фізика і хімія твердого тіла, 13, 1281 (2012).
- [10] B.P. Koman, O.V. Galchynskyy, R.O. Kovalyuk. NIM B,116, 389 (1996).
- [11] Ю.А. Гороховатский, Г.А. Бордовский. Термоактивационная токовая спектроскопия высокоомных полупроводников и диэлектриков (М., Наука, 1991).
- [12] F.G. McWhorter, P.S. Winokur. Appl. Phys. Lett., 48, 133 (1986).
- [13] M. Gaitan, T.J. Russell. IEEE Trans. Nucl. Sci., 31, 1256 (1984).
- [14] В.С. Першенков, В.Д. Попов, А.В. Шальнов. Поверхностные радиационные эффекты в элементах интегральных микросхем (М., Энергоатомиздат, 1988).
- [15] Б.П. Коман. Укр. фіз. жур., 45, 1440 (2000).
- [16] Б.П. Коман. Сенсорна електроніка і мікросистемні технологіі, **39**, 88 (2012).

- [17] В.С. Вавилов, В.Ф. Киселев, Б.Н. Мукашев. Дефекты в кремнии и на его поверхности (М., Наука, 2010).
- [18] Е.Ф. Венгер, В.Е. Примаченко, С.И. Кирилова, В.А. Чернобай. Оптоэлектрон. и полупроводн. техн., **38**, 134 (2003).
- [19] D. Vuillaume. Appl. Phys. Lett., 59, 3118 (1991).
- [20] D. Vuillaume. J. Appl. Phys., 70, 6902 (1991).
- [21] N.M. Johnson, D.K. Biegelsen, M.D. Moyer. Appl. Phys. Lett., 43, 563 (1983).
- [22] E.N. Poindexter. Semicod. Sci. Technol., 4, 961, (1989).
- [23] G.J. Gerardi, E.H. Poindexter, P.J. Caplan, N.M, Johnson. Appl. Phys. Lett., 49, 348 (1986).
- [24] В.Г. Литовченко, А.П. Горбань. Основы физики микроэлектронных систем металл-диэлектрик-полупроводник (Киев, Наук. думка, 1978).
- [25] Е.И. Гольдман, А.Г. Ждан, Н.Ф. Кухарская. ФТП, 33, 306 (1999).
- [26] С.Г. Дмитриев, Ю.В. Маркин. ФТП, 30, 1231 (1996).
- [27] И.П. Лисовский, В.Г. Литовченко, Г.Ф. Романова. Укр. физ. жур., **38**, 1532 (1993).
- [28] В.А. Гриценко, Ю.Н. Новиков, А.В. Шапошников, Ю.Н. Мороков. ФТП, **35**, 1041 (2001).
- [29] C.T. Sah. IEEE Trans. Nucl. Sci., NS-23, 1563 (1976).
- [30] C.T. Sah, J.Y. Sun, J.J. Tzou. J. Appl. Phys. 54, 2547 (1983).
- [31] A.G. Revesz. IEEE Trans. Nucl. Sci., NS-24, 2102 (1977).
- [32] А.Б. Симаков, А.Ю. Башин. Микроэлектроника, 36, 62 (2007).

Редактор Т.А. Полянская

# Temperature selectivity effects of radiation on MOS silicon transistors

B.P. Koman

Lviv National Ivan Franko University, Department of Electronics, 79005 Lviv, Ukraine

**Abstract** Using the technique of subthreshold current curves in the temperature range (290-450 K) the effect of temperature modes *X*-rays on the kinetics of parameters  $(U_{th} \text{ and } D_{it})$  MOS silicon transistors with channel length  $2-10 \mu \text{m}$  is investigated. It is established that the investigated parameters at irradiation temperatures above 360 K decrease radiation sensitivity of transistors, reaching its peak at the 430 K (corresponding HT-maximum in the TSD-transistor). The results are interpreted from the perspective of the model, that there are two types of traps for carriers and redistribution under irradiation electroactive ions Na<sup>+</sup>, K<sup>+</sup>, Li<sup>+</sup> and H<sup>+</sup> and also the effect of partial neutralization of charges at the interface.