Влияние отжига на время жизни неравновесных носителей заряда в GaAs, выращенном при низкой температуре

© А.А. Пастор*, У.В. Прохорова*, П.Ю. Сердобинцев*≠, В.В. Чалдышев+¶, М.А. Яговкина+

* Санкт-Петербургский государственный университет,

198504 Старый Петергоф, Санкт-Петербург, Россия

[#]Санкт-Петербургский государственный политехнический университет,

195251 Санкт-Петербург, Россия

⁺ Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

(Получена 28 января 2013 г. Принята к печати 4 февраля 2013 г.)

Исследовались образцы GaAs, выращенные методом молекулярно-лучевой эпитаксии при низкой температуре (230°С). Часть образцов была дополнительно подвергнута послеростовому отжигу при 600°С. С помощью оригинальной схемы измерения динамического изменения коэффициента преломления света, основанной на методике накачки–зондирования (pump–probe), было определено время жизни неравновесных носителей заряда, которое до отжига оказалось равным (275 \pm 30) фс. Причиной весьма малого времени жизни в неотожженном материале является большая концентрация точечных дефектов, преимущественно антиструктурных дефектов As_{Ga}. Исследования рентгеновской дифракции и стационарного оптического поглощения показали, что в данных образцах концентрация As_{Ga} составляет $3 \cdot 10^{19}$ см⁻³, что соответствует избытку мышьяка 0.26 ат%. В процессе отжига при 600°С сверхстехиометрические дефекты As самоорганизуются и формируют нановключения As в кристаллической матрице GaAs. Показано, что при этом время жизни неравновесных носителей заряда увеличивается до (452 \pm 5) фс. Такое время жизни, по-видимому, преимущественно обеспечивается захватом неравновесных носителей заряда на металлические нановключения As.

1. Введение

Важнейшей особенностью арсенида галлия, выращенного методом молекулярно-лучевой эпитаксии (МЛЭ) при низкой температуре (LT-GaAs), является ультрамалое время жизни неравновесных носителей заряда (< 1 пс) [1], которое в совокупности с большим удельным электрическим сопротивлением и высоким кристаллическим совершенством делает этот материал привлекательным для большого круга приложений [2,3]. Причиной ультрамалого времени жизни носителей заряда является наличие в LT-GaAs большой концентрации избыточного мышьяка [2,4,5]. Непосредственно после низкотемпературной эпитаксии избыток мышьяка образуется в решетке GaAs в виде точечных антиструктурных дефектов (As_{Ga}) и приводит к появлению вакансий V_{Ga}. В процессе термообработки после эпитаксии избыточный мышьяк образует нановключения. При этом концентрация точечных дефектов быстро уменьшается [2,4,5]. Таким образом, в результате отжига изменяются как атомная структура материала, так и доминирующий механизм рекомбинации носителей заряда в LT-GaAs и соответственно их время жизни [2].

Хотя изучению влияния отжига на время жизни неравновесных носителей заряда посвящено весьма значительное число работ (см., например, [1,6–11]), предсказать сколько-нибудь достоверно результат этого влияния и величину времени жизни носителей заряда в конкретных образцах на основании информации об условиях роста и термообработки оказывается невозможным. Это связано с большим числом параметров, оказывающих влияние как на формирование микроструктуры материала, так и собственно на процессы миграции и захвата электронов и дырок на точечные дефекты и нановключения полуметалла As. В связи с этим возникает потребность в экспрессных измерениях времени жизни и его анализе.

В предшествующей работе [12] нами была разработана методика определения времени жизни носителей заряда, основанная на распространенном методе накачка-зондирование (pump-probe) и позволяющая определять времена жизни в актуальном диапазоне 200–1000 фс. В данной работе эта методика использована для определения времени жизни в слое LT-GaAs до и после отжига.

2. Образцы и методика эксперимента

Исследованные образцы были выращены методом МЛЭ при 230°С в установке "Riber" на подложках полуизолирующего GaAs. Один из образцов не подвергался отжигу (образец 1), другой был подвергнут отжигу при 600°С в течение 15 мин непосредственно в ростовой камере установки МЛЭ (образец 2).

Рентгенодифракционные исследования проводились на установке Bruker Discover D8 в двухкристальной конфигурации. Анализ спектров проводился в программном пакете LEPTOS.

Стационарные спектры оптического пропускания образцов измерялись в диапазоне длин волн 900-1200 нм,

[¶] E-mail: chald.gvg@mail.ioffe.ru

соответствующем области прозрачности стехиометрического GaAs. В качестве источника света использовалась стабилизированная лампа накаливания с вольфрамовой спиралью. Спектр записывался с помощью спектрометра КСВУ-23 и фотоприемника "Hamamatsu" на основе InGaAs.

Нестационарные спектры оптического отражения измерялись по методике, описанной в работе [12], следующим образом. В образцах LT-GaAs создавались неравновесные свободные носители заряда с помощью излучения фемтосекундной лазерной установки "Пульсар-10" на длине волны 800 нм. Два пучка (импульс накачки и зондирующий пробный импульс с интенсивностью, меньшей в 100 раз) сводились на образце GaAs, пересекаясь под небольшим углом так, что их волновые поверхности встречаются на поверхности образца только на одной прямой, а в других местах (в зависимости от задержки) запаздывает либо накачка, либо пробный импульс. Для получения максимальной чувствительности отражение пробного импульса регистрировалось для *р*-поляризованного света вблизи угла Брюстера. Для регистрации сигнала использовалась CCD-камера, объектив которой был сфокусирован на поверхности образца. Регистрируемое ССД-камерой распределение интенсивности излучения по поверхности образца соответствовало различным задержкам пробного импульса по отношению к импульсу накачки. В работе было проделано несколько серий экспериментов с различными временными задержками между накачивающим и зондирующим импульсами. С помощью вычитания двух регистрограмм, соответствующих разным задержкам, получались разностные изображения, позволяющие определить время релаксации наведенного коэффициента отражения.

3. Результаты эксперимента

На рис. 1 представлены рентгеновские дифракционные кривые для образцов 1 и 2 вблизи рефлекса (004). Дифракционная кривая для образца 1 имеет два пика, один из которых соответствует дифракции рентгеновских лучей в подложке полуизолирующего GaAs, а второй — дифракции в слое неотожженного LT-GaAs. Изменение межплоскостного расстояния в неотожженном LT-GaAs по сравнению с обычным арсенидом галлия обусловлено наличием антиструктурных дефектов As_{Ga}, концентрация которых может быть определена с помощью калибровки [13]. В образце 1 эта концентрация оказалась равной $(3.0 \pm 0.1) \cdot 10^{19}$ см⁻³.

Как видно из рис. 1, рентгеновская дифракционная кривая для образца 2 имеет только один пик, соответствующий обычному нелегированному арсениду галлия. Наблюдаемое изменение параметра решетки LT-GaAs после отжига связано с практически полным исчезновением точечных дефектов As_{Ga} и образованием

Рис. 1. Рентгеновские дифракционные кривые вблизи брэгговского рефлекса (004) для образцов 1 (сплошная линия) и 2 (штриховая линия). Кривая 2 смещена вверх по оси ординат. Стрелками отмечены дифракционные пики для стехиометрической подложки GaAs и неотожженного слоя LT-GaAs, содержащего избыточный мышьяк.

Рис. 2. Спектр дополнительного стационарного оптического поглощения в образце 1 по отношению к образцу 2 при 300 К. *α* — коэффициент поглощения, *d* — толщина.

наноразмерных включений As в стехиометрической кристаллической матрице GaAs [2,4,5].

Наличие антиструктурных дефектов As_{Ga} в неотожженном LT-GaAs вызывает существенное поглощение света в области энергий фотонов ниже порога фундаментального поглощения полупроводника GaAs $(h\nu < 1.42$ эВ) [14]. После отжига это дополнительное поглощение исчезает [15]. На рис. 2 представлены спектры дополнительного поглощения в неотожженном образце 1 по сравнению с отожженным образцом 2. По величине этого дополнительного поглощения можно вычислить концентрацию антиструктурных дефектов [14], которая в образце 1 оказалась равной $(2.9 \pm 0.1) \cdot 10^{19}$ см⁻³. Результаты измерения нелинейного оптического отражения для образца 1 представлены на рис. 3. На рис. 3, *а* приведено изображение, представляющее собой результат вычитания двух регистрограмм, разделенных временным интервалом задержки пробного импульса в 667 фс (что соответствует линии задержки 200 мкм). На рис. 3, *b* показана соответствующая зависимость уровня засветки пикселей ССD-камеры (уровня серого) от положения пикселя, соответствующая одному из сечений изображения. Кривая характеризует зависимость коэффициента отражения от времени в относительных единицах, время *t* на графике увеличивается справа налево, сдвиг на один пиксел соответствует 8.9 фс.

Аналогичным способом был исследован образец 2. Результат вычитания регистрограмм и соответствующая зависимость уровня засветки от положения пикселя в относительных единицах представлены на рис. 4, *a*, *b* соответственно.

Область спада интенсивности на рис. 3, *b* и 4, *b* можно аппроксимировать экспонентой вида $y = y_0 + A \exp[(x - x_0)/t]$. Соответствующие подгоночные кривые показаны на рис. 3, *b* и 4, *b* плавными сплошными линиями. Подгонка позволила нам определить характерное время *t*, которое определяет время релаксации

Рис. 3. *а* — результат вычитания регистрограмм пробных импульсов, разделенных временны́м промежутком 667 фс. *b* — зависимость уровня засветки на разностной регистрограмме от положения пикселя, 1 пиксел соответствует 8.9 фс; плавная сплошная линия — экспоненциальная аппроксимация. Образец 1.

Рис. 4. *а* — результат вычитания регистрограмм пробных импульсов, разделенных временным промежутком 667 фс. *b* — зависимость уровня засветки на разностной регистрограмме от положения пикселя, 1 пиксел соответствует 8.9 фс; плавная сплошная линия — экспоненциальная аппроксимация. Образец 2.

свободных носителей заряда в исследуемом образце [12]. Осуществив обработку экспериментальных данных, приведя их к среднему значению и посчитав погрешность, мы получили для образца 1 значение времени релаксации $\tau = (275 \pm 30) \, \varphic$, а для образца 2 $\tau = (452 \pm 5) \, \varphic$.

4. Обсуждение результатов

Причиной наблюдаемого малого времени жизни в LT-GaAs, не подвергнутом отжигу после роста, является избыток мышьяка, который захватывается в эпитаксиальный слой, растущий при низкой температуре, преимущественно в форме антиструктурных дефектов As_{Ga} [4,5]. Измерения концентрации этих дефектов, проведенные нами для образца 1 двумя независимыми методами, дали практически одинаковое значение $3 \cdot 10^{19}$ см⁻³, соответствующее избытку мышьяка $0.26 \, at^{-3}$. Причиной малого времени релаксации электронов являются заряженные центры $(As_{Ga})^+$, возникающие из-за компенсации глубоких доноров акцепторами [10]. В случае,

если материал не легировался, собственными акцепторами являются троекратно заряженные вакансии галлия $(V_{\rm Ga})^{3-}$. Заряженные вакансии галлия при этом достаточно эффективно захватывают неравновесные дырки, обеспечивая малое время релаксации для этих квазичастиц [10]. Окончательная релаксация возбуждения происходит путем донорно-акцепторной рекомбинации.

Исследованные нами образцы мелкими примесями специально не легировались. В этом случае степень компенсации может быть от 1 до 10% и число активных центров рекомбинации (As_{Ga})⁺ может составлять $(0.3-3) \cdot 10^{18} \text{ cm}^{-3}$. В соответствии с расчетом в кинетической модели Шокли-Рида-Холла [7], включающей глубокие доноры As_{Ga} и компенсирующие глубокие акцепторы V_{Ga}, измеренному нами времени жизни (275 ± 30) фс соответствует концентрация (As_{Ga})⁺ около $2 \cdot 10^{18} \, \text{см}^{-3}$. В расчете [7] сечения захвата электронов и дырок были приняты равными $\sigma_e = 6 \cdot 10^{-15} \, \mathrm{cm}^2$ и $\sigma_p = 1 \cdot 10^{-16} \text{ см}^2$. Следует отметить, что время релаксации дырок заметно больше, чем электронов. Однако в силу меньшей эффективной массы неравновесные электроны существенно больше влияют на оптические свойства среды на длине волны 800 нм, использованной нами в измерениях.

В результате отжига концентрация точечных дефектов, связанных с избытком мышьяка, значительно уменьшается. На кривых рентгеновской дифракции (рис. 1) для образца 2 наблюдается только один пик, соответствующий параметру решетки стехиометрического GaAs. Исчезает также характеристическое оптическое поглощение в инфракрасном диапазоне. Значительное (на порядки) уменьшение концентрации точечных дефетов, однако, сопровождается увеличением времени жизни неравновесных носителей заряда менее чем в 2 раза. Этот факт свидетельствует о смене основного механизма рекомбинации. Вероятным механизмом рекомбинации в отожженном LT-GaAs является захват как электронов, так и дырок на нановключения полуметалла As.

Теория баллистического захвата носителей на такие нановключения в предположении о большой скорости рекомбинации на поверхности или внутри них была построена в работе [16]. Для системы нановключений радиусом a, находящихся на расстоянии R друг от друга, время жизни носителей можно оценить как $\tau = R^3/3Da$, где *D* — коэффициент диффузии носителей заряда. В работе [8] была сделана экспериментальная оценка: $D = 43 \,\mathrm{cm}^2/\mathrm{B} \cdot \mathrm{c}$. В образце 2, выращенном при 230°C и отожженном при 600°С, средний радиус нановключений As и концентрацию нановключений можно оценить на основании данных электронной микроскопии, приведенных в [4,5] для образцов, выращенных и термообработанных по схожим технологиям. Принимая, что средний радиус a = 2.5 нм и концентрация нановключений $N_{\rm inc} = 1.5 \cdot 10^{16}$ см⁻³, с приведенным выше значением *D* получаем расчетное время жизни $\tau = 456 \, \mathrm{фc}$, что очень близко к экспериментально измеренному образца 2 значению для $\tau = (452 \pm 5) \, \phi c.$

5. Заключение

Нами экспериментально измерены времена жизни неравновесных носителей заряда в арсениде галлия, выращенном методом МЛЭ при 230°С, оказавшиеся равными (275 ± 30) фс в образце 1, не подвергавшемся дополнительным термообработкам, и $(452 \pm 5) \, \phi c$ в образце 2, подвергнутом после выращивания отжигу при 600°С в течение 15 мин. Анализ возможных механизмов релаксации и рекомбинации неравновесных носителей заряда, проведенный на основе структурных исследований образцов, показал, что время жизни носителей в неотожженных образцах LT-GaAs определяется их захватом на заряженные точечные дефекты, связанные с избытком мышьяка, основными из которых являются глубокие доноры (As_{Ga})⁺ и глубокие акцепторы $(V_{\text{Ga}})^{3-}$. При отжиге LT-GaAs концентрация точечных дефектов значительно уменьшается и основным механизмом рекомбинации неравновесных носителей заряда, по-видимому, становится их захват в металлические нановключения.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 11-02-00973а) и при финансовой поддержке Министерства образования и науки России с использованием оборудования ЦКП "Аналитический центр нано- и биотехнологий ГОУ СПбГПУ" на базе ФГБОУ ВПО "СПбГПУ" и регионального ЦКП "Материаловедение и диагностика в передовых технологиях". Авторы благодарны А.Е. Жукову за образцы LT-GaAs.

Список литературы

- S. Gupta, M.Y. Frankel, J.A. Valdmanis, J.F. Whittaker, G.A. Mourou, F.W. Smith, A.R. Calawa. Appl. Phys. Lett., 59, 3276 (1991).
- [2] M.R. Melloch, J.M. Woodall, E.S. Harmon, N. Otsuka, F.H. Pollak, D.D. Nolte, R.M. Feenstra, M.A. Lutz. Ann. Rev. Mater. Sci., 25, 547 (1995).
- [3] В.В. Чалдышев, М.А. Путято, Б.Р. Семягин, В.В. Преображенский, О.П. Пчеляков, А.В. Хан, В.Г. Канаев, Л.С. Широкова, А.В. Голиков, В.А. Кагадей, Ю.В. Лиленко, Н.В. Карпович. Электронная промышленность, вып. 1–2, 154 (1998).
- [4] Н.А. Берт, А.И. Вейнгер, М.Д. Вилисова, С.И. Голощапов, И.В. Ивонин, С.В. Козырев, А.Е. Куницын, Л.Г. Лаврентьева, Д.И. Лубышев, В.В. Преображенский, Б.Р. Семягин, В.В. Третьяков, В.В. Чалдышев, М.П. Якубеня. ФТТ, 35, 2609 (1993).
- [5] Л.Г. Лаврентьева, М.Д. Вилисова, В.В. Преображенский, В.В. Чалдышев. В кн: Нанотехнологии в полупроводниковой электронике, под ред. А.Л. Асеева (Изд-во СОРАН, Новосибирск, 2004).
- [6] E.S. Harmon, M.R. Melloch, J.M. Woodall, D.D. Nolte, N. Otsuka, C.L. Chang. Appl. Phys. Lett., 63, 2248 (1993).
- [7] M. Stellmacher, J. Nagle, J.F. Lampin, P. Santoro, J. Vaneecloo, A. Alexandrou. J. Appl. Phys., 88 (10), 6026 (2000).

- [8] P.A. Loukakos, C. Kalpouzos, I.E. Perakis, Z. Hatzopoulos, M. Sfendourakis, G. Kostantinidis, C. Fotakis. J. Appl. Phys., 91, 9863 (2002).
- [9] M. Haiml, U. Siegner, F. Morier-Genoud, U. Keller, M. Luysberg, P. Specht, E.R. Weber. Appl. Phys. Lett., 74, 1269 (1999).
- [10] A.J. Lochtefeld, M.R. Melloch, J.C.P. Chang, E.S. Harmon. Appl. Phys. Lett., 69, 1465 (1996).
- [11] U. Siegner, R. Fluck, G. Zhang, U. Keller. Appl. Phys. Lett., 69, 2566 (1996).
- [12] А.А. Пастор, П.Ю. Сердобинцев, В.В. Чалдышев. ФТП, 46 (5), 637 (2012).
- X. Liu, A. Prasad, J. Nishio, E.R. Weber, Z. Liliental-Weber, W. Walukievich. Appl. Phys. Lett., 67 (2), 279 (1995).
- [14] G.M. Martin. Appl. Phys. Lett., 39, 747 (1981).
- [15] П.В. Лукин, В.В. Чалдышев, В.В. Преображенский, М.А. Путято, Б.Р. Семягин. ФТП, 46, 1314 (2012).
- [16] H. Ruda, A. Shik. Phys. Rev. B, 63, 085203 (2001).

Редактор Л.В. Шаронова

Effect of annealing on the lifetime of the non-equilibrium charge carriers in GaAs grown at low temperature

A.A. Pastor*, U.V. Prokhorova*, P.Yu. Serdobintsev*≠, V.V. Chaldyshev⁺, M.A. Yagovkina⁺

* St. Petersburg State University,
198504 St. Petersburg, Russia
≠ St. Petersburg State Polytechnical University,
195251 St. Petersburg, Russia
+ loffe Physicotechnical Institute,
Russian Academy of Sciences,
194021 St. Petersburg, Russia

Abstract Studied were GaAs samples grown by molecular-beam epitaxy at low temperature (230°C). A part of the samples was additionally subjected to a post-growth annealing at 600°C. Using an original technique for measurements of dynamic changes in the light refraction coefficient, which was based on the pump-probe method, we determined the lifetime of the non-equilibrium charge carriers. Before the annealing it appeared to be (275 ± 30) fs. The reason for the quite a short lifetime in the unannealed material is a high concentration of point defects, mostly antisite defects As_{Ga}. Study of the x-ray diffraction and stationary optical absorption in the samples showed the As_{Ga} concentration to be $3 \cdot 10^{19} \text{ cm}^{-3}$, that corresponds to the As excess of 0.26 at%. During the annealing at 600°C the superstoichiometric As defects get self-organizing and form As nanoinclusions in the crystalline GaAs matrix. Our study showed that it is accompanied by an increase in the lifetime of the non-equilibrium charge carriers to (452 ± 5) fs. Such lifetime seems to be provided via the capture of the non-equilibrium charge carriers by the metallic As nanoinclusions.