# Структура и оптические свойства гетероструктур на основе твердых растворов ( $AI_xGa_{1-x}As_{1-y}P_y)_{1-z}Si_z$ , полученных методом MOCVD

© П.В. Середин<sup>¶</sup>, А.В. Глотов, А.С. Леньшин, И.Н. Арсентьев<sup>\*¶¶</sup>, Д.А. Винокуров<sup>\*</sup> Tatiana Prutskij<sup>+¶¶¶</sup>, Harald Leiste<sup>•</sup>, Monika Rinke<sup>•</sup>

Воронежский государственный университет,

394006 Воронеж, Россия

\* Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

<sup>+</sup> Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 3417 Col San Miguel Huyeotlipan,

72050 Puebla, Mexico

Karlsruhe Nano Micro Facility,

76344 Eggenstein-Leopoldshafen, Germany

(Получена 15 мая 2013 г. Принята к печати 23 мая 2013 г.)

Изучены МОС-гидридные эпитаксиальные гетероструктуры на основе тройных твердых растворов  $Al_x Ga_{1-x} As$ , полученные в области составов с  $x \approx 0.20-0.50$  и легированные в высоких концентрациях атомами фосфора и кремния. Использование методов высокоразрешающей рентгеновской дифракции, растровой электронной микроскопии, рентгеновского микроанализа, рамановской и фотолюминесцентной спектроскопии показало, что выращенные эпитаксиальные пленки представляют собой пятикомпонентные твердые растворы  $(Al_x Ga_{1-x} As_{1-y} P_y)_{1-z} Si_z$ .

### 1. Введение

Полупроводниковые твердые растворы на основе соединений  $A^{III}B^V$  обеспечивают преимущество перед кремниевой электроникой благодаря целому ряду свойств: возможность управлять шириной запрещенной зоны путем изменения состава, прямозонность, высокая электронная подвижность и т.д. Кроме того, приборы на основе  $A^{III}B^V$  генерируют меньше шума, чем те же кремниевые устройства. Из-за более высокого напряжения пробоя приборы на основе  $A^{III}B^V$  могут работать при большей мощности. Все это делает необычайно широким круг применений и эффективного использования таких соединений: от фотоэлектрических устройств до радиоэлектроники и большинства форм оптоэлектронных компонентов включая твердотельные диоды и лазеры.

Наиболее востребованным материалом для изготовления квантово-размерных структур являются твердые растворы  $Al_xGa_{1-x}As$ , имеющие достаточно близкий параметр решетки к GaAs, который используется в качестве подложки, ввиду чего гетеропара  $Al_xGa_{1-x}As/GaAs$ имеет минимальную плотность дислокаций несоответствия вблизи гетерограницы. Легирование твердого раствора  $Al_xGa_{1-x}As$  примесными атомами позволяет легко управлять типом проводимости и электросопротивлением в гетероструктуре и позволяет создавать гетеропереходы с различными разрывами зон на границе.

Однако твердые растворы  $Al_xGa_{1-x}As$  имеют ряд недостатков, к которым можно отнести высокую реакционную способность и реактивность атомов алюминия с кислородом, возрастающую с ростом концентрации атомов алюминия в металлической подрешетке. Кроме того, для составов  $x \approx 0.30$  отмечена высокая плотность глубоких уровней и поверхностных состояний. И главное, в гетероструктуре  $Al_xGa_{1-x}As/GaAs$  невозможно полное согласование кристаллических решеток по параметру, поскольку размер атомов алюминия больше размера атомов галлия и мышьяка. Поэтому при высоких *х* — концентрациях алюминия в металлической подрешетке — даже в такой хорошо согласованной гетеропаре возникают внутренние напряжения, которые могут приводить к нежелательным эффектам.

Конкурентоспособными по отношению к твердым растворам Al<sub>x</sub>Ga<sub>1-x</sub>As для конструирования и производства оптоэлектронных компонент на GaAs являются тройные твердые растворы на основе А<sup>III</sup>В<sup>V</sup>, такие как  $Ga_x In_{1-x} P$ ,  $In_x Ga_{1-x} As$ ,  $Al_x Ga_{1-x} P$ , а также четверные твердые растворы  $Ga_x In_{1-x} As_y P_{1-y}$  [1,2]. Их основные структурные свойства (тип кристаллической решетки, закон Вегарда, уравнение Куфала — зависимость ширины запрещенной зоны от состава и т.д.) аналогичны тем, что имеют твердые растворы  $Al_xGa_{1-x}As$ . Однако наличие областей некогерентности параметров решеток твердых растворов и подложки, областей несмешиваемости [3] и нестабильности (большей частью относится к  $Ga_x In_{1-x} As_y P_{1-y})$  существенным образом ограничивает диапазон составов, которые могут быть использованы для создания гетероструктур на основе перечисленных выше систем и не всегда позволяет наблюдать эффекты размерного квантования.

Еще одной реальной альтернативой системе  $Al_x Ga_{1-x} As$  может оказаться система твердых растворов  $Al_x Ga_{1-x} As_{1-y} P_y$ . На сегодняшний день уже показано, что введение малых концентраций фосфора в слои

<sup>194021</sup> Санкт-Петербург, Россия

<sup>¶</sup> E-mail: paul@phys.vsu.ru

<sup>¶</sup> E-mail: arsentyev@mail.ioffe.ru

<sup>¶¶¶</sup> E-mail: prutskij@yahoo.com

Al<sub>x</sub>Ga<sub>1-x</sub>As позволяет получить гетероструктуры с минимальными внутренними напряжениями кристаллических решеток, а также обеспечить лучший отвод тепла при высоких токах накачки и, как следствие, увеличить выходную мощность лазерного диода на основе  $Al_x Ga_{1-x} As_{1-y} P_y$  [4,5]. Увеличение содержания фосфора в твердом растворе должно привести к замедлению процессов окисления на поверхности эпитаксиальной пленки и повышению энергии активации окисления [6]. Кроме того, как уже было показано нами ранее, легирование твердого раствора Al<sub>x</sub>Ga<sub>1-x</sub>As высокими концентрациями кремния ведет к образованию четверных твердых растворов  $(Al_xGa_{1-x}As)_{1-y}Si_y$  и позволяет не только управлять рядом электрооптических и электрических свойств, а также полностью согласовывать параметры гетеропары в результате замещения атомами малых размеров основных атомов твердого раствора. При этом кремний встраивается в твердые растворы Al<sub>x</sub>Ga<sub>1-x</sub>As в виде глубокого донора, называемого DX-центром с особыми свойствами. На глубоких уровнях — DX-центрах — может накапливаться заряд, способный изменить потенциальный рельеф гетероструктуры. Вследствие этого проводимость гетероструктуры определяется за счет эффектов, связанных с перезарядкой глубоких уровней, а также эффектов остаточной положительной и отрицательной фотопроводимости [7]. Все это делает такие твердые растворы высокоперспективными материалами для изготовления оптических преобразователей, гетеролазеров, детекторов.

Таким образом, легирование твердого раствора  $Al_x Ga_{1-x}As$  примесными атомами меньших размеров — кремнием и фосфором должно позволить достичь сразу двух целей: контролируемого управления рядом электрооптических и электрических свойств, а также полного согласования параметров гетеропары в результате замещения атомами малых размеров основных атомов твердого раствора. Поэтому целью нашей работы стало исследование структурных и оптических свойств многокомпонентных твердых растворов на основе  $Al_x Ga_{1-x}As$ , легированного фосфором и кремнием.

## 2. Объекты и методы исследования

Эпитаксиальные гетероструктуры на основе твердых растворов  $Al_x Ga_{1-x} As_y P_{1-y}$  толщиной ~ 2 мкм были получены методом MOC-гидридной эпитаксии на установке EMCORE GS 3/100 в вертикальном реакторе с высокой скоростью вращения подложкодержателя на GaAs(100). Технологические характеристики исследованных образцов приведены в табл. 1. Соотношение As/P показывает, что данные слои представляют собой четверные твердые растворы  $Al_x Ga_{1-x} As_{1-y} P_y$  с малым содержанием фосфора. Часть твердых растворов была легирована кремнием. В табл. 1 также указан поток легирующей примеси в реактор, которая состоит из 0.05% смеси моносилана в водороде. Концентрация носителей определялась с помощь эффекта Холла при комнатной

| Таблица         | 1.           | Состав     | И    | условия | роста | гетероструктур |
|-----------------|--------------|------------|------|---------|-------|----------------|
| $Al_xGa_{1-x}A$ | $s_y P_{1-}$ | y : Si/Ga/ | As(1 | 100)    |       |                |

| Образец | Composition, <i>x</i> , <i>y</i> | Т   | Flow SiH <sub>4</sub> ,<br>см <sup>3</sup> /мин | Carrier<br>concentration,<br>см <sup>-3</sup> | As/P |
|---------|----------------------------------|-----|-------------------------------------------------|-----------------------------------------------|------|
| EM2350  | GaAs                             | 800 | -                                               | $3.6\cdot10^{16}$                             | -    |
| EM2346  | $x \approx 0.30$                 | 800 | _                                               | $3.1\cdot10^{16}$                             | _    |
| EM2438  | $x \approx 0.25$                 | 700 | 10                                              | $3.4\cdot10^{17}$                             | _    |
| EM2449  | $x \approx 0.25$                 | 800 | 100                                             | $6.5 \cdot 10^{17}$                           | _    |
| EM2342  | $x \approx 0.40$ ,               | 800 | 100                                             | $7.85\cdot10^{17}$                            | 30   |
|         | $y \approx 0.98 - 0.99$          |     |                                                 |                                               |      |
| EM2343  | $x \approx 0.40$ ,               | 800 | 200                                             | $8.19\cdot 10^{17}$                           | 30   |
|         | $y \approx 0.98 - 0.99$          |     |                                                 |                                               |      |
| EM2355  | $x \approx 0.50$ ,               | 800 | 200                                             | $7.07\cdot10^{17}$                            | 30   |
|         | $y \approx 0.98 - 0.99$          |     |                                                 |                                               |      |
| EM2356  | $x \approx 0.50$ ,               | 800 | 300                                             | $4.56 \cdot 10^{17}$                          | 30   |
|         | $y \approx 0.98 - 0.99$          |     |                                                 |                                               |      |

температуре. Расчетное значение содержания фосфора в твердом растворе составляло величину  $\sim 1-2\%$ . Фосфор вводился в слой с целью предполагаемой компенсации объемных напряжений, которые вызываются слабо рассогласованными по параметру решетки, но значительными по толщине (2 мкм) слоями  $Al_x Ga_{1-x} As$ .

Структурное качество гетероструктур и определение параметров решеток твердых растворов проводили методом рентгеновской дифракции на дифрактометре Seifert 3003 HR с четырехкружным гониометром и монохроматизированным излучением меди с длиной волны  $CuK\alpha_1 = 1.5405$  Å.

Концентрации элементов в твердом растворе были уточнены методом рентгеновского микроанализа с использованием приставки к электронному микроскопу.

Спектры рамановского рассеяния были получены на рамановском микроскопе Renishaw 1000 с ×50 NPlan объективом и возбуждением от аргонового лазера с длиной волны 514.5 нм. Энергия лазерного пучка не превышала 3 мВт.

Спектры фотолюминесценции гетероструктур были получены при комнатной температуре от поверхности образцов по стандартной методике на основе монохроматора TRIAX550 и охлаждаемого жидким азотом ССD детектора. Возбуждение спектров фотолюминесценции производили аргоновым лазером с длиной волны 514.5 нм. Для фокусировки на поверхности использовался 10× объектив.

# 3. Результаты исследований и их обсуждение

## 3.1. Высокоразрешающая рентгеновская дифракция

На первом этапе исследований, используя приставку для рентгеновского микроанализа к электронному

| $\mathbf{a}$ | 5 |
|--------------|---|
| L            | э |
|              |   |

|         | Composition of epitaxial film, at% |                          |               |                         |                          |  |  |
|---------|------------------------------------|--------------------------|---------------|-------------------------|--------------------------|--|--|
| Образец | $n_{Al},$ at%                      | n <sub>Ga</sub> ,<br>at% | $n_{As},$ at% | n <sub>₽</sub> ,<br>at% | n <sub>Si</sub> ,<br>at% |  |  |
| EM2350  | -                                  | 50.00                    | 50.00         | -                       | -                        |  |  |
| EM2346  | 12.22                              | 37.19                    | 50.59         | _                       | _                        |  |  |
| EM2438  | 11.65                              | 32.16                    | 56.18         | _                       | _                        |  |  |
| EM2449  | 10.07                              | 39.04                    | 50.90         | -                       | 0.02                     |  |  |
| EM2342  | 16.37                              | 32.92                    | 50.18         | 0.53                    | 0.05                     |  |  |
| EM2343  | 16.37                              | 33.06                    | 50.00         | 0.53                    | 0.04                     |  |  |
| EM2355  | 21.40                              | 27.91                    | 49.90         | 0.78                    | 0.07                     |  |  |
| EM2356  | 21.02                              | 28.05                    | 50.27         | 0.66                    | 0.09                     |  |  |

Таблица 2. Результаты рентгеновского микроанализа

микроскопу, мы уточнили концентрации элементов, входящих в состав исследуемых твердых растворов. Для анализа использовалось ускоряющее напряжение электронов 20 кВ и исследовались участки образца порядка 750 × 750 мкм. Эффективная глубина микроанализа составила порядка  $\sim 0.5$  мкм. Данные рентгеновского микроанализа приведены в табл. 2. Как видно из полученных результатов, концентрации атомов в твердом растворе отличаются от тех, что заданы на этапе роста. Состав твердого раствора задавался исходя из соотношения концентраций элементов в газовой фазе на основе данных по составам и скоростям роста тройных твердых растворов Al<sub>x</sub>Ga<sub>1-x</sub>As. Однако коэффициенты сегрегации элементов, входящих в состав твердого раствора, могут отличаться в зависимости от общего состава газовой фазы, что соответственно может привести к погрешности в определении состава эпитаксиальной пленки. Отметим, что в соответствии с полученными данными (см. табл. 2) концентрации атомов фосфора и кремния в эпитаксиальных пленках достигают долей атомного процента. Также следует обратить внимание на то, что суммарная концентрация атомов в металлической подрешетке пятикомпонентных пленок меньше, чем в неметаллической. Скорее всего, этот факт является следствием амфотерного поведения кремния как примеси. Опираясь на опыт предыдущих исследований процессов роста высоколегированных кремнием твердых растворов Al<sub>x</sub>Ga<sub>1-x</sub>As [8,9], мы знаем достаточно для образования твердых растворов в системе  $(Al_xGa_{1-x}As_{1-y}P_y)_{1-z}Si_z$ .

Подтвердить наши предположения позволит использование высокоразрешающей рентгеновской дифракции и дальнейших расчетов параметров кристаллической решетки полученных твердых растворов. Поэтому изучение особенностей структуры и роста эпитаксиальных пленок мы проводили с использованием карт обратного *q*-пространства исследуемых образцов, поскольку именно они позволяют получать прямую информацию о рассогласовании параметров кристаллических решеток у эпитаксиальной пленки и подложки, разориентации или релаксации слоя, плотности дислокаций в нем, его мозаичности или кривизне. Для каждого образца нами были получены карты распределения интенсивности дифрагированного излучения в *q*-пространстве вокруг симметричного (400) и асимметричного (511) узлов, которые приведены на рис. 1, *a*-*j*.

Анализ карт обратного пространства (рис. 1) позволяет сделать заключение о том, что эпитаксиальные твердые растворы растут на подложках GaAs(100) когерентно, с небольшим градиентом напряжений и состава в эпитаксиальном слое, о чем свидетельствуют положение и форма узлов в обратном пространстве как для симметричного, так и для асимметричного отражения. Отклонение линии интерференционных максимумов на карте узла (400) от направления  $q_x$  свидетельствует о росте на подложках, имевших изначальное угловое рассогласование с направлением (100).

Параметры кристаллической решетки в направлении  $a^{\perp}$  и в плоскости роста  $a^{\parallel}$  легко определяются исходя из данных, полученных при анализе карт обратного q-пространства для симметричного (400) и асимметричного (511) отражений. Величина  $a^{\perp}$  может быть определена на основе информации симметричного (400) рефлекса, как  $b_{400}^{\text{epilayer}} = \left(\frac{4^2}{a^{\perp}}\right)^{1/2}$ , или асимметричного,  $b_{500}^{\text{epilayer}} = \left(\frac{5^2}{a^{\parallel}}\right)^{1/2}$ .

Постоянная решетки твердых растворов *a<sup>v</sup>* с кубической симметрией с учетом упругих напряжений в гетероэпитаксиальном слое в соответствии с линейной теорией упругости может быть рассчитана как [10]

$$a^{v} = a^{\perp} \frac{1-v}{1+v} + a^{\parallel} \frac{2v}{1+v},$$
(1)

где *v* — коэффициенты Пуассона для эпитаксиальных слоев.

Ввиду того, что исследуемые нами образцы гетероструктур получены в области составов изопериодических GaAs, будем полагать, что зависимость различных параметров для твердых растворов будет линейной. Используя линейную интерполяцию, аналогичную той, что использовалась в нашей предыдущей работе [11,12], мы сможем записать закон Вегарда для системы твердых растворов  $(Al_xGa_{1-x}As_{1-y}P_y)_{1-z}Si_z$  изначально через тройные, а затем через бинарные соединения. Таким образом, для четырехкомпонентного твердого раствора  $Al_xGa_{1-x}As_{1-y}P_y$  получим

$$a_{(Al_xGa_{1-x}As_{1-y}P_y)_{1-z}Si_z} = a_{Al_xGa_{1-x}As_{1-y}P_y}(1-z) + a_{diamondz}$$
  
=  $(a_{Al_xGa_{1-x}Py} + a_{Al_xGa_{1-x}As}(1-y))(1-z) + a_{diamondz}.$   
(2)

Учитывая, что легирование эпитаксиальных пленок на основе  $A^{III}B^{\vee}$  кремнием с высокими концентрациями приводит к образованию твердых растворов, а кроме того, принимая во внимание амфотерное поведение кремния как примеси, мы можем говорить об образовании твердых растворов вида  $(A^{III}B^{\vee})_{1-z}Si_z$ .

С учетом вышесказанного, а также принимая во внимание, что рост пятикомпонентных твердых растворов происходит легированием тройного твердого раствора



Рис. 1. Карты обратного q-пространства, полученные вокруг узлов (400) и (511) гетероструктур  $Al_x Ga_{1-x} As_y P_{1-y}$ : Si/GaAs(100).

 $Al_x Ga_{1-x} As$  атомами фосфора в большей и атомами кремния в меньшей концентрации соответственно, будем использовать для закона Вегарда твердого раствора  $Al_x Ga_{1-x} As$  следующее соотношение [10]:

$$a_{Al_xGa_{1-x}As} = a_{AlAs}x + a_{GaAs}(1-x) + cx(1-x)$$
  
= 5.6533 + 0.00929(x - 0.143x<sup>2</sup>), (3)

где c = 0.001245 — параметр кривизны.

Закон Вегарда для тройных твердых растворов Al<sub>x</sub>Ga<sub>1-x</sub>P используем в линейном приближении:

$$a_{Al_xGa_{1-x}P} = a_{AlP}x + a_{GaP}(1-x)$$
  
= 5.4635x + 5.4508(1-x). (4)

Таким образом, закон Вегарда для системы твердых растворов  $(Al_xGa_{1-x}As_{1-y}P_y)_{1-z}Si_z$  в общем виде может быть записан следующим образом:

$$a_{(Al_xGa_{1-x}As_{1-y}P_y)_{1-z}Si_z} = [a_{AIP}x + a_{GaP}(1-x)]y + [a_{AIAs}x + a_{GaAs}(1-x) + cx(1-x)](1-y)(1-z) + a_{diamond}z = [5.4635x + 5.4508(1-x)]y + [5.6533 + 0.00929(x - 0.143x^2)](1-y)(1-z) + 5.431z.$$
(5)

При записи (4) были использованы значения параметров решетки бинарных соединений, приведенные в [13]:  $a_{AIP} = 5.4635$  Å,  $a_{GaP} = 5.4508$  Å,  $a_{Si} = 5.431$  Å.

Аналогично предполагая линейный характер зависимости коэффициентов Пуассона от концентрации атомов в твердом растворе, можем получить следующее соотношение:

$$v_{(Al_x Ga_{1-x} As_{1-y} P_y)_{1-z} Si_z} = [v_{AlP}x + v_{GaP}(1-x)]y + [v_{AlAs}x + v_{GaAs}(1-x) + cx(1-x)](1-y)(1-z) + v_{diamond}z = [0.300x + 0.306(1-x)]y + [0.325x + 0.312(1-x) + 0.001245x(1-x)] \times (1-y)(1-z) + 0.278z.$$
(6)

Значения коэффициентов Пуассона для бинарных соединений были взяты из [13] и составили:  $v_{AIP} = 0.300$ ,  $v_{AIAs} = 0.325$ ,  $v_{GaP} = 0.306$ ,  $v_{GaAs} = 0.312$ ,  $v_{InP} = 0.359$ ,  $v_{InAs} = 0.352$ ,  $v_{Si} = 0.278$ .

Использование соотношений (2) и (5), а также результатов анализа карт обратного пространства для узлов (400) и (511) (см. табл. 3) позволяет нам рассчитать параметры кристаллической решетки пятикомпонентных твердых растворов  $Al_xGa_yIn_{1-x-y}As_zP_{1-z}$  с учетом упругих напряжений. Кроме того, предполагая выполнение закона Вегарда для системы твердых растворов  $(Al_xGa_{1-x}As_{1-y}P_y)_{1-z}Si_z$ , полученных изопериодичными

**Таблица 3.** Результаты высокоразрешающей рентгеновской дифракции

| Образец | Состав, х                                                     | Lattice parameter $a^v$ , Å |
|---------|---------------------------------------------------------------|-----------------------------|
| EM2350  | GaAs                                                          | 5.6533                      |
| EM2346  | Al <sub>0.26</sub> Ga <sub>0.74</sub> As                      | 5.6555                      |
| EM2438  | $Al_{0.22}Ga_{0.78}As: Si(10^{-5})$                           | 5.6553                      |
| EM2449  | $(Al_{0.20}Ga_{0.80}As)_{0.999}Si_{0.001}$                    | 5.6549                      |
| EM2342  | $Al_{0.35}Ga_{0.65}As_{0.9999}P_{0.0001}:Si$                  | 5.6564                      |
| EM2343  | $(Al_{0.33}Ga_{0.67}As_{0.995}P_{0.005})_{0.9997}Si_{0.0003}$ | 5.6554                      |
| EM2355  | $(Al_{0.426}Ga_{0.574}As_{0.975}P_{0.025})_{0.999}Si_{0.001}$ | 5.6517                      |
| EM2356  | $(Al_{0.43}Ga_{0.57}As_{0.977}P_{0.023})_{0.997}Si_{0.003}$   | 5.6518                      |

GaAs, анализируя выражения (1), (3) и (5) и основываясь на расчете параметров кристаллической решетки и данных микроанализа, мы уточнили концентрации элементов, входящих в состав твердых растворов (см. табл. 3).

#### 3.2. Рамановское рассеяние

Глубина проникновения лазерного излучения, а следовательно, и эффективная глубина анализа при рамановском рассеянии могут быть определены из соотношения  $\lambda/2\pi k$ , где k — коэффициент экстинкции. Для аргонового лазера с  $\lambda = 532$  нм при анализе системы AlGaAs такая глубина составляет приблизительно до 500 нм. Это дает право говорить о том, что, используя данную длину волны лазера для рамановского рассеяния, мы получим информацию лишь от слоя твердого раствора.

Согласно правилам отбора, получаемым из анализа тензоров рамановского рассеяния [14] для кристаллов с алмазной структурой при обратном рассеянии от (100) поверхности могут наблюдаться только продольные оптические (LO) фононы, а появление поперечных оптических (TO) фононов запрещено.

На рис. 2 приведены спектры рамановского рассеяния в геометрии  $x(y, z)\bar{x}$  для анализируемых образцов, скомпонованные для удобства в подгруппы: рис. 2, *a* — спектр гомоэпитаксиальной структуры; рис. 2, *b* — спектры гетероструктур на основе тройного  $Al_xGa_{1-x}As$  или четверного  $(Al_xGa_{1-x}As)_{1-y}Si_y$  твердого раствора; рис. 2, *c* — спектры гетероструктур на основе пятикомпонентных твердых растворов  $(Al_xGa_{1-x}As_{1-y}P_y)_{1-z}Si_z$ .

Как видно из полученных результатов, в спектрах гетероструктур присутствуют все основные колебания, характерные для конкретного типа гетероструктуры (частоты колебаний представлены в табл. 4). Так, приведенный на рис. 2, *а* рамановский спектр гомоэпитаксиальной структуры GaAs/GaAs(100) (образец EM2350) содержит высокоинтенсивный продольный оптический фонон LO( $\Gamma$ ), локализованный при ~ 293 см<sup>-1</sup>. Полученные экспериментальные данные, в том числе и форма спектра, для гомоэпитаксиального образца свидетельствуют о бездислокационном механизме такого типа роста и отличном структурном качестве пленки.

| Образец                                                       | GaAs $\omega_{ m LO}/\omega_{ m TO}$ | AlAs $\omega_{ m LO}/\omega_{ m TO}$ | $\begin{array}{c} \text{GaP} \\ \omega_{\text{LO}}, \\ \text{cm}^{-1} \end{array}$ | $\omega_{\mathrm{La(L)}},\ \mathrm{cm}^{-1}$ | Si-like,<br>см <sup>-1</sup> |
|---------------------------------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------|------------------------------|
| EM2350                                                        | 291/26                               | _                                    | _                                                                                  | _                                            | _                            |
| GaAs                                                          | 7                                    |                                      |                                                                                    |                                              |                              |
| EM2346                                                        | 279/26                               | 376/35                               | _                                                                                  | 197                                          | _                            |
| Al <sub>0.26</sub> Ga <sub>0.74</sub> As                      | 3                                    | 8                                    |                                                                                    |                                              |                              |
| EM2438                                                        | 278/26                               | 360                                  | _                                                                                  | 197                                          | _                            |
| $Al_{0.22}Ga_{0.78}As: Si(10^{-5})$                           | 2                                    |                                      |                                                                                    |                                              |                              |
| EM2449                                                        | 279/26                               | 379                                  | _                                                                                  | 196                                          | _                            |
| $(Al_{0.20}Ga_{0.80}As)_{0.999}Si_{0.001}$                    | 3                                    |                                      |                                                                                    |                                              |                              |
| EM2342                                                        | 281/26                               | 373/35                               | 413                                                                                | 198                                          | _                            |
| $Al_{0.35}Ga_{0.65}As_{0.9999}P_{0.0001}:Si(10^{-5})$         | 3                                    | 9                                    |                                                                                    |                                              |                              |
| EM2343                                                        | 276/26                               | 377/36                               | 411                                                                                | 196                                          | 392                          |
| $(Al_{0.33}Ga_{0.67}As_{0.995}P_{0.005})_{0.9997}Si_{0.003}$  | 3                                    | 0                                    |                                                                                    |                                              |                              |
| EM2355                                                        | 274/26                               | 378/35                               | 413                                                                                | 196                                          | 393                          |
| $(Al_{0.426}Ga_{0.574}As_{0.975}P_{0.025})_{0.999}Si_{0.001}$ | 3                                    | 6                                    |                                                                                    |                                              |                              |
| EM2356                                                        | 271/26                               | 382/35                               | 412                                                                                | 197                                          | 392                          |
| $(Al_{0.43}Ga_{0.57}As_{0.977}P_{0.023})_{0.997}Si_{0.003}$   | 3                                    | 6                                    |                                                                                    |                                              |                              |

Таблица 4. Частоты активных мод рамановского рассеяния

Рамановские спектры гетероструктур ЕМ2346, ЕМ2438 и ЕМ2449 (рис. 2, b) содержат продольные LO и поперечные TO оптические фононные моды GaAs и AlAs в точке Г, локализованные около ~ 267 и ~ 380 см<sup>-1</sup> соответственно. Следует отметить, что в рамановском спектре гетероструктуры ЕМ2449, твердый раствор которой легирован кремнием с высокой концентрацией, интенсивность поперечной TO моды колебаний GaAs (запрещенной правилами отбора, но присутствующей в спектре) выше, чем разрешенной продольной LO. Скорее всего, это является следствием нарушений симметрии кристаллической решетки у эпитаксиальной пленки вследствие ее легирования.

Основными колебаниями, присутствующими в спектрах рамановского рассеяния гетероструктур на основе пятикомпонентных твердых растворов  $(Al_x Ga_{1-x}As_{1-y}P_y)_{1-z}Si_z$ , являются продольные (разрешенные) и поперечные (запрещенные) оптические колебания GaAs и AlAs, а также продольная мода GaP.

Эксперимент показывает, что во всех спектрах рамановского рассеяния изученных гетероструктур помимо основных присутствуют ряд дополнительных мод. К этим колебаниям можно отнести моду с частотой ~ 190 см<sup>-1</sup>, появление которой обусловлено возникновением продольного акустического фонона LA, локализованного в точке L зоны Бриллюэна. Появление продольных акустических фононов LA(L), скорее всего, вызвано возникновением структурного беспорядка, при замещении атомов в металлической и неметаллической подрешетках [15].

Спектры рамановского рассеяния гетероструктур с высокой концентрацией кремния в твердом растворе содержат дополнительную моду, локализованную в области  $\sim 400 \text{ см}^{-1}$ . В соответствии с результатами наших предыдущих работ [8,9] появление колебаний с

частотами, близкими к  $390 \,\mathrm{cm^{-1}}$ , связано с тем, что атомы кремния Si занимают места в металлической подрешетке Si<sub>Ga</sub> или Si<sub>Al</sub>, т.е. появляется связь Si–As. Из полученных результатов хорошо видно, что интенсивность дополнительной моды зависит от начального потока источника кремния — силана и температуры подложкодержателя в процессе роста. Чем больше поток силана и ниже температура, тем выше концентрация кремния в пятикомпонентном твердом растворе. Эти данные согласуются с результатами рентгеноструктурных исследований, а также результатами наших предыдущих работ, посвященных изучению твердых растворов  $(Al_x Ga_{1-x} As)_{1-y} Si_y.$ 

Рамановский сдвиг основных активных оптических мод в спектрах гетероструктур зависит от соотношения атомов в металлической и неметаллической подрешетках твердого раствора. Что касается значений частот основных активных мод GaAs, AlAs и GaP, то они достаточно хорошо согласуются с результатами исследований [16,17] тройных твердых растворов  $Al_xGa_{1-x}As$  и  $Al_xGa_{1-x}P$  методами рамановского рассеяния.

#### 3.3. Фотолюминесцентная спектроскопия

Изменение состава и стехиометрии твердых растворов, в том числе пятикомпонентных в случае образования глубоких уровней и более сложных дефектов и комплексов в твердом растворе, сопровождается разрывом связи донор-кристалл и смещением атома донора, изменением длин связей в кристаллической решетке. Все вышеперечисленные изменения в твердом растворе должны проявиться в энергетических характеристиках материала и найти отражение в спектрах фотолюминесценции. Спектры фотолюминесценции некоторых из исследуемых образцов, приведенные на рис. 3, были получены при комнатной температуре в области 1.3–2.0 эВ



**Рис. 2.** Спектры рамановского рассеяния гетероструктур  $Al_xGa_{1-x}As_yP_{1-y}$ : Si/GaAs(100).

с возбуждением от аргонового лазера с длиной волны  $\lambda = 514.5$  нм. Как видно из экспериментальных данных, эмиссия от гомоэпитаксиального образца GaAs/GaAs (EM2350) представляет собой высокоинтенсивный пик с энергией  $E_g = 1.43$  эВ, что отлично согласуется с литературными данными. Спектр фотолюминесценции образца EM2346, являющийся классической гетероструктурой Al<sub>0.27</sub>Ga<sub>0.73</sub>As/GaAs(100), содержит две эмиссионные полосы с энергиями, локализованными около  $E_1 \approx 1.43$  эВ и  $E_2 = 1.81$  эВ, совпадающие по своим положениям с люминесценцией от подложки и твердого раствора. Наибольший интерес представляют со-

бой спектры фотолюминесценции от образцов ЕМ2449, ЕМ2342 и ЕМ2355, которые представляют собой гетероструктуры на основе многокомпонентных твердых растворов. В спектрах фотолюминесценции этих об-



**Рис. 3.** Спектры фотолюминесценции гетероструктур  $Al_x Ga_{1-x} As_y P_{1-y}$ : Si/GaAs(100), полученные при комнатной температуре.

|         | Экспериментальные положения пиков, эВ |                                                                                                    |      |      |      |       |  |
|---------|---------------------------------------|----------------------------------------------------------------------------------------------------|------|------|------|-------|--|
| Образец | GaAs                                  | Глубокий уровень (Аl <sub>x</sub> Ga <sub>1-x</sub> P <sub>y</sub> ) <sub>1</sub><br>твердый раств |      |      |      |       |  |
| EM2350  | 1.43                                  | I                                                                                                  |      |      |      |       |  |
| EM2346  | 1.43                                  | _                                                                                                  | _    | _    | _    | 1.81  |  |
| EM2449  |                                       | 1.39                                                                                               | 1.45 | —    | —    | 1.74  |  |
| EM2342  |                                       | 1.39                                                                                               | 1.47 | 1.53 | 1.58 | 1.935 |  |
|         |                                       | 5                                                                                                  | 5    |      |      |       |  |
| EM2355  |                                       | 1.39                                                                                               | 1.47 | 1.53 | 1.58 | _     |  |
|         |                                       | 5                                                                                                  | 5    |      |      |       |  |

**Таблица 5.** Энергия пиков эмиссии в спектрах фотолюминесценции гетероструктур на основе твердых растворов  $(Al_xGa_{1-x}As_{1-y}P_y)_{1-z}Si_z$ 

разов присутствует высокоинтенсивная широкая эмиссионная полоса, расположенная в области с энергией  $E \approx 1.3 - 1.65$  эВ и имеющая ряд особенностей в виде плечей. Кроме того, в спектрах гетероструктур EM2449 и EM2342 присутствует низкоинтенсивная эмиссия, сдвинутая в высокоэнергетическую область. Энергии эмиссионных пиков в спектрах фотолюминесценции исследованных гетероструктур приведены в табл. 5.

На основе вышеописанной линейной интерполяционной схемы для закона Вегарда пятикомпонентного твердого раствора  $(Al_xGa_{1-x}As_{1-y}P_y)_{1-z}Si_z$  по аналогии можем записать зависимость ширины запрещенной зоны от концентрации атомов в твердом растворе:

$$E_{g(Al_xGa_{1-x}As_{1-y}P_y)_{1-z}Si_z} = E_{gAl_xGa_{1-x}As_{1-y}P_y}(1-z)$$

$$+ E_{gdiamondz} = \left[E_{gAl_xGa_{1-x}Py} + E_{gAl_xGa_{1-x}As}(1-y)\right]$$

$$\times (1-z) + E_{gdiamondz}.$$
(7)

Учитывая, что рост пятикомпонентных эпитаксиальных пленок был выполнен путем легирования тройных твердых растворов  $Al_xGa_{1-x}As$  (с x < 45 ar%) малыми концентрациями фосфора и кремния, можем записать зависимость ширины запрещенной зоны  $Al_xGa_{1-x}As$  от концентрации в соответствии с [18]:

$$E_{gAl_xGa_{1-x}As} = 1.43 + 1.707x - 1.437x^2 + 1.31x^3.$$
 (8)

Для твердого раствора Al<sub>x</sub>Ga<sub>1-x</sub>P зависимость ширины запрещенной зоны от концентрации имеет вид

$$E_{gAl_rGa_{1-r}P} = 2.261 + 0.219x.$$
(9)

Таким образом, для пятикомпонентной системы зависимость ширины запрещенной зоны от концентраций атомов может быть записана следующим образом:

$$E_{g(Al_xGa_{1-x}As_{1-y}P_y)_{1-z}Si_z} = [(2.261 + 0.219x)y + (1.43 + 1.707x - 1.437x^2 + 1.31x^3)(1-y)](1-z) + 15.3z.$$
(10)

Величина ширины запрещенной зоны алмаза  $E_{gdiamond} = 15.3$  эВ была взята из работы [18].

Используя соотношение (10)лля  $(Al_xGa_{1-x}As_{1-y}P_y)_{1-z}Si_z$ , можем определить энергии эмиссий  $E_g(x, y, z)$  в спектрах фотолюминесценции, соответствующие ширинам запрещенных зон твердых растворов. Расчет показывает, что сдвинутая в низкоинтенсивная высокоэнергетическую область эмиссия В спектрах образцов EM2449 И собой EM2342 представляет фотолюминесценцию от многокомпонентных твердых растворов  $(Al_xGa_{1-x}As_{1-y}P_y)_{1-z}Si_z$  этих гетероструктур.

В нашей предыдущей работе [9], посвященной исследованиям высоколегированных гетероструктур на основе четверных твердых растворов  $(Al_xGa_{1-x}As)_{1-y}Si_y$ , было показано, что при уровне легирования кремния  $n_{\rm Si} \approx 0.1$  ат% в структуре твердых растворов могут возникать глубокие уровни — DX-центры, которые расположены ниже потолка зоны проводимости на величину порядка 500 мэВ. Также нам удалось показать, что в спектрах фотолюминесценции гетероструктур, легированных высокими концентрациями кремния, происходит гашение основных экситонных полос, что связано как с образованием глубоких уровней, оптические переходы с которых более выгодны, чем переход зона-зона (т.е. возникновение основной экситонной полосы фотолюминесценции), так и с тем фактом, что тетрагональное сжатие в твердом растворе  $Al_xGa_{1-x}As$  должно привести к изменению зонной структуры [19].

Исходя из полученных нами в данной работе экспериментальных данных в случае образования многокомпонентных твердых растворов с кремнием  $(Al_xGa_{1-x}As)_{1-y}Si_y$  и  $(Al_xGa_{1-x}As_{1-y}P_y)_{1-z}Si_z$ , выращенных на подложках GaAs(100), мы не только наблюдаем образование DX-центров, но и имеем высокую степень дисторсии у эпитаксиальной пленки в направлении роста (тетрагональные искажения), что приводит к изменению характера зонной структуры и отсутствию разрешенных для твердых растворов оптических переходов зона-зона. Энергия оптической активации глубоких уровней, возникающих в многокомпонентных твердых растворах  $(Al_xGa_{1-x}As_{1-y}P_y)_{1-z}Si_z$ , напрямую зависит от концентрации легирующей примеси — кремния и в соответствии с нашими расчетами лежит в пределах 350-400 мэВ.

# Обсуждение полученных результатов

Совместный анализ экспериментальных данных, полученных методами высокоразрешающей рентгеновской дифракции, элементного микроанализа, холловских измерений, рамановского рассеяния, фотолюминесцентной спектроскопии, а также расчетов на основе экспериментальных данных, позволяет сделать некоторые выводы о влиянии легирования фосфором и кремнием на структуру и оптические свойства исследованных гетероструктур.

Так, исследования, выполненные методами высокоразрешающей рентгеновской дифракции, показали,

что полученные твердые растворы растут когерентно на монокристаллической подложке и имеют хорошее структурное качество, что прослеживается по форме симметричных и асимметричных рефлексов в обратном пространстве. Изменения параметров кристаллической решетки пятикомпонентных твердых растворов  $(Al_x Ga_{1-x} As_{1-y} P_y)_{1-z} Si_z$  от состава образца подчиняется введенному закону Вегарда для этой системы и хорошо прослеживается по положению основных разрешенных активных мод в рамановских спектрах.

Введение фосфора и кремния в тройной твердый раствор  $Al_x Ga_{1-x} As$  в виде примеси с высокими концентрациями приводит к образованию пятикомпонентных твердых растворов. При этом кремний ведет себя и как амфотерная примесь, т.е. занимает регулярные узлы как в металлической, так и неметаллической подрешетках. Помимо этого, введение кремния в твердые растворы с концентрацией ~ 0.01 ат% приводит к образованию в структуре глубоких уровней — DX-центров, появление которых коренным образом сказывается на энергетических характеристиках полученных материалов. Так, в спектрах фотолюминесценции происходит гашение основных эмиссионных полос, вследствие того что DX-центры образуют уровни в запрещенной зоне, оптические переходы с которых являются более выгодными.

Работа выполнена при поддержке грантов Российского фонда фундаментальных исследований № 12-02-33040 и № 12-02-31003, а также частично поддержана ФЦП "Научные и научно-педагогические кадры инновационной России" на 2009–2013 годы.

This work was partially supported by Notre Dame University Integrated Imaging Facility. We acknowledge the Karlsruhe Nano Micro Facility (KNMF, www.kit.edu/knmf) of the Forschungszentrum Karlsruhe for provision of access to instruments at their laboratories.

## Список литературы

- [1] Ж.И. Алфёров. ФТП, **32** (1), 3 (1998).
- [2] Молекулярно-лучевая эпитаксия и гетероструктуры, пер. с англ. под ред. Л. Ченга, К. Плога (М., Мир, 1989).
- [3] P.V. Seredin, A.V. Glotov, V.E. Ternovaya, E.P. Domashevskaya, I.N. Arsentyev, L.S. Vavilova, I.S. Tarasov. Semiconductors, 45 (11), 1433 (2011).
- [4] Д.А. Винокуров, В.А. Капитонов, А.В. Лютецкий и др. ФТП, **46** (10), 1344 (2012).
- [5] А.А. Мармалюк, М.А. Ладугин, И.В. Яроцкая и др. Квант. электрон., **41** (1), 15 (2012).
- [6] Materials Issues For Vcsel Operation and Reliability / Degree of Doctor of Philosophy in Materials Science and Engineering / David Todd Mathes. August 2002.
- [7] В.И. Борисов, В.А. Сабликов, И.В. Борисова, А.И. Чмиль. ФТП, **33** (1), 105 (1999).
- [8] P.V. Seredin, A.V. Glotov, E.P. Domashevskaya, I.N. Arsentyev,
   D.A. Vinokurov, I.S. Tarasov. Physica B: Condens Matter., 405, 22, 15, 4607–4614 (2010).

- [9] P.V. Seredin, A.V. Glotov, V.E. Ternovaya, E.P. Domashevskaya, I.N. Arsentyev, D.A. Vinokurov, A.L. Stankevich, I.S. Tarasov. Semiconductors, 45 (4), 481 (2011).
- [10] D. Zhou, B.F. Usher. J. Phys. D: Appl. Phys., 34, 1461 (2001).
- [11] P.V. Seredin, A.V. Glotov, E.P. Domashevskaya, I.N. Arsentyev, D.A. Vinokurov, I.S. Tarasov. Appl. Surf. Sci. 267, 181 (2013).
- [12] P.V. Seredin, A.V. Glotov, E.P. Domashevskaya, A.S. Lenshin, M.S. Smirnov, I.N. Arsentyev, D.A. Vinokurov, A.L. Stankevich, I.S. Tarasov. Semiconductors, 46 (6), 719 (2012).
- [13] I. Vurgaftman, J.R. Meyer, R. Ram-Mohan. J. Appl. Phys., 89, 5815 (2001).
- [14] W. Hayes, R. Loudon. Scattering of Light by Crystals (John Wiley & Sons, N.Y., 1978).
- [15] B. Jusserand, J. Sapriel. Phys. Rev. B, 24, 7194 (1981).
- [16] D.J. Lockwood, Z.R. Wasilewski. Phys. Rev. B, 70, 155 202 (2004).
- [17] D.P. Bour, J.R. Shealy, A. Ksendzov, Fred Pollak. J. Appl. Phys., 64, 6456 (1988).
- [18] Yu.A. Goldberg. Handbook Series on Semiconductor Parameters, ed. by M. Levinshtein, S. Rumyantsev and M. Shur (World Scientific, London, 1999) vol. 2, p. 1.
- [19] S. Laref, S. Mec-abih, B. Abbar, B. Bouhafs, A. Laref. Physica B, **396**, 169 (2007).

Редактор Т.А. Полянская

# Srtucture and optical property $(AI_xGa_{1-x}As_{1-y}P_y)_{1-z}Si_z$ /GaAs(100) heterostructures

P.V. Seredin, A.V. Glotov, A.S. Lenshin, I.N. Arsentyev\*, D.A. Vinokurov\*, Tatiana Prutskij<sup>+</sup>, Harald Leiste<sup>•</sup>, Monika Rinke<sup>•</sup>

Voronezh State University, Universitetskaya pl. 1, Voronezh, 394893 Russia \* loffe Physical Technical Institute Russian Academy of Sciences, 194021 St. Petersburg, Russia + Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla, Privada 17 Norte, No 3417, Col San Miguel Huyeotlipan, 72050 Puebla, Pue., Mexico, prutskiy@yahoo.com • Karlsruhe Nano Micro Facility H.-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

**Abstract** We investigated MOCVD epitaxial heterostructures based on  $Al_xG_{1-x}As$  ternary solid solutions, obtained in the range of compositions  $x \approx 0.20-0.50$  and doped with high concentrations of phosphorus and silicon atoms. Using the methods of high-resolution *X*-ray diffraction, scanning electron microscopy, *X*-ray microanalysis, Raman and photoluminescence spectroscopy we have shown that grown epitaxial films represent five-component  $(Al_xGa_{1-x}As_{1-y}P_y)_{1-z}Si_z$  solid solutions.