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The organic semiconductors are treated as non-degenerate based on recent experiment on validity of classical

Einstein relationship. The expression of density of holes is analytically derived by using the Boltzmann statistics. The

mobility model of Pasveer et al. and the exponential model of Pai modified by Blom et al. are combined to solve

drift-diffusion equations to extract information about the mobility and effective density of state. The results show

that the mobility model of Pasveer et al. can not well fit the experimental J−V data for a rubrene single crystal from

Krellner et al. both at low and high voltages, and some of the parameters extracted show inconsistent temperature

dependence which should be constants in the theoretical framework of Pasveer et al. Whereas the exponential

model gives satisfactory fit for experimental J−V data at all voltage ranges, and the extracted parameters show

correct temperature dependence. The temperature dependence of parameters contained in the exponential model of

mobility can be well fitted by using simple expressions proposed by Blom et al. And the temperature dependence

of effective density of state derived from the non-degenerate Boltzmann statistics is verified. The distribution of

potential, electric field and density of holes are calculated as analyzed.

1. Introduction

Organic semiconductors are the object of intense inves-

tigation because of the promise of low-cost and large-area

electronic applications such as radio-frequency identification

(RFID) tags or active matrix display backplanes [1–7].
Large efforts of the research community have led to a

constant improvement of the carrier mobility over the

years. Mobility as high as 1.4 cm2/(V · s) for polymers [8],
3.4 cm2/(V · s) for polycrystalline films [9], and up to

30 cm2/(V · s) for single-crystal-like films of small molecule

organic semiconductors [10], have been achieved in thin

film transistors, exceeding that of hydrogenated amorphous

silicon and approaching that of polycrystalline silicon.

A major bottleneck towards the design and development

of new materials is the lack of fundamental understanding of

what limits charge transport in organic semiconductors. In

films of crystalline organic semiconductors, the effect of trap

states located in the bandgap is commonly observed [11–16].
The energetic distribution of these localized gap states

created by disorder, chemical or morphological defects,

or impurities affects the performance of organic devices

made with these materials. The accurate characterization

of this trap distribution and its correlation to the nature

of defects is crucial to fully understand the fundamental

limits of these materials. In this regard, investigations of

highly purified organic single crystals are fundamental, as

these constitute model systems where the effect of micro-

structural features such as grain-boundaries is suppressed.

Single-crystal studies might allow us to predict the upper

performance bounds of organic semiconductors as well as

help design materials with ever increasing carrier mobility.

The observation of traps in organic single crystals is well

documented [17–21]. The traps may be caused by residual

impurities, lattice disorder, or defects such as dislocations.

¶ E-mail: zhouchenxin123@yahoo.cn

Because in high-quality crystals trap densities are extremely

low, obtaining direct evidence of their existence is chal-

lenging. Indirect evidence can be obtained by measuring

their effect on the I−V characteristics of semiconductor

devices where the level-Fermi in the semiconductor is

made to sweep through trap distributions. Experimental

techniques to estimate the trap distribution include the direct

fitting of space charge limited current (SCLC) characteristics
to transport models and assuming a particular energetic

distribution of traps [11,22,23], but at present the Gaussian

distribution for density of state (DOS) is most popular,

and in some times the exponential is used to replace the

Gaussian DOS for simplicity.

There are two types of methods to consider trap effects

in literature. The first type treating all carriers in same way,

the trap effects are considered by seeing the mobility of

carriers as a function of electric field or density of carriers.

Two representative methods are the exponential model of

Pai [24] and unified model of Pasveer [25] et al. Pai has ever
proposed that the mobility of amorphous semiconductor is

an exponential function of root of electric field with two

temperature dependent parameters determined by fitting

experimental data. As organic semiconductors becoming

hotspot, the exponential model was used to describe

electric properties of organic semiconductors with various

modifications. Dunlap et al. [26] analytically derived the

expression of mobility, confirmed the exponential model of

Pai [24], obtained mobility is in quantitative agreement with

observation in experiment. Subsequently, Blom et al. [27]
and Novikov et al. [28] proposed different temperature

dependent expressions for parameters in the exponential

model.

Pasveer et al. [25] further deduce the dependence of

mobility µ(T, p, E) on temperature T , density of charge

carriers p , and electric field E , through numerically solving

the master equation to describe hopping transport of charge
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carriers on a lattice of sites based on the uncorrelated

Gaussian disorder model (GDM). Both exponential model

and the model of Pasveer et al. have been widely applied to

study electric properties of organic semiconductors [25–31].
The second type of method separating all carriers into

free and trapped, the representative is the mobility edge

(ME) model [32–43]. The ME model divides the DOS

into mobile states and trap states. Mobile states, with

mobility µ0, are located above (below) the mobility edge

in the case of an n-type (p-type) semiconductor. Quasi-

equilibrium is assumed everywhere such that the density of

mobile holes (for a p-type semiconductor) can be calculated

using Fermi−Dirac statistics. Dacuna and Salleo [32] have
used the mobility edge (ME) model [35] to simulate the

experiment data of Krellner [36]. Yampolskii et al. [34]
also proposed similar model without application to practical

materials or devices.

It is obvious that above two types of methods are

different from each other. The first type of method is

simpler and more similar to traditional theory for inorganic

semiconductors. Since there is not determinative judgment

between two types of methods, it is meaningful to apply

both to same systems to explore which one is more

reasonable. In this paper, we apply the first method to

single-crystal rubrene organic semiconductor as studied by

Dacuna and Salleo [32] using the second type of ME

model. We adopt both exponential mobility model [27]
and µ(T, p, E) mobility model of Pasveer et al. [25] to solve

the drift-diffusion equations to research current−voltage

(J−V ) single-crystal rubrene diode and extract parameters

in Gaussian DOS.

2. Method and models

It has been demonstrated that the hole current in organic

diodes is space-charge limited (SCL) [12–28]. The SCL

current−voltage (J−V ) characteristic usually is described

by the solution of Poisson equation

d2ϕ

dx2
= − q

εrε0
p(x) (1)

for electric potential ϕ or field, and drift equation for cur-

rent J [37]. Where x is the coordination, q is the elementary

charge, p is density of hole; ε0 is the free-space permittivity,

εr is the dielectric constant of the semiconductor. A general

simplification used in the derivation of analytical models

is to neglect the diffusion current as long as the applied

voltage is larger than few kT/q. But it has been shown

not necessarily true [38,39]. So we adopt the drift-diffusion

equation for current:

J(x) = −qµ(x)p(x)
∂ϕ

∂x
− kTµ

∂ p(x)

∂x
, (2)

where µ is the mobility of holes. The voltage V is the drop

of electric potential

V = ϕ(0) − ϕ(L) (3)

and L is the separation between the contacts, or thickness of

the semiconductor layer Although the mechanism of electric

conduction is not thorough determined, the Gaussian

model [30] for DOS has been recognized:

D(E) =
(

N0/σ
√
2π

)

exp⌊−(E − Ev)
2/2σ 2⌋, (4)

where N0, Ev , and σ are the total number of states, the

center energy and the standard deviation of the Gaussian

distribution, respectively. If organic semiconductors are

degenerate, the Fermi−Dirac statistics must be adopted, the

density of hole is expressed as

p =

∫ ∞

−∞

D(E)
1

1 + exp
[(

EF − E + qϕ(x)
)

/kT
] dE. (5)

Some works pointed out the Fermi−Dirac statistics used in

Eq. (5) would lead to following generalized Einstein relation

(GER) instead of the traditional one [37–40]

Dp

µ
= −p

[

qd p
dEF

]

. (6)

Where Dp is the diffusion coefficient of holes. However,

Neumann et al. [41] oppose the GER through theoretical

analysis. Recently, Wetzelaer et al. [42] also confirmed the

validity of the Einstein relation in organic semiconductors

by studying the diffusion-driven currents of single-carrier

diodes. In contrast to earlier reports, a temperature

independent ideality factor was found for both n- and p-type
conduction, which is in contradiction with the generalized

Einstein relation derived for a Gaussian DOS.

In terms of Refs. [41,42], we think that the organic

semiconductors should be nondegenerate, (EF−Ev) ≫ kT ,
the Fermi−Dirac statistics in Eq. (5) can be replaced by the

Boltzmann statistics, Eq. (5) is changed as

p =

∫ ∞

−∞

D(E) exp
[(

E − EF − qϕ(x)
)

/kT
]

dE. (7)

Substituting Eq. (4) into Eq. (7), introducing dimensionless

variable, y = (E − Ev)/σ
√
2, we can evaluate the integral

∫ ∞

−∞

exp
[

−(E − Ev)
2/2σ 2

]

exp

[

(E − Ev)

kT

]

dE

= σ
√
2π exp

[

σ 2

(
√
2kT )2

]

.

And the density of hole can be expressed as

p = N′
v exp[−qϕ(x)/kT ]. (8)

Here the coefficient N′
v is defined as

N′
v = N0 exp

[

(Ev − EF)/kT
]

exp
[

σ 2/2(kT )2
]

≡ Nv exp
[

(Ev − EF)/kT
]

. (9)
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And Nv = N0 exp[σ
2/2(kT )2], is the effective DOS. It is

obvious that this DOS is very very different from that of

inorganic semiconductors:

Nv =
2

h3
(2πmkT )3/2. (10)

The effective DOS Eq. (10) of inorganic semiconductors

is a slowly increasing function of temperature; whereas the

effective DOS of organic semiconductors is a dramatically

decreasing function of temperatur. Eq. (9) can be reformu-

lated as

lnN′
v = lnN0 +

Ev − EF

kT
+

σ 2

2(kT )2
. (11)

It is shown that logarithm of effective DOS is a quadratic

function of inverse temperature. The coefficients of Eq. (10)
can directly determine Fermi energy and the standard

deviation of the Gaussian distribution.

In order to solve drift-diffusion equation (2), we need the

models of mobility. The first model we would consider is

the model of Pasveer [25] et al. Pasveer et al. have fitted the

numerical results of the master equation by using factorizing

parametrization scheme:

µ(T, p, E) ≈ µ(T, p) f (T, E), (12)

µ(T, p) is a function of temperature and charge-carrier

density, and

µ(T, p)=µ0b1 exp
[

−b2σ
2 + (1/2)(σ 2 − σ )(2pa3)δ

]

, (13)

δ = 2σ−2
[

ln(σ 2 − σ ) − ln(ln 4)
]

, µ0 = ev0a
2/σ (14)

with b1 = 1.8 · 10−9, b2 = 0.42, and

f (T, E) = exp

{

0.44(σ 3/2 − 2.2)

×
[

−1 +
√

1 + 0.8(eaE/σ )2
]}

(15)

is a function of temperature and field. Here σ ≡ σ/kT is

a reduced variable, and σ is the width of the Gaussian.

We have three parameters, µ0, σ and a in the model of

Pasveer et al. The second model we would consider is the

exponential model of Pai [24]

µp(E) = µp(0) exp(γ
√

E), (16)

where denotes the mobility at zero field. Blom et al. [27]
observed a thermally activated behavior, according to

µp(0) = µ0 exp(−1/kT ). (17)

They also demonstrated the linear dependence between γ

and 1/T , as following

γ = B

(

1

kT
− 1

kT0

)

. (18)

This empirical dependence of γ on T has originally been

proposed by Gill from TOF experiments on molecularly

doped PVK [43]. We have four parameters, µ0, 1, B , T0, in

the exponential model.

3. Results and discussion

As pointed out by Dacuña and Salleo [32], the data set

measured by Krellner et al. [36] has high quality, which span

a large temperature interval (110 to 200K), with curves that

exhibit smooth variations at all temperatures and very low

currents measured at low bias. As a result, this data set

enables us to test our model over orders of magnitude in

current density and allows us to determine the validity of the

physical models we used. Dacuña and Salleo also pointed

out that due to the intrinsic difference in the fabrication of

the top and bottom contacts, an asymmetric behavior of the

contacts was reported by Krellner et al. One side can be

seen as Ohmic with low potential barrier Wleft. And another

side can be seen as Schottky contact with high potential

barrier Wright. The difference between right and left potential

barriers, W = Wright −Wleft, just is the built-in potential in

the device. Thus in our calculations, we need to determine

three parameters N′
v , Wleft and Wright at every temperatures

except other parameters contained in the mobility models.

And thickness of rubrene single crystal is L = 600 nm, the

relative dielectric constant is taken as εr = 3.5.

As we use the mobility model of Pasveer et al. [25] to

fit these J−V data, we have six parameters N′
v , Wleft, Wright,

µ0, σ and a . In our fitting procedure, it is found that

Wleft = 0.06 eV, σ = 0.09 eV and a = 2.8 nm can be taken

as constants for different temperatures, and other three pa-

rameters N′
v , Wright, µ0 should be taken as variable for differ-

ent temperatures. The coefficient N′
v can be well described

by using Eq. (11), which has been derived based on the

Gaussian DOS for carriers and the non-degenerate Boltz-

mann statistics. The determined N0 = 1.367 · 1025 m−3,

(Ev−EF) = −0.0588 eV, σ = 0.051 eV. In terms of theo-

retical framework of Pasveer et al., the built-in potential

W and µ0 should be constants independent to tempe-

rature, whereas our fitting results show that they are

temperature dependent, W = (0.5488−0.0013q/kT ) eV,
µ0 = 1.227 · 105 exp(0.0363q/kT ), (m2V−1s−1).

Considering that the temperature has been included in

the model of Pasveer et al., µ0 should be seen as a

constant independent to temperature, the variation of µ0
versus temperature may exhibit some inherent inconsistence

of model of Pasveer et al. Even so, we found that it is

impossible to arrive at good fitting quality, even we adjust

six parameters N′
v , Wright, and µ0 at same time for every

temperatures. The fitting quality for five temperatures is

exhibited in Fig. 1. It can be seen from this figure that

the calculated J−V curves are too small as voltage higher

than 2V, and the increasing slopes are too low. At middle

voltage range (0.8−1.5V), the curves are qualitatively in

agreement with data points. But at low voltage range

(< 0.8V), the curves deviate from the data points evidently,

even the shapes are not correct. Therefore the results do

not support the mobility model of Pasveer et al. We then

apply the exponential mobility model to fit the experimental

data. We have seven parameters N′
v , Wleft, Wright, µ0, 1,

B , and T0 need be determined. It should be pointed out
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Figure 1. J−V relationship from 150 to 200K (with varying step

10K) for a rubrene single crystal diode (L = 600 nm). Symbols:

Experimental data from [23]; lines: theoretical results using the

mobility model of Pasveer.

that the number of parameters in the exponential model

seemingly is more than that of the model of Pasveer et

al., considering that W and µ0 in the model of Pasveer et

al. should vary with temperature, and other two parameters

have been introduced to describe such variation, so we think

that the number of independent parameters in the model of

Pasveer et al. even more than that in the exponential model.

Our fitting procedure shows that the Wleft = 0.06 eV

and Wright = 0.5 eV can be taken as constants independent

with temperature; and such asymmetric values are very

important for good fitting of J−V data at low voltages,

as having been shown by Dacuña and Salleo [32]. We

then need determine three parameters N′
v , µp(0) and

γ in Eq. (16) for every temperatures. The optimized

values are plotted in Figs. 2–4 with smoothed curves

fitted by using Eqs. (11,17,18), respectively. Fig. 2 shows

that the coefficient N′
v also can be well described by

using Eq. (11). The determined N0 = 4.866 · 1024 m−3,

(Ev − EF) = −0.0492 eV, σ = 0.0382 eV. The equivalent

temperature 492K of (Ev−EF) shows that the non-

degenerate approximation used to derive Eq. (11) is

reasonable, and the classical Einstein relation used in

the drift-diffusion equation (2) also is tenable. Figs. 3

and 4 show that µp(0) and γ in Eq. (16) can be well

fitted by using Eqs (17,18). µp(0) indeed holds the

thermally activated behavior versus temperature T , as

having pointed out by Blom [27]. And the linear relationship

of γ versus 1/T also is well satisfied. The determined

coefficients are µ0 = 0.1532m2V−1s−1, 1 = 0.2662 eV,

B = 3.713 · 10−5 eV (m/V)1/2, and T0 = 394K, respec-

tively.

Fig. 5 compares the experimental data to the numerical

results of the exponential model. The figure shows that

agreement of the numerical results of the exponential model

is fairly satisfactory at low, middle and high voltage ranges,

and is superior to that of the model of Pasveer et al.

Figure 2. Varition of the coefficient N′
v versus temperature T

(110−200K). Symblos: optimized values using the exponential

mobility model; line: soothed curve using Eq. (9).

Figure 3. Varition of coefficient µp(0) in Eq. (16) versus

temperature T (110−200K). Symblos: optimized values using the

exponential mobility model; line: soothed curve using Eq. (17).

Figure 4. Varition of parametre γ in Eq. (16) versus temperature

T (110−200K). Symblos: optimized values using the exponential

mobility model; line: soothed curve using Eq. (18).
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Figure 5. a — J−V relationship from 120 to 200K (with
varying step 20K) for a rubrene single crystal diode (L = 600 nm).
Symbols: experimental data from [23]; lines: theoretical results

using the exponential mobility model. b — J−V relationship

from 110K to 190K (with varying step 20K) for a rubrene single

crystal diode (L = 600 nm). Symbols: experimental data from [23];
lines: theoretical results using the exponential mobility model.

Figure 6. Variation of electric potential versus position x at 110K

and different applied biases V , V: 0.5, 1, 2, 5, 10, 15.

Figure 7. The electric field versus position x at 110K and

different applied biases V , V: 0.5, 1,2, 5, 10, 15.

Figure 8. The hole densities versus position x at 110K and

different applied biases V , V: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 5,

10, 15.

shown in Fig. 1. In Figs 6, 7 and 8, we plot variation of

electric potential, field and density holes versus position,

respectively. It can be seen from Fig. 6 that electric potential

is increasing function of position at zero bias voltage for

built-in potential, and becomes decreasing of position as bias

voltage increasing. Fig. 7 shows that electric field always

is increasing function of position, but its direction would

turn from zero to high voltages. Fig. 8 shows that density

of holes always is decreasing function of position, but the

slope would decrease as the voltage increasing. The density

of holes always is increasing function of voltage, but the

increase would slow down at high voltage.

4. Conclusion

In this paper, the organic semiconductors are treated as

non-degenerate based on recent experiment on validity of
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classical Einstein relationship. The expression of density of

holes is analytically derived by using the non-degenerate

Boltzmann statistics. The effective DOS shows variation

versus temperature different from the traditional inorganic

semiconductors, and is verified by analysis of experimental

data for single-crystal organic semiconductor conducted by

Krellner et al.

We then combine the mobility model of Pasveer et al. [25]
and the exponential model of Pai modified [24] by Pasveer

et al. to solve drift-diffusion equations to extract information

about the mobility and effective DOS. The numbers of

parameters needed to fit experimental J−V data for a single-

crystal organic diode are the same. The results show that

the mobility model of Pasveer et al. can not well fit the

experimental J−V data both at low and high voltages,

and some of the parameters extracted show inconsistent

temperature dependence which should be constants in the

theoretical framework of Pasveer et al.

Whereas the exponential model gives satisfactory fit for

experimental J−V data at all voltage ranges, and the

extracted parameters show correct temperature dependence.

The temperature dependence of effective DOS derived from

the non-degenerate Boltzmann statistics is verified. The

temperature dependence of parameters contained in the

exponential model of mobility can be well fitted by using

simple expressions proposed by Blom et al. Then the

distribution of potential, electric field and density of holes

are calculated as analyzed. These results are useful for

determination of the mechanism electric conductance in

organic semiconductors.
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