Особенности электрофизических свойств гетероструктур InSb/AlInSb/AlSb с высокой концентрацией электронов в двумерном канале

© Т.А. Комиссарова^{*¶}, А.Н. Семенов^{*}, Б.Я. Мельцер^{*}, В.А. Соловьев^{*}, Р. Paturi⁺, Д.Л. Федоров[•], П.С. Копьев^{*}, С.В. Иванов^{*}

* Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

⁺ Wihuri Laboratory, Department of Physics and Astronomy, University of Turku,

• Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова,

190005 Санкт-Петербург, Россия

(Получена 17 июля 2013 г. Принята к печати 19 августа 2013 г.)

Работа посвящена исследованию электрофизических свойств гетероструктур с квантовыми ямами (КЯ) InSb/AlInSb/AlInSb/AlIsb с высокой концентрацией электронов. Обнаружена анизотропия концентрации и подвижности электронов, измеренных в слабом магнитном поле в кристаллографических направлениях [110] и [110]. С помощью анализа осцилляций Шубникова-де Гааза показано, что проводимость по двумерному электронному каналу КЯ InSb/AlInSb не зависит от кристаллографического направления. Вместе с тем магнитополевые зависимости модуля коэффициента Холла и удельного сопротивления структур продемонстрировали сильную чувствительность к кристаллографическому направлению. Это позволило заключить, что анизотропия транспортных параметров электронов в структурах с КЯ, измеренных в слабом магнитном поле, связана с паразитной проводимостью по буферному слою Al_{0.09}In_{0.91}Sb, заметный вклад в которую дают два анизотропных эффекта: влияние кластеров металлического In, неоднородно распределенных по буферному слою, и проводимость по сильнодефектному приинтерфейсному слою, плотность протяженных дефектов в котором зависит от кристаллографического направления.

1. Введение

Уникальные фундаментальные свойства антимонида индия, такие как малая ширина запрещенной зоны (0.17 эВ при 300 К), малая эффективная масса электронов (0.014m0 при 300 К) и их высокая подвижность (78 000 см²/В · с при 300 К), делают InSb перспективным материалом для создания на его основе высокочастотных транзисторов с высокой подвижностью электронов и с низким потреблением энергии [1]. В настоящее время гетероструктуры InSb/AlInSb/AlSb с двумерным (2D) электронным каналом в квантовой яме (КЯ) InSb/AlInSb активно исследуются в двух лабораториях [2,3]. Лучшие экспериментальные значения подвижности электронов в таких структурах составляют $\mu = 69\,300\,\mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$ при $n = 4.5\cdot10^{11}\,\mathrm{cm}^{-2}$ (300 K) и $\mu = 395\,000\,\mathrm{cm^2/(B\cdot c)}$ при $n = 3.21\cdot 10^{11}\,\mathrm{cm^{-2}}\,(2\,\mathrm{K})$ [3]. Однако для практического применения гетероструктур с КЯ InSb/AlInSb необходимо увеличить концентрацию электронов в 2D канале, при сохранении достаточно высокой подвижности. Исследования транспортных свойств структур InSb/AlInSb с высокими значениями концентрации электронов ($n = (1.5-2) \cdot 10^{12}$ при 300 K) обнаружили, что в таких гетероструктурах существенным становится паразитный вклад б-легированного Те барьерного слоя Al_{0.2}In_{0.8}Sb [4,5]. Кроме того, в работах других авторов [6,7] была обнаружена анизотропия подвижности электронов в кристаллографических направлениях [110] и [110] в структурах InSb/Al_{0.09}In_{0.91}Sb

с концентрацией электронов $n \approx 2 \cdot 10^{12} \,\mathrm{cm}^{-2}$, которая была объяснена анизотропным рассеянием электронов в 2D канале на дефектах упаковки, плотность которых зависит от кристаллографического направления. Нужно отметить, что исследование влияния проводимости барьерного слоя AlInSb на электрические измерения и изучение анизотропии подвижности электронов в 2D канале проводились независимо, т.е. возможная электрическая анизотропия не принималась во внимание в работах, посвященных исследованию влияния барьерного слоя, и наоборот [4–7]. Кроме того, в работах [6,7] в разных кристаллографических направлениях измерялось удельное сопротивление структур, в то время как коэффициент Холла и концентрация электронов измерялись в геометрии Ван дер Пау, что не позволило выявить наличие или отсутствие анизотропии концентрации электронов.

Данная работа посвящена исследованию электрических свойств гетероструктур $InSb/Al_{0.09}In_{0.91}Sb/AlSb$ с повышенной концентрацией электронов с целью изучения причин электрической анизотропии подобных структур и влияния проводимости буферного слоя AlInSb. Обнаружена сильная анизотропия транспортных параметров электронов (концентрации и подвижности) в исследуемых гетероструктурах, измеренных в слабом магнитном поле в двух кристаллографических направлениях [110] и [110]. Измерения осцилляций Шубникова- де Гааза показали, что проводимость по 2D электронному каналу изотропна, а значения концентрации квантованных электронов существенно меньше определяемых из холловских измерений в разных кристаллографических направлениях. Обнаружены сильные зависимости

FIN-20014, Turku, Finland

[¶] E-mail: komissarova@beam.ioffe.ru

Образец	d_1 , мкм	<i>d</i> ₂ , мкм	Ν	d_3 , нм	<i>T</i> ,K	Ван дер Пау 0.1 Тл	
						n, cm^2	μ , cm ² /B · c
1	2	3	4	5	6	7	
А	0.67	1.5	2	20	300	$2.3\cdot 10^{12}$	20500
В	0.69	2.5	2	20	300	$3.7\cdot10^{12}$	20500
С	0.36	3.2	1	27	300	$5.8 \cdot 10^{12}$	10700
D	0.36	3.2	2	25	300	$1.1\cdot 10^{13}$	7200
F	0.41	3.8	2	40	300	$1.4\cdot 10^{12}$	10600

Таблица 1. Основные геометрические параметры дизайна гетероструктур InSb/AlInSb/AlSb и значения концентрации и подвижности электронов, измеренные в геометрии Ван дер Пау при 300 К.

модуля коэффициента Холла и удельного сопротивления от магнитного поля, различающиеся для кристаллографических направлений [110] и [110] и показано, что эти зависимости, а значит и анизотропия значений концентрации и подвижности электронов в структурах с КЯ, измеренных в слабом магнитном поле, определяются паразитной проводимостью по буферному слою Al_{0.09}In_{0.91}Sb, имеющей сложную природу.

2. Эксперимент

В работе исследовались гетероструктуры InSb/ Al_{0.09}In_{0.91}Sb/AlSb, выращенные методом молекулярнопучковой эпитаксии на полуизолирующих подложках GaAs (100). Конструкция исследованных гетероструктур схематически изображена на рис. 1, геометрические параметры дизайна гетероструктур представлены в табл. 1 (2-5 столбцы). В разных образцах варьировалась толщина буферного слоя AlSb d_1 в диапазоне (0.36–0.69) мкм, толщина буферного/барьерного слоя Al_{0.09}In_{0.91}Sb d_2 в диапазоне (1.5-3.8) мкм, включающего в себя сверхрешетку Al_{0.09}In_{0.91}Sb/InSb для предотвращения распространения прорастающих дислокаций и легированный Те слой Al_{0.09}In_{0.91}Sb. Толщина квантовой ямы InSb составляла в разных структурах величину $d_3 = (20-40)$ нм. Различные гетероструктуры InSb/AlnSb/AlSb содержали одну или две КЯ. Ранее было показано, что плотность дефектов упаковки в гетероструктурах InSb/AlInSb/AlSb во многом определяется температурой роста буферного слоя AlSb [8]. В данной работе буферный слой AlSb выращивался при высокой температуре 530-550°C, что позволило уменьшить плотность дефектов упаковки в структурах с КЯ InSb/AlInSb до $2 \cdot 10^7$ см⁻². Отличительной особенностью исследованных в данной работе структур было объемное модулированное легирование барьерного слоя Al_{0.09}In_{0.91}Sb донорной примесью Te, тогда как в большинстве известных работ барьер AlInSb легируется с помощью δ-слоя Si [2] или Te [3]. В результате была получена серия структур с КЯ InSb/AlInSb, в которых концентрация электронов варьировалась в широком диапазоне, что необходимо для исследования возможного влияния проводимости буферного слоя и анизотропии транспортных параметров на свойства подобных гетероструктур. Значения холловской концентрации и подвижности, измеренные в геометрии Ван дер Пау в магнитном поле 0.1 Тл, представлены в табл. 1 (столбец 7). Обращают на себя внимание значения холловской подвижности в исследуемых гетероструктурах, которые заметно меньше, чем опубликованные данные [3-7], что связано с существенно более высокими значениями холловской концентрации электронов $(2 \cdot 10^{12} - 1 \cdot 10^{13} \text{ см}^{-2}$ при 300 К). Для изучения электрической анизотропии гетероструктур InSb/AlSb/AlInSb проводились измерения коэффициента Холла и удельного сопротивления в стандартной холловской геометрии с ориентацией "холловских мостиков" в двух кристаллографических направлениях [110] и [110]. Измерения проводились как в слабом магнитном поле (B = 0.1 Tr), так и в сильных магнитных полях (до 30 Тл) в диапазоне температур от 1.6 до 300 К.

Рис. 1. Схематическое изображение конструкции исследованных гетероструктур InSb/AlInSb/AlSb.

Образец	Т,К	[110]	[[110], [110]		
		n, cm^{-2}	μ , cm ² /B · c	n, cm^{-2}	μ , cm ² /B · c	$n_{\rm SdH}, {\rm cm}^{-2}$	
1	2		3		4		
А	300 4.2	$\begin{array}{c} 3 \cdot 10^{12} \\ 1.9 \cdot 10^{12} \end{array}$	19600 7000	$\begin{array}{c} 7.5\cdot 10^{12} \\ 9.4\cdot 10^{12} \end{array}$	8100 40	$2.5 \cdot 10^{11}$	
В	300 4.2	$\begin{array}{c} 4.5\cdot 10^{12} \\ 1.4\cdot 10^{12} \end{array}$	17000 11000	$\begin{array}{c} 6.6 \cdot 10^{12} \\ 2.5 \cdot 10^{12} \end{array}$	10000 2000		
С	300 4.2	$\frac{1.4 \cdot 10^{13}}{7.7 \cdot 10^{12}}$	4800 5100	$\begin{array}{c} 2.1 \cdot 10^{13} \\ 1.1 \cdot 10^{13} \end{array}$	4400 1200	$2.0 \cdot 10^{12}$	
D	300 4.2	$\frac{1.6 \cdot 10^{13}}{1.2 \cdot 10^{13}}$	6800 10500	$\begin{array}{c} 2.5 \cdot 10^{13} \\ 1.9 \cdot 10^{13} \end{array}$	2500 2700	$1.4 \cdot 10^{12}$	
F	300 4.2	$2.9 \cdot 10^{12}$	34000	$3.4\cdot10^{12}$	25800		

Таблица 2. Значения концентрации и подвижности электронов, измеренные в стандартной холловской геометрии с ориентацией "холловских мостиков" в кристаллографических направлениях [110] и [110].

3. Экспериментальные результаты и их обсуждение

354

Обнаружена сильная анизотропия значений концентрации n и подвижности μ электронов, измеренных в направлениях [110] и [110] в слабом магнитном поле 0.1 Тл (табл. 2, столбцы 3 и 4). Для выяснения причин электрической анизотропии были предприняты измерения магнитополевых зависимостей модуля коэффициента Холла $|R_{\rm H}|$ и удельного сопротивления ρ в сильных магнитных полях (до 30 Тл).

Типичные зависимости $|R_{\rm H}|$ и ρ от B представлены на рис. 2 для двух исследованных структур (A и D). $|R_{\rm H}|$ и ρ демонстрируют различное поведение при увеличении магнитного поля в зависимости от кристаллографического направления и дизайна гетероструктур InSb/AlInSb/AlSb. В большинстве исследованных структур наряду с сильными полевыми зависимостями $|R_{\rm H}|$ и ρ при низких температурах ($T < 50 \,{\rm K}$) были обнаружены осцилляции Шубникова-де Гааза (ШдГ), которые исчезали в конфигурации, когда направление магнитного поля было перпендикулярно оси роста [001] структур, т.е. лежало в плоскости КЯ (рис. 3, *a*), что свидетельствует о связи этих осцилляций с проводимостью по 2D электронному каналу. Показано, что период осцилляций ШдГ (рис. 3, b), а значит, и концентрация квантованных электронов 2D канала n_{SdH} (табл. 2, столбец 5) не зависят от кристаллографического направления, т.е. проводимость по 2D электронному каналу гетероструктур InSb/AlInSb/AlSb изотропна. Сильное различие концентрации квантованных 2D электронов *n*_{SdH} и холловских концентраций, измеренных в направлениях [110] и $[1\overline{1}0]$ при B = 0.1 Тл (табл. 2, столбцы 3-5), свидетельствует о том, что помимо проводимости по 2D электронному каналу в гетероструктурах InSb/AlInSb/AlSb с высокой концентрацией электронов существует дополнительный анизотропный механизм проводимости, который определяет сильные магнитополевые зависимости $|R_H|$ и ρ , зависящие от кристаллографического направления, и, как результат, анизотропию транспортных параметров электронов, измеренных в слабом магнитном поле.

Проведенные ранее исследования электрических и структурных свойств эпитаксиальных слоев InSb и Al_{0.09}In_{0.91}Sb обнаружили аналогичную анизотропию транспортных параметров электронов, измеренных в слабых магнитных полях [9]. С помощью анализа осцилляций ШдГ было показано, что проводимость по объемному слою пленок InSb и Al_{0.09}In_{0.91}Sb не зависит от кристаллографического направления. Продемонстрировано, что разница значений концентрации и подвижности электронов, измеренных в слабом магнитном поле в кристаллографических направлениях [110] и [110], определяется двумя анизотропными эффектами: влиянием спонтанно сформированных кластеров металлического In, которые неоднородно распределены по пленке, и проводимостью сильнодефектного приинтерфейсного слоя (Al)InSb/AlSb, плотность протяженных дефектов в котором зависит от кристаллографического направления. Эти два эффекта являются также причинами и сильных магнитополевых зависимостей модуля коэффициента Холла и удельного сопротивления. Наличие кластеров металлического In приводит к аномальной возрастающей зависимости $|R_{\rm H}|$ от *B* и практически линейной зависимости $\rho(B)$, не выходящей на насыщение. Наличие второго канала проводимости по принтерфейсному слою является причиной уменьшения модуля коэффициента Холла при увеличении магнитного поля. В зависимости от того, какой эффект преобладает, магнитополевая зависимость $|R_{\rm H}|$ может быть возрастающей, убывающей или немонотонной, обусловленной двумя эффектами.

Таким образом, сильные магнитополевые зависимости модуля коэффициента Холла и удельного сопротивления, наблюдаемые в гетероструктурах InSb/AlInSb/AlSb,

Рис. 2. Магнитополевые зависимости модуля коэффициента Холла $|R_{\rm H}|$ (a, c) и удельного сопротивления ρ (b, d), измеренные для структур A (a, b) и D (c, d) при 4.2 K в кристаллографических направлениях [110] и [110].

которые зависят от кристаллографического направления, а значит, и анизотропия транспортных параметров электронов, измеренных в слабом магнитном поле, связаны, по-видимому, с паразитной проводимостью по буферному слою $Al_{0.09}In_{0.91}Sb$. Для проверки данного утверждения была выращена структура *F* (табл. 1), основным отличием которой от остальных гетероструктур было использование значительно более толстого буфер-

356

Рис. 3. Осцилляции Шубникова-де Гааза при 4.2 К, выделенные из магнитополевой зависимости удельного сопротивления путем вычитания монотонно возрастающего фона. *a* — осцилляции ШдГ, измеренные в направлении [110], в конфигурациях, когда направление магнитного поля параллельно и перпендикулярно направлению роста структуры [001]. *b* — осцилляции ШдГ, измеренные в кристаллографических направлениях [110] и [110], в конфигурации, когда направление магнитного поля было параллельно направлению роста структуры [001].

Рис. 4. Магнитополевые зависимости модуля коэффициента Холла (*a*) и удельного сопротивления (*b*), измеренные в структуре F при 4.2 К в кристаллографических направлениях [110] и [110].

ного слоя Al_{0.09}In_{0.91}Sb и более широкой квантовой ямы InSb/AlInSb. Использование более толстого буферного слоя Al_{0.09}In_{0.91}Sb должно, с одной стороны, уменьшить влияние проводимости по приинтерфейсному слою. Кроме того, увеличение толщины слоя AlInSb приводит к уменьшению плотности протяженных дефектов [8], а значит, и к уменьшению концентрации кластеров металлического In, которые спонтанно формируются в процессе роста преимущественно вблизи протяженных дефектов [9]. Как было показано ранее, увеличение ширины КЯ InSb/AlInSb приводит к увеличению подвижности электронов 2D канала [10], что связано с уменьшением рассеяния электронов на шероховатостях интерфейса InSb/AlInSb. Таким образом, дизайн структуры F должен был обеспечить уменьшение паразитного влияния буферного слоя Al_{0.09}In_{0.91}Sb на проводимость 2D электронного канала. На рис. 4 представлены зависимости $|R_{\rm H}|$ и ρ от *B* для гетероструктуры *F*. Обнаружено, что данная структура демонстрирует квантовый эффект Холла, что говорит о хорошем структурном и электрическом качестве 2D электронного канала. Значения концентрации и подвижности электронов, измеренные в слабом магнитном поле в кристаллографических направлениях [110] и [110], существенно лучше, чем в предыдущих структурах, даже несмотря на высокую концентрацию электронов. Кроме того, значения *n* и µ при 300 К слабо отличаются для разных кристаллографических направлений, что свидетельствует о более слабом влиянии проводимости по буферному слою AlInSb. Однако наблюдаемый монотонно возрастающий фон, зависящий от кристаллографического направления, в кривых $\rho(B)$, измеренных при 4.2 К (рис. 4, *b*), указывает на то, что паразитная проводимость по Al_{0.09}In_{0.91}Sb и в структуре F подавлена не полностью, и необходима дальнейшая модификация дизайна гетероструктур для получения 2D электронного канала с высокой подвижностью электронов при их высокой концентрации. Следует отметить, что аналогичный монотонно возрастающий фон в зависимости $\rho(B)$ наряду с особенностями, связанными с квантовым эффектом Холла, наблюдался и в работе, посвященной исследованию влияния барьерного слоя AlInSb на электрические свойства гетероструктур с КЯ InSb/AlInSb [4].

Таким образом, в работе показано, что обнаруженная анизотропия концентрации и подвижности электронов в гетероструктурах InSb/AlInSb/AlSb связана с паразитной проводимостью по буферному слою Al_{0.09}In_{0.91}Sb, которая зависит от кристаллографического направления. Продемонстрировано, что проводимость по двумерному электронному каналу KЯ InSb/AlInSb изотропна.

Частичная финансовая поддержка работы осуществлялась средствами гранта РФФИ № 11-02-12249-офи-м и Фонда Дженни и Анти Вихури (Финляндия).

Список литературы

 B.R. Bennett, R. Magno, J. Brad Boos, W. Kruppa, M.G. Ancona. Sol. St. Electron., 49, 1875 (2005).

- [2] K.J. Goldammer, S.J. Chung, W.K. Liu, M.B. Santos, J.L. Hicks, S. Raymond, S.Q. Murphy. J. Cryst. Growth, 201/202, 753 (1999).
- [3] A.M. Gilbertson, W.R. Branford, M. Fearn, L. Buckle, T. Ashley, L.F. Cohen. Phys. Rev. B, 79, 235 333 (2009)
- [4] O.J. Pooley, A.M. Gilbertson, P.D. Buckle, R.S. Hall, L. Buckle, M.T. Emeny, M. Fearn, L.F. Cohen, T. Ashley. New J. Phys., 12, 053 022 (2010).
- [5] A.M. Gilbertson, P.D. Buckle, M.T. Emeny, T. Ashley, L.F. Cohen. Phys. Rev. B, 84, 075 474 (2011).
- [6] M.A. Ball, J.C. Keay, S.J. Chung, M.B. Santos, M.B. Johnson. Appl. Phys. Lett., 80, 2138 (2002).
- [7] T.D. Mishima, J.C. Keay, N. Goel, M.A. Ball, S.J. Chung, M.B. Johnson, M.B. Santos. J. Cryst. Growth, 251, 551 (2003).
- [8] А.Н. Семенов, Б.Я. Мельцер, В.А. Соловьев, Т.А. Комиссарова, А.А. Ситникова, Д.А. Кириленко, А.М. Надточий, Т.В. Попова, П.С. Копьев, С.В. Иванов. ФТП, 45, 1379 (2011).
- [9] T.A. Komissarova, A.N. Semenov, D.A. Kirilenko, B.Ya. Meltser, V.A. Solov'ev, A.A. Sitnikova, P. Paturi, S.V. Ivanov. arXiv:1307.2368 [cond-mat.mtrl-sci].
- [10] J.M.S. Orr, A.M. Gilbertson, M. Fearn, O.W. Croad, C.J. Storey, L. Buckle, M.T. Emeny, P.D. Buckle, T. Ashley. Phys. Rev. B, 77, 165 334 (2008).

Редактор Т.А. Полянская

Peculiarities of electrophysical properties of InSb/AlInSb/AlSb heterostructures with high electron concentration in two-dimensional channel

T.A. Komissarova*, A.N. Semenov*, B.Ya. Meltser*, V.A. Solov'ev*, P. Paturi+, D.L. Fedorov•, P.S. Kop'ev*, S.V. Ivanov*

* Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
+ Wihuri Laboratory, Department of Physics and Astronomy, University of Turku, FIN-20014, Turku, Finland

- Ustinov Baltic State Technical University,
- 190005 St. Petersburg, Russia

Abstract We report on electrophysical properties of InSb/AlInSb/AlSb heterostructures with high electron concentration. Anisotropy of the electron concentration and mobility measured at a low magnetic field in [110] and [110] crystallographic directions has been observed. It has been established by analysis of the Shubnikov-de Haas oscillations that the conductivity through the two-dimensional electron channel does not depend on the crystallographic direction. However magnetic-field dependences of the Hall coefficient and resistivity of the structures revealed strong influence of the crystallographic directions. It has allowed one to conclude that these dependences and low-field electrical anisotropy correspond to the parasitic conductivity through the Al_{0.09}In_{0.91}Sb buffer layer with two pronounced anisotropic contributions: influence of metallic In nanoclusters inhomogeneously distributed within the buffer layer and conductivity of the near-interface layer with high anisotropic density of extended defects.