Спин-поляризованные токи в туннельном контакте нормального проводника и двумерного топологического изолятора

© А.А. Суханов[¶], В.А. Сабликов

Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук, Фрязинский филиал, 141190 Фрязино, Россия

(Получена 22 апреля 2013 г. Принята к печати 30 апреля 2013 г.)

Изучена спиновая фильтрация электронов при туннелировании из краевых состояний двумерного топологического изолятора в нормальный проводник при наличии магнитного поля (внешнего или наведенного благодаря близости с магнитным изолятором). Расчеты проведены для контакта конечной длины между топологическим изолятором и электронной многомодовой квантовой полоской. Показано, что поток туннелирующих электронов расщепляется в полоске, так что в левой и правой ее ветвях возникают спин-поляризованные токи, которые могут эффективно управляться с помощью напряжения на контакте и уровня химического потенциала в системе. Наличие магнитного поля, вызывающего спиновое расщепление электронного спектра в полоске, приводит к эффекту переключения спинового тока между ее ветвями.

1. Введение

Топологические изоляторы (ТИ) [1,2] вызывают большой интерес в связи с нетривиальной физикой электронных явлений в поверхностных и краевых состояниях и перспективами приложений в области спинтроники и квантовых вычислений.

Отличительной особенностью ТИ является существование на их поверхностях или границах раздела с обычными изоляторами поверхностных, в случае трехмерных ТИ, или краевых, в случае двумерных (2D) ТИ, электронных состояний с бесщелевым спектром и геликоидальной структурой, в которой спин электронов однозначно связан с их импульсом. Благодаря этим свойствам электроны не чувствительны к рассеянию, не нарушающему симметрию обращения времени.

Топологически защищенные краевые состояния (КС) в 2D ТИ обнаруживаются во многих экспериментах: по электронному транспорту в гетероструктурах HgTe/HgCdTe [3,4], путем прямой визуализации КС с помощью локальных измерений магнитных полей СКВИДмикроскопом [5] и локальных измерений высокочастотного поглощения [6]. Подтверждение того, что транспорт по КС осуществляется спин-поляризованными электронами, получено из измерений обратного спинового эффекта Холла [7].

Электроны в КС в 2D ТИ образуют одномерную (1D) систему, в которой электроны с противоположными спинами перемещаются навстречу друг другу и таким образом создают равновесный спиновый ток. В связи с этим возникает идея генерации спиновых токов в немагнитных проводниках, находящихся в туннельном контакте с 2D ТИ [8]. Действительно, если при туннелировании из КС электроны сохраняют свой спин и направление движения, то в результате туннелирования в нормальный проводник электроны с противоположными спинами попадут в состояния с разнонаправленными импульсами. Таким образом, в нормальном проводнике возникнет спиновый ток, даже если туннельный барьер немагнитный, а внешнее магнитное поле отсутствует.

Существенно, что краевые состояния в 2D ТИ являются одномерными (1D) и, следовательно, электрон-электронное взаимодействие играет важную роль в их туннелировании. Одномерные электроны в этих состояниях можно рассматривать как геликоидальную жидкость Латтинджера [9]. В наиболее близких к данной статье теоретических работах [10,11] было изучено туннелирование из 1D латтинджерова провода в нормальный 2D электронный газ [10] и туннелирование между 1D геликоидальными состояниями [11] с учетом электронэлектронного взаимодействия.

В [8] было показано, что туннелирование электронов из геликоидальных КС 2D ТИ в полоску нормального электронного газа может служить эффективным механизмом генерации спинового тока в нормальном проводнике.

В данной работе спиновая фильтрация электронов изучена в более общем случае, когда спектр электронов в полоске расщеплен по спину из-за обменного взаимодействия с пленкой магнитного изолятора. Показано, что зеемановское расщепление спектра электронов в квантовой полоске приводит к перераспределению токов между ее ветвями, зависящему от взаимной ориентации спинов электронов в КС и обменного поля.

2. Модель

Для изучения зарядовых и спиновых токов, создаваемых в полоске нормального проводника в результате туннелирования электронов из 2D ТИ, рассмотрим модельную планарную структуру (см. вставку на рис. 1), в которой ТИ занимает полуплоскость y < 0. На границе y = 0 ТИ связан через туннельный барьер длины L с 2D полоской нормального электронного газа ширины W. Будем считать, что полоска контактирует по всей ширине с расположенной под ней пленкой магнитного изолятора. Между ТИ и полоской прикладывается напряжение V,

[¶] E-mail: AASukhanov@yandex.ru

Рис. 1. Энергетический спектр краевых состояний (прямые линии) в ТИ и электронов в полоске (параболы). Занятые состояния изображены толстыми линиями. $B_{\rm ex}$ — обменное магнитное поле. Стрелки указывают направление спинов и скоростей в нормальном электронном газе. На вставке — схематическая структура туннельного контакта. Стрелки изображают электронные потоки с разными спинами.

так что химический потенциал краевых состояний оказывается выше, чем химический потенциал в полоске: $\mu_{\text{TI}} = \mu_{\text{N}} + eV.$

Электроны краевых состояний имеют бесщелевой линейный спектр, их спин однозначно связан с импульсом p: спин электронов, движущихся вправо, направлен вверх, а спин электронов, движущихся влево, — вниз (рис. 1). В полоске спектр электронов квантуется в поперечном направлении. Кроме того, из-за обменного взаимодействия электронов полоски с магнитным изолятором подзоны расщеплены по спину на энергию $\pm \Delta$. В каждой подзоне спектр квадратичен по импульсу k.

Качественно туннельный процесс можно описать следующим образом. Для начала пренебрежем рассеянием на контакте. Условия туннелирования заключаются в сохранении энергии электронов, их продольного импульса и спина. Если энергия электронов больше энергии точки Дирака спектра КС, то электроны со спином вверх, движущиеся в ТИ направо, попадают и в полоске в состояния, движущиеся направо. Напротив, движущиеся налево электроны со спином вниз переходят соответственно в левобегущие состояния. Пока спиновое расщепление подзон отсутствует, условия туннелирования для право- и левобегущих электронов выполняются при одной энергии, и туннельный ток разделяется в полоске на два противоположно направленных, но равных по величине потока электронов с противоположными спинами, и в полоске возникает единый спиновый ток [8].

Если энергия туннелирующих электронов меньше энергии точки Дирака, то праводвижущиеся электро-

ны КС туннелируют в движущиеся налево состояния полоски, и наоборот, электроны, движущиеся налево в ТИ, попадают в праводвижущиеся состояния полоски. Соответственно в этом случае спиновый ток в полоске приобретает противоположное направление.

Таким образом, смещение химических потенциалов в ТИ и в нормальном электронном газе, μ_{TI} и μ_N , через точку Дирака приводит к изменению знака спинового тока.

При наличии спинового расщепления спектра полоски условия туннелирования для право- и левобегущих электронов выполняются при различных энергиях и симметрия токов, генеририруемых в ветвях полоски, нарушается, причем может нарушиться настолько, что ток возникнет лишь в одной из ветвей полоски.

В реальной ситуации существуют и другие факторы, сильно влияющие на спиновую поляризацию. Это рассеяние электронов на контакте конечных размеров, из-за которого некоторые электроны могут изменить направление своей скорости [10,11], и электрон-электронное взаимодействие, вследствие которого существенно изменяются спектральная функция электронов в 1D краевых состояниях и спектр коллективных возбуждений [12,13].

Электроны в КС будем рассматривать как геликоидальную жидкость Латтинджера, для описания которой используем метод бозонизации [12,13]. Электроны в полоске будем считать невзаимодействующими. Туннелирование учтем в рамках модели туннельного гамильтониана, который будем рассматривать как возмущение [14].

3. Формализм

Гамильтониан системы имеет вид

$$H = H_{\rm ES} + H_{\rm N} + H_{\rm T},\tag{1}$$

где

$$H_{\rm ES} = \frac{v_{\rm F}}{2} \int_{-\infty}^{\infty} dx \left[\Pi^2(x) + \frac{1}{g^2} \left(\frac{\partial \theta(x)}{\partial x} \right)^2 \right], \qquad (2)$$

$$H_{\rm N} = \sum_{k,n,s=\pm 1} \left(\frac{\hbar^2 k^2}{2m} + E_c + \varepsilon_n + s\Delta \right) a_{k,n}^{\dagger} a_{k,n}, \qquad (3)$$

$$H_{\rm T} = \sum_{p,k,n} T_{\rm N}(p,k) a^{\dagger}_{k,n} c^{\dagger}_{p} + H.c.$$
(4)

Здесь $H_{\rm ES}$ — бозонизованный гамильтониан КС, рассматриваемых как бесспиновая жидкость Латтинджера [8]; $H_{\rm N}$ — гамильтониан невзаимодействующих электронов в полоске, в котором учтено размерное квантование и зеемановское расщепление спектра; $H_{\rm T}$ туннельный гамильтониан; $\Pi(x)$ и $\theta(x)$ — сопряженные бозонные фазы; g — параметр взаимодействия; $v_{\rm F}$ скорость электронов КС; $\Delta = \mu_{\rm B} B_{\rm ex}$ — энергия обменного расщепления подзон; $B_{\rm ex}$ — обменное ферромагнитное поле; $a_{k,n}^{\dagger}$ и c_p^{\dagger} — операторы рождения фермионов в полоске и в КС, а $T_N(p, k)$ — туннельный матричный элемент, который был выведен с учетом конечной длины контакта L и квантования в полоске в работах [10,8] и имеет вид

$$|T_{\rm N}(p,k)|^2 \approx T^2 \frac{\pi^2 n^2 L^2}{l_{\rm N} l_{\rm ES} W^3} \left(\frac{\sin[(p-k)L/2]}{(p-k)L/2}\right)^2,$$
 (5)

где $l_{\rm N}$ и $l_{\rm ES}$ — нормировочные длины для состояний полоски и КС.

Оператор рождения c_p^{\dagger} выражается через хиральные поля право- и левобегущих фермионов ($r = \pm 1$):

$$\psi_{\rm ES}^{\dagger} = \sum_{r} \psi_{\rm ES,r}^{\dagger},$$
$$\psi_{\rm ES}^{\dagger} = \sqrt{\frac{\omega_c}{2\pi v}} \exp\left\{ir p_{\rm F}(x) + i\sqrt{\pi} \left[r\theta(x) + \int_{-\infty}^{x} dx' \Pi(x')\right]\right\},$$
(6)

где $v = v_{\rm F}/g$, ω_c — энергия обрезания.

Электронные и спиновые токи в ветвях полоски J^l и J_s^l и туннельный ток J выражаются через матрицу $I^{r,l}$ туннельных потоков электронов из геликоидальных КС $(r = \pm 1)$ в право- и левобегущие состояния полоски $(l = \pm 1)$.

В соответствии с [14,10] имеем

$$J^{l} = -e \sum_{r=\pm 1} I^{r,l}, \quad J^{l}_{s} = \frac{\hbar}{2} \sum_{r=\pm 1} r I^{r,l},$$
$$J = -e \sum_{l=\pm 1} \sum_{r=\pm 1} I^{r,l}, \quad P^{l} = \frac{2eJ^{l}_{s}}{\hbar J^{l}}, \tag{7}$$

$$I^{r,l} = \frac{l}{\hbar} \sum_{lk>0} \sum_{p,n} |T_n(p,k)|^2 \int \frac{d\varepsilon}{2\pi} A_n(k,\Delta,\varepsilon+eV) A_{\rm ES}^r(p,\varepsilon) \times \Big[f(\varepsilon) - f(\varepsilon+eV) \Big],$$
(8)

где $f(\varepsilon)$ — функция Ферми, а A_n и A_{ES}^r — спектральные функции электронов в полоске и в КС (см [10]),

$$\begin{split} A_{n,s}(k,\varepsilon) &= 2\pi\delta\bigg(\varepsilon - E_c - \varepsilon_{nc} - s\Delta - \frac{\hbar^2 k^2}{2m} + \mu_{TI}\bigg),\\ A_{\text{ES}}^r(p,\varepsilon) &= \frac{\hbar\omega_c}{4\pi} \\ &\times \bigg[K_{\alpha}\bigg(\frac{\varepsilon - r\hbar\nu(p - rp_{\text{F}})}{2}\bigg)K_{\alpha+1}\bigg(\frac{\varepsilon + r\hbar\nu(p - rp_{\text{F}})}{2}\bigg) \\ &+ K_{\alpha}\bigg(\frac{-\varepsilon + r\hbar\nu(p - rp_{\text{F}})}{2}\bigg)K_{\alpha+1}\bigg(\frac{-\varepsilon - r\hbar\nu(p - rp_{\text{F}})}{2}\bigg)\bigg],\\ K_{\alpha}(\varepsilon) &= \frac{e^{\varepsilon/2T}}{\hbar\omega_c\Gamma(\alpha)}\bigg(\frac{\hbar\omega_c}{2\pi T}\bigg)^{1-\alpha}\bigg|\Gamma\bigg(\frac{\alpha}{2} + \frac{i\varepsilon}{2\pi T}\bigg)\bigg|^2, \end{split}$$

где $\alpha = (g + 1/g - 2)/4$, $\Gamma(\alpha) - \Gamma$ -функция, T — температура.

Физика и техника полупроводников, 2013, том 47, вып. 11

4. Результаты

Используя численное интегрирование в выражении (8), мы изучили зависимости электрических и спиновых токов в правой и левой ветвях полоски $(J^{\pm} \text{ и } J_s^{\pm})$ от напряжения на туннельном контакте V, химического потенциала $\mu \equiv \mu_{\text{TI}}$, величины обменного расщепления подзон Δ , длины контакта и ширины полоски и от параметра взаимодействия электронов в краевых состояниях g.

Далее использованы безразмерные величины токов, спиновых токов, энергии, напряжения и длины, нормированные соответственно на

$$J^{0} = 2em^{3}v_{\rm F}^{2}T^{2}l_{\rm N}/\pi\hbar^{5},$$

$$J^{0}_{s} = J^{0}\hbar/e, \quad \varepsilon^{0} = 2mv_{\rm F}^{2},$$

$$V^{0} = \varepsilon^{0}/e, \quad l^{0} = 2mv_{\rm F}/\hbar.$$
(9)

На рис. 2 приведены зависимости токов J^{\pm} и J_s^{\pm} от химического потенциала для полоски шириной W = 75. Представленные графики демонстрируют следующие особенности туннелирования из КС в спин-поляризованную полоску. Во-первых, при изменении μ пики электрического тока появляются попеременно то в правой, то в левой ветви полоски, однако такое чередование нарушается при изменении знака μ относительно дираковской точки. Во-вторых, при больших по величине положительных и отрицательных значениях μ спиновая поляризация тока в каждой из ветвей полоски практически равна соответственно +1 и -1, но при малых $|\mu|$ существует конечная переходная область изменения поляризации, ширина которой возрастает с уменьшением длины туннельного контакта *L*.

Рис. 2. Зависимости зарядовых и спиновых токов в ветвях полоски от химического потенциала μ . Жирная линия J^+ и тонкая сплошная линия J_s^+ — ток и спиновый ток в правой ветви полоски; штрихпунктирная и штриховая линии, J^- и J_s^- — ток и спиновый ток в левой ветви. Ток, спиновый ток и напряжение нормированы в соответствии с уравнением (9). Расчет проведен для W = 50, $E_c = -0.6$, $\Delta = 0.02$, V = 0.01, T = 0.005, g = 0.9, L = 60.

и затем сливаются. Эти особенности наглядно объясняются с помощью рис. 1. Так как спектр электронов в полоске расщеплен по спину, условия туннелирования для право- и левобегущих электронов краевых состояний выполняются при различных энергиях ε , соответствующих точкам 1 и 2 для положительных энергий (энергий, бо́льших энергии точки Дирака) и точкам 3 и 4 для отрицательных энергий. Если $eV \ll (\Delta, \Delta \varepsilon_n)$, где $\Delta \varepsilon_n$ — разность энергий ближайших размерно-квантованных подзон, то в интервал энергий є, в котором возможно туннелирование $(\mu > \varepsilon > \mu - eV)$, может попасть только одна из этих точек. При увеличении µ в этот интервал последовательно попадают точки 4-1 и в полоске, в соответствии с графиками рис. 2, должны генерироваться электрические и спиновые токи сначала в правой ветви $J_{s}^{+} \approx -|J^{+}| < 0$ (точка 4), затем один за другим возникнут два пика токов в левой ветви полоски: $J_S^- \approx -J^- < 0$ (точка 3, $\mu < 0)$ и $J_S^- \approx -J_S^- > 0$ (точка 2, $\mu > 0)$ и, наконец, пик $J_{S}^{+} \approx |J^{+}|.$

Зависимости зарядовых J^{\pm} и спиновых J_s^{\pm} токов в правой и левой ветвях полоски от напряжения на туннельном контакте V представлены на рис. З для структуры с большими L и W ($Lp_F \gg 1$, $Wk_F \gg 1$, p_F и k_F — фермиевские импульсы электронов в КС и полоске).

Спиновая поляризация токов при малых напряжениях $eV < \mu$ практически равна 100% в обеих ветвях полоски. При этом зависимости $J^{\pm}(V)$ слабо суперлинейны и характеризуются показателем степени, возрастающим с ростом взаимодействия электронов в КС.

Как отмечалось, характерной особенностью спектра КС является то, что спин и скорость электронов с

Рис. 3. Вольт-амперные характеристики (кривые 1–3) и зависимости спинового тока от напряжения (4–6). B = 0: жирные линии 2 — $J^+(V) = J^-(V)$ и 5 — $J^+_S(V) = J^-_S(V)$. B > 0: $I - J^-(V)$, 3 — $J^+(V)$, 4 — $J^-_S(V)$, 6 — $J^+_S(V)$. Параметры: $\Delta = 0.04$, W = 150, $E_c = 0.1$, $\mu = 0.1$, T = 0.01, g = 0.9, L = 500.

Рис. 4. Зависимости зарядового J и спинового J_S токов в полоске нормального 2D газа от длины туннельного контакта L. Параметры: $\Delta = 0.02$, W = 100, $E_c = 0$, $\mu = 0.05$, V = 0.01, T = 0.01, g = 0.9.

заданным знаком импульса k меняют свое направление при изменении знака энергии, отсчитанной от дираковской точки. Поэтому при $eV > \mu$, когда нижняя граница слоя туннелирующих электронов пересекает эту точку, поляризация начинает уменьшаться и затем меняет знак.

Увеличение магнитного поля приводит к уменьшению тока, создаваемого электронами со спином, направленным против поля, а при большой энергии зеемановского расщепления, $\Delta > (\mu, eV)$, — к его исчезновению в соответствующей ветви полоски.

Отметим, что по различию величин токов в ветвях полоски можно определить геликоидальность КС. Действительно, электроны КС, движущиеся в направлении той ветви, где ток больше, имеют спин, направленный по обменному магнитному полю.

Интересно, что поляризация тока возрастает при увеличении электрон-электронного взаимодействия, т. е. при уменьшении параметра g. Этот результат объясняется тем, что уменьшение g приводит к увеличению скорости возбуждений в КС. Это в свою очередь сдвигает точку Дирака вниз по энергии, в результате чего уменьшается количество электронов, попадающих в энергетический интервал под точкой Дирака. При достаточно больших напряжениях знак поляризации может даже поменяться при изменении параметра взаимодействия.

В туннельных контактах малого размера поляризация существенно уменьшается из-за обратного рассеяния электронов. Нагляднее всего это проявляется на зависимостях зарядовых и спиновых токов от длины контакта (рис. 4).

При малой длине контакта ($Lp_F < 1$) нормированный на единицу длины контакта зарядовый ток возрастает линейно с *L*, а спиновый ток при $B_{ex} = 0$ пренебрежимо мал из-за сильного рассеяния контактом, приводящего к выравниванию электронных потоков с противоположными спинами в каждой из ветвей полоски. При $Lp_F > 1$ спиновые токи возрастают из-за ослабления рассеяния и асимптотически достигают электронных токов в пределе $Lp_{\rm F}\gg 1$.

При больших *L* обменное поле B_{ex} приводит к "разбалансу" токов в ветвях полоски из-за зеемановского расщепления спектров. При этом поляризация токов в каждой из ветвей близка к 1 при $\mu > (\Delta eV)$.

При малых L из-за рассеяния электронов на контакте токи в обеих ветвях полоски выравниваются и, наоборот, спиновые токи раскомпенсируются, причем знаки спиновых токов в ветвях полоски оказываются противоположными. Так, например, в правую ветвь полоски с меньшим потоком спинов, направленных против поля B, из-за рассеяния попадает больший по величине поток электронов со спинами, направленными по полю, в результате чего спиновый ток в этой ветви J_s^+ оказывается отрицательным.

5. Заключение

Мы детально изучили спиновую фильтрацию токов при туннелировании электронов из краевых состояний 2D ТИ в многомодовую электронную полоску при наличии в ней магнитного поля, вызывающего спиновое расщепление электронного спектра. Показано, что этот механизм приводит к созданию и селективному управлению спин-поляризованными токами в каждой из ветвей полоски.

Управление токами может осуществляться с помощью напряжения на туннельном контакте, изменения заполнения краевых состояний или величины магнитного поля и может приводить как к переключению токов между ветвями полоски, так и к изменению знака спиновой поляризации тока в них.

Существенное влияние на величины токов и степень их поляризации оказывают рассеяние электронов на контакте и электрон-электронное взаимодействие в краевых состояниях:

1) спиновая поляризация тока возрастает с увеличением длины контакта на масштабе $Lp_{\rm F} \approx 1$ или $Lk_{\rm F} \approx 1$;

 поляризация возрастает с увеличением электронэлектронного взаимодействия из-за перенормировки скорости в жидкости Латтинджера.

Работа выполнена при частичной поддержке РФФИ (проект № 11-02-00337) и программ РАН.

Список литературы

- [1] M.Z. Hasan, C.L. Kane. Rev. Mod. Phys., 82, 3045 (2010).
- [2] X.L. Qi, S.-C. Zhang. Rev. Mod. Phys., 83, 1057 (2011).
- [3] A. Roth, C. Brüne, H. Buhmann, L.W. Molenkamp, J. Maciejko, X.-L. Qi, S.-C. Zhang. Science, 325, 294 (2009).
- [4] C. Brüne, A. Roth, E.G. Novik, M. König, H. Buhmann, E.M. Hankiewicz, W. Hanke, J. Sinova, L.W. Molenkamp. Nature Phys., 6 (5), 448 (2010).

- [5] K.C. Nowack, E.M. Spanton, M. Baenninger, M. König, J.R. Kirtley, B. Kalisky, C. Ames, P. Leubner, C. Brüne, H. Buhmann, W. Molenkamp, D. Goldhaber-Gordon, K.A. Moler. arXiv: 1212.2203 (2012).
- [6] Y. Ma, W. Kundhikanjana, J. Wang, M.R. Calvo, B. Lian, Y. Yang, K. Lai, M. Baenninger, M. König, C. Ames, C. Brüne, H. Buhmann, P. Leubner, Q. Tang, K. Zhang, X. Li, L.W. Molenkamp, S.-C. Zhang, D. Goldhaber-Gordon, M.K. Kelly, Z.-X. Shen. arXiv: 1212.6441 (2012).
- [7] C. Brüne, A. Roth, H. Buhmann, E.M. Hankiewicz, L.W. Molenkamp, J. Maciejko, X.L. Qi, S.C. Zhang. Nature Phys., 8 (6), 485 (2012).
- [8] A.A. Sukhanov, V.A. Sablikov. J. Phys.: Condens. Matter, 24, 405 301 (2012).
- [9] C. Wu, B.A. Bernevig, S.C. Zhang. Phys. Rev. Lett., 96, 106401 (2006).
- [10] M. Governale, M. Grifoni, G. Schon. Phys. Rev. B, 62, 15996 (2000).
- [11] G. Dolcetto, S. Barbarino, D. Ferraro, N. Magnoli, M. Sassetti. Phys. Rev. B, 85, 195 138 (2012).
- [12] T. Giamarchi. Quantum Physics in One Dimension (Oxford, Oxford University Press, 2004) p. 38.
- [13] J. Voit. Rep. Progr. Phys., 58, 977 (1995).
- [14] G.D. Mahan. Many Particle Physics, 3rd edn (N.Y., Plenum, 2000) p. 785.

Редактор Т.А. Полянская

Spin-polarized currents in a tunnel contact of normal conductor and twodimensional topological insulator

A.A. Sukhanov, V.A. Sablikov

Kotel'nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino branch,

141190 Fryazino, Russia

Abstract We study spin filtering of electrons when tunneling from edge states of two- dimensional topological insulator (TI) into the normal conductor in the presence of a magnetic field induced by the proximity to a magnetic insulator. Calculations were carried out for a tunnel contact of a finite length between the TI and an electronic multi-mode quantum strip. It is shown that the electron flow is split after the tunneling in the strip so that spin-polarized currents arise in its left and right branches. The currents can be effectively controlled by the applied voltage and chemical potential of the system. The presence of a magnetic field, which splits the spin subbands of the electron spectrum in the strip, gives rise to the effect of switching of the spin current between the strip branches.