Синтез и характеризация наноструктурированных слоев оксида цинка для сенсорики

© Л.К. Крастева, Д.Ц. Димитров, К.И. Папазова, Н.К. Николаев, Т.В. Пешкова, В.А. Мошников*, И.Е. Грачева*[¶], С.С. Карпова*, Н.В. Канева

Софийский университет,

1164 София, Болгария

* Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина), 197376 Санкт-Петербург, Россия

(Получена 17 июля 2012 г. Принята к печати 25 июля 2012 г.)

Созданы фрактальные структуры и массивы нанопроволок на основе оксида цинка методом золь-гель, а также с помощью комбинации золь-гель синтеза и метода химического осаждения из раствора. Проанализированы газочувствительные свойства полученных структур. Выявлено, что наилучшей чувствительностью к восстанавливающим парам этанола обладает структура, нижний слой которой представляет собой массив нанопроволок оксида цинка, модифицированный путем четырех погружений в раствор нитрата меди.

1. Введение

В настоящее время металлооксидные полупроводниковые пленки широко используются в качестве газочувствительных слоев в адсорбционных сенсорах. Оксид цинка — один из наиболее востребованных материалов для таких сенсоров. Это связано с прямозонной энергетической структурой, большой шириной запрещенной зоны, *n*-типом проводимости и большой энергией связи экситонов при комнатной температуре [1,2].

Тонкие слои оксида цинка создаются с помощью как физических, так и химических методов (парофазное химическое осаждение [3,4], импульсная лазерная абляция [5], электроосаждение [6] и термическое испарение [7]).В последние годы особый интерес проявляется в получении иерархических структур, построенных на наноэлементах (наночастицы [8,9], нанопроволок [10,11], наностержней [12,13], нановолокон [14,15], нанолент [16], наноспиралей и нанопружин [17]).

Такие иерархические структуры по сравнению с коммерчески доступными сенсорами [8] обладают явными преимуществами: принципиально возможным повышением селективности и низким потреблением мощности.

Однако чувствительность материалов на основе ZnO, особенно к химически стабильным газам (CH₄, H₂, CO и др.), остается сравнительно низкой. Для улучшения газочувствительности модифицируют свойства поверхности, изменяя энергетику поверхностных состояний, а также соотношение концентраций бренстедовских и льюисовских центров. Это может быть достигнуто путем энергетических воздействий, легирования или модификации процесса изготовления.

В данной работе модификация свойств осуществлялась сочетанием процессов легирования и синтеза.

Легирование является эффективным способом улучшения свойств полупроводников. Определено, что алюминий, медь и галлий являются наиболее подходящими добавками для легирования тонких пленок оксида цинка *n*-типа электропроводности [18]. При этом легирующие добавки меди [19,20] и галлия [21,22] являются наиболее эффективными. Медь обычно проявляет акцепторные свойства [23,24], в то время как галлий, легирующая добавка *n*-типа, является донором [25,26], что позволяет управлять газочувствительностью ZnO, изменяя объемные свойства материала. Вследствие этого многие исследователи изучают сенсорные свойства структур, легированных Cu и Ga.

В работе [27] был рассмотрен синтез нановолокон ZnO, легированных Cu, и влияние легирования Cu на сенсорные свойства к H₂S. Природа селективной чувствительности подробно изучалась в [28]. Также известно, что совместное распыление Cu и ZnO приводит к повышению чувствительности к CO. В работе [29] описаны наноразмерные порошки ZnO, легированные медью, синтезированные в метаноле и используемые в форме таблеток для исследования газочувствительных свойств к H₂, CO и сжиженным углеводородным газам (СУГ). В последнее время сообщалось о газовых сенсорах на этанол на основе нанопроволок ZnO, выращенных с помощью темплата ZnO : Ga/стекло [22] и на основе нанопроволок с адсорбированным Pd на поверхности темплата ZnO : Ga/SiO₂/Si [30].

Нанотехнологии формирования газочувствительных слоев в золь-гель процессах широко применяются на практике [31–34]. Примером использования золь-гель метода для получения ZnO является работа [35]. Для газочувствительных сенсоров нового поколения [36,37] большой интерес представляют технологические приемы получения нанокомпозитных слоев с большой площадью поверхности [38,39].

Целью данной работы являлось создание наноструктур оксида цинка на основе фрактальных структур и нанопроволок для увеличения площади поверхности образцов и диагностика газочувствительных свойств полученных структур.

[¶] E-mail: iegrachova@mail.ru

2. Методика эксперимента

В трехгорлую колбу добавляли 10 г ацетата цинка $Zn(CH_3COO)_2 \cdot 2H_2O$, 20 г 2-метоксиэтанола $CH_3OCH_2CH_2OH$ и 3.2 г 2-аминоэтанола $H_2NCH_2CH_2OH$, перемешивали в течение 15 мин, затем нагревали до температуры 60°С в течение часа. Приготовленные золи после выдержки в течение суток наносили на поверхность стеклянных и керамических подложек методом погружения, а затем сушили при температуре 80°С.

Операцию погружения после сушки образцов повторяли несколько раз. Отжиг пленочных структур проводили в атмосфере воздуха при температуре 500°С. Пленки оксида цинка, легированные медью и галлием (1.3 и 5 ат%) получали тем же методом с использованием гидроацетата меди $Cu_2(CH_3COO)_4 \cdot 4H_2O$ и хлорида галлия GaCl₃ соответственно.

Сформированная газочувствительная структура состояла из серии слоев оксида цинка, поверх которой наносились слои оксида цинка, легированные медью (ZnO/ZnO: Cu) или галлием (ZnO/ZnO: Ga). Другой особенностью технологии являлось погружение на различную глубину при формировании нелегированных и легированных слоев. Легированные слои покрывали нелегированную нижнюю часть структуры. Область перекрытия верхнего и нижнего слоев составляла порядка 80 мм² для всех образцов.

Метод нанесения наностержней оксида цинка на подложки состоял из двух стадий: осаждение зародышей и рост наностержней. Осаждение зародышей проводили из раствора на основе ацетата цинка (концентрация 5 ммоль/л) методом центрифугирования в течение 10 с со скоростью 900 об/мин и в течение 20 с со скоростью 2200 об/мин с последующей сушкой на воздухе. Данная операция повторялась 5 раз. Затем подложки промывали, сушили и отжигали при температуре 320°C в течение 20 мин. Весь процесс осаждения зародышей на подложках повторяли 2 раза, затем подложки с нанесенными зародышами промывали дистиллированной водой и сушили на воздухе.

Следующим этапом было выращивание наностержней оксида цинка путем выдерживания подложек в растворе, прекурсорами для которого были выбраны азотнокислый цинк $Zn(NO_3)_2 \cdot 6H_2O$ (концентрация 25 ммоль/л) и метенамин $C_6H_{12}N_4$ (концентрация 25 ммоль/л), в течение 3 ч при температуре 87° С. Затем подложки промывали дистиллированной водой и помещали в свежеприготовленный раствор. Операция выращивания повторялась 8 раз. Далее образцы промывали в ацетоне и дистиллированной воде и сушили на воздухе.

Два перекрывающихся массива нанопроволок оксида цинка и нанопроволок оксида цинка, легированных оксидом меди, получали методом погружения подложек с нанопроволоками оксида цинка на 2/3 длины в раствор на основе азотнокислой меди $Cu(NO_3)_2 \cdot 3H_2O$ (концентрация 10 ммоль/л.) После этого образцы сушили при температуре 75°C в течение 10 мин в атмосфере воздуха, операцию погружения повторяли 2, 4 или 6 раз,

чтобы получить модифицированные слои с различной концентрацией CuO. Отжиг образцов проводили при температуре 300°С в течение 10 мин.

Исследования полученных образцов проводили методами растровой электронной микроскопии (РЭМ) (JSM-5510 (JEOL)); рентгеновской дифрактометрии (РДА) (Siemens D500); атомно-силовой микроскопии (АСМ) (Multimode (Veeco)); энергодисперсионной рентгеновской спектроскопии (ЭДРС) (Philips SEM 525M с анализатором EDAX 9900).

Газочувствительные свойства тонких пленок исследовали с помощью специально созданной экспериментальной установки [40]. Измерения газочувствительности были проведены в диапазоне температур от 190 до 350°С с использованием восстанавливающих паров этанола, подававшихся в измерительную ячейку с потоком воздуха.

3. Экспериментальные результаты

3.1. Электронная микроскопия

Выявлено, что полученные методом золь-гель структуры оксида цинка с толщиной порядка 1 мкм, полученные на стеклянных подложках, характеризуются достаточно равномерным распределением нанообъектов по поверхности. При этом наноструктуры имеют фрактальный вид и состоят из возвышающихся консолидированных и соединяющихся между собой под разными углами ветвей с диаметром около 900 нм (рис. 1).

Строение легированных ветвей верхнего слоя ZnO: Cu характеризуется наличием коротких отростков диаметром 300 нм. По сравнению с нелегированными образцами оксида цинка ветви структуры ZnO/ZnO: Cu имеют большую длину и меньший диаметр. Результаты по измерению характерных размеров фрактальных структур сведены в табл. 1. По сравнению с нелегированными образцами оксида цинка ветви структуры

Рис. 1. Изображение пленочной структуры, полученной методом золь-гель на стеклянной подложке с помощью 5 погружений в раствор на основе $Zn(CH_3COO)_2 \cdot 2H_2O$.

Размер возвышений	Стеклянные подложки			Керамические подложки		
	ZnO	ZnO/ZnO : Cu	ZnO/ZnO : Ga	ZnO/ZnO : Cu	ZnO/ZnO : Ga	
Диаметр, мкм	0.8 - 1.2	0.32 - 0.96	0.85 - 3.4	0.5 - 1.6	1.4-2.7	
Длина, мкм	9.5 - 19	8 - 24	5-17	13.5 - 40.5	13.5-33.6	
Метод расчета	Значение фрактальной размерности					
Вариационный метод	2.73	2.73	2.70	2.78	2.72	
Метод подсчета кубов	2.59	2.56	2.55	2.62	2.48	
Метод триангуляции	2.64	2.65	2.61	2.66	2.59	
Метод спектра мощности	2.33	2.32	2.32	2.44	2.31	

Таблица 1. Размер наблюдаемых нанообъектов различных пленок, нанесенных на стеклянные и керамические подложки, и результаты расчета фрактальной размерности

ZnO/ZnO: Ga имеют меньшую длину и больший диаметр (см. табл. 1).

Чтобы охарактеризовать поверхность образцов, в работе была сделана попытка сравнить результаты фрактального анализа поверхностей наноструктур с использованием растровой электронной микроскопии с помощью программы Gwyddion. При этом предполагалось, что размеры высот нанообъектов равны размеру диаметра ветки. Для оценочных расчетов использовали вариационный метод (декомпозиция), метод подсчета кубов, метод триангуляции и метод спектра мощности. Результаты по расчету фрактальной размерности Хаусдорфа–Безиковича образцов сведены в табл. 1.

Установлено, что значения фрактальной размерности больше для пленочных образцов оксида цинка, легированных медью, чем для структур оксида цинка, легированных галлием.

Обнаружено, что тонкие пленки оксида цинка имеют лучшую адгезию к керамическим подложкам, чем к стеклянным.

На рис. 2 приведено изображение нанопроводов структуры ZnO/ZnO : CuO, нанесенной на керамическую под-

Рис. 2. Изображение массива нанопроволок оксида цинка, выращенных на керамической подложке. На вставке — поперечное сечение образца.

Рис. 3. Изображение структуры нанопроводов ZnO/ZnO : CuO, модифицированной с помощью 4 погружений в раствор нитрата меди.

ложку методом химического осаждения (на вставке к рис. 2 — поперечное сечение образца). В результате синтеза образуется плотный и упорядоченный массив вертикальных нанопроводов оксида цинка диаметром от 200 до 300 нм и толщиной ~ 3 мкм.

На рис. 3 представлено изображение структуры нанопроводов ZnO/ZnO : CuO. Структура была сформирована путем 4 погружений в раствор нитрата меди со слабо выраженной кислотностью (~ 6).

Такое строение структуры находится в согласии с модельными представлениями о частичном растворении оксида цинка с последующей перекристаллизацией. Это проявляется в образовании островковых фигур в виде цветов. Следует отметить, что концентрация островковых фигур возрастает при увеличении числа погружений в раствор.

3.2. Рентгеновская дифрактометрия

По результатам рентгеновской дифрактометрии сенсорных пленочных структур, полученных методом золь-

Образец	Химический элемент	Содержание элемента, масс%	Содержание элемента, ат%	Содержание оксидов, масс%
Нанопроволоки ZnO : CuO 2 погружения	Cu Zn O	0.19-0.42 80.00-80.18 19.58-19.62	$\begin{array}{c} 0.12 {-} 0.27 \\ 49.86 {-} 49.94 \\ 49.86 {-} 49.94 \end{array}$	0.19-0.42 99.58-99.81 -
Нанопроволоки ZnO : CuO, 4 погружения	Cu Zn O	0.48 - 0.65 79.82 - 79.95 19.54 - 19.57	0.31 - 0.42 49.79 - 49.85 49.79 - 49.85	0.48-0.65 99.35-99.52 -
Нанопроволоки ZnO : CuO, 6 погружений	Cu Zn O	0.96-1.22 79.36-79.57 19.42-19.47	0.62 - 0.78 49.61 - 49.69 49.61 - 49.69	0.96-1.22 98.78-99.04

Таблица 2. Распределение химических элементов на поверхности нанопроволок оксида цинка, модифицированных разным числом погружений в раствор нитрата меди

гель, а также химическим осаждением с последующим модифицированием методом золь-гель, установлено образование кристаллической фазы оксида цинка со структурой вюрцита. Все дифракционные пики соответствовали гексагональной структуре минерала цинкита в соответствии с международной рентгенометрической картотекой JCPDS-ASTM (No 80-0075). Для тонких пленок на основе оксида цинка, полученных золь-гель методом и легированных медью и галлием (1,3 и 5 ат%), на рентгенограммах не было обнаружено дополнительных рефлексов от фаз меди и галлия, их оксидов, простых и двойных оксидов цинка.

6 погружений

Для нанопроволок оксида цинка, созданных методом химического осаждения на керамических и стеклянных подложках, на рентгенограммах наблюдался резко выраженный дифракционный пик, соответствующий кристаллографической плоскости (002), что подтверждает ориентацию нанопроволок оксида цинка вдоль оси Z.

Для структуры ZnO/ZnO: CuO, полученной с помощью 6 погружений в раствор нитрата меди, дополнительных рефлексов, соответствующих фазам меди и соединений меди, также не было обнаружено.

Рентгеноспектральный микроанализ 3.3. (энергодисперсионная рентгеновская спектроскопия)

Наличие фаз, содержащих легирующую примесь в пределах концентрации ниже чувствительности метода рентгеновской дифракции, было установлено методом энергодисперсионной рентгеновской спектроскопии. Установлено, что осаждение оксида меди происходит между нанопроволоками оксида цинка, а фигуры в виде цветов состоят из оксида цинка.

Результаты количественного рентгеноспектрального микроанализа образцов, сформированных при различном количестве погружений, представлены в табл. 2. При этом приведены усредненные значения концентрации Cu, Zn и O как в массовых, так и в атомных процентах. В последнем столбце вместо элементного

состава приведены данные в пересчете на содержание оксидных фаз.

Установлено, что результаты расчета удовлетворительно согласуются с предположением о существовании меди только в оксидной форме. Из таблицы следует, что с увеличением количества погружений в раствор нитрата меди происходит увеличение поверхностной концентрации оксида меди.

3.4. Электрофизические измерения

В работе изучалась температурная зависимость контактной разности потенциалов структуры нанопроволок ZnO/ZnO: CuO на воздухе и при воздействии паров этанола. Установлено, что увеличение от 4 до 6 числа погружений структур нанопроволок в раствор нитрата меди приводит к увеличению значений разности потенциалов между нанопроводами оксида цинка и модифицированными оксидом меди нанопроводами оксида цинка. Причиной данного явления является то, что при увеличении числа погружений определенное количество оксида цинка растворяется и перекристаллизовывается в форме островковых фигур в виде цветов. Условия кристаллизации для сформированных фигур далеки от равновесных, поэтому они содержат больше дефектов, изменяющих значение коэффициента Зеебека.

В случае структуры ZnO/ZnO: CuO, полученной с помощью 4 погружений в раствор нитрата меди, при увеличении температуры значение разности потенциалов в воздухе возрастало нелинейно, в то время как в случае 6 погружений — линейно.

Изменение коэффициента термоэдс, как было показано в [41,42], может быть связано с ионосорбцией кислорода.

Выявлено, что при воздействии паров этанола контактная разность потенциалов увеличивается.

Величина чувствительности к восстанавливающим парам этанола рассчитывалась как $S = U_e/U_a$, где U_e контактная разность потенциалов в присутствии паров этанола, U_a — контактная разность потенциалов в атмосфере воздуха. На рис. 4 представлена температурная

Рис. 4. Температурные зависимости чувствительности структуры ZnO/ZnO : CuO: *1* — 2 погружения, *2* — 6 погружений в раствор нитрата меди.

Рис. 5. Зависимости контактной разности потенциалов для структур ZnO/ZnO: CuO, полученных с помощью 4 погружений в раствор нитрата меди (кривая 2), и структур ZnO/ZnO: Cu, полученных по золь-гель технологии, верхние слои которых получены с помощью 3 погружений в золь, содержащий 3 ат% Cu (кривая 1) при температуре детектирования 270° C.

зависимость чувствительности к парам этанола (концентрация 1000 ppm). Обнаружено, что чувствительность наноструктур ZnO/ZnO: CuO, полученных с помощью 4 погружений в раствор нитрата меди, значительно больше, чем в случае 6 погружений в раствор. Такой ход зависимости показывает, что электрофизические свойства в существенной мере определяются концентрацией оксида меди, имеющего *p*-тип проводимости.

На рис. 5 представлена нелинейная (в соответствии с уравнением Нернста [43]) возрастающая зависимость контактной разности потенциалов для структур ZnO/ZnO: CuO, полученных с помощью 4 погружений в раствор нитрата меди (кривая 2), и структур ZnO/ZnO: Cu, верхние слои которых получены с помощью 3 погружений в золь, содержащий 3 ат% Cu (кривая I), от концентрации (c) паров этанола в диапазоне от 0 до 4500 ppm при температуре детектирования 270°C.

Полученные экспериментальные данные свидетельствуют о сложном характере изменений энергетики адсорбционных центров. Представляется перспективным применение индикаторных методов для оценки кислотно-основных свойств поверхности, а конкретно исследование характера изменений соотношения концентраций бренстедовских и льюисовских центров.

4. Заключение

Результаты исследований сенсорных пленочных структур, полученных методом золь-гель и химическим осаждением с последующим модифицированием методом золь-гель свидетельствуют о формировании фазы оксида цинка с кристаллической структурой типа вюрцита. Выявлено, что наилучшей чувствительностью к восстанавливающим парам этанола обладает структура ZnO/ZnO : CuO, нижний слой которой, представляющий собой массив нанопроволок оксида цинка, перекрывается с нанопроволоками, модифицированными оксидом меди с помощью 4 погружений в раствор нитрата меди. Выявлено, что изменение концентрации оксида меди на нанопроволоках оксида цинка сильно влияет на функциональные электрофизические свойства сенсорных структур. Показано, что контактная разность потенциалов возрастает нелинейно с увеличением концентрации этанола, что может быть использовано для создания сенсоров для детектирования бактерий в воздухе.

Авторы из Болгарии выражают благодарность проекту "FP7 Beyongd Everest", а также "DO02-207" Национального научного фонда Болгарии (NSFB), проектам "COST D43 Action of EC" и "UNION DO02-82 of NSFB". Авторы благодарны также менеджеру по продажам СегатТес AG (95615 Марктредвиц, Германия) Г. Вагнеру за бесплатное предоставление подложек Rubalit[®] 710 для наших исследований. Все авторы Софийского университета выражают свою глубокую благодарность и признательность покойному доктору С.Д. Душкину за создание исследовательской лаборатории, огромный энтузиазм и поддержку во время проведения исследований.

Работа российских ученых проводилась в рамках ФЦП "Научные и научно-педагогические кадры инновационной России" на 2009–2013 годы при выполнении государственного контракта П1249 от 07.06.2010.

Список литературы

- [1] C.M. Lieber. Sol. St. Commun., 107, 607 (1998).
- [2] C. Jagadish, S. J. Pearton (eds). Zink Oxide Bulk, Thin Films and Nanostructures (Amsterdam, Elsevier, 2006).

- [3] M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang. Adv. Mater., 13, 113 (2001).
- [4] S. Ghosh, M. Saurav, B. Pandey, P. Srivastava. J. Nanosci. Nanotechnol., 8, 2655 (2008).
- [5] Y. Wu, R. Fan, P. Yang. Nano Lett., 2, 83 (2002).
- [6] M. Izaki, T. Omi. J. Electrochem. Soc., 144, 1949 (1997).
- [7] Z.W. Pan, Z.R. Dai, Z.L. Wang. Science, 291, 1947 (2001).
- [8] C. Ge, C. Xie, S. Cai. Mater. Sci. Eng. B, 137, 53 (2007).
- [9] H. Tang, Y. Li, C. Zheng, J. Ye, X. Hou, Y. Lv. Talanta, 72, 1593 (2007).
- [10] C.L. Zhu, Y.J. Chen, R.X. Wang, L.J. Wang, M.S. Cao, X.L. Shi. Sensors Actuators B, 140, 185 (2009).
- [11] Y. Lv, L. Guo, H. Xu, X. Chu. Physica E, 36,102 (2007).
- [12] L. Goris, R. Noriega, M. Donovan, J. Jokisaari, G. Kusinski, A. Salleo. J. Electronic Mater., 38, 586 (2009).
- [13] C. Wu, L. Shen, H. Yu, Y.-C. Zhang, Q. Huang. Mater. Lett., 74, 236 (2012).
- [14] X. Song, L. Liu. Sensors Actuators A, 154, 175 (2009).
- [15] X. Song, Z. Wang, Y. Liu, C. Wang, L. Li. Nanotechnology, 20, 0755011 (2009).
- [16] A. Tarat, R. Majithia, R.A. Brown, M.W. Penny, K.E. Meissner, T.G.G. Maffeis. Surf. Sci., 606, 715 (2012).
- [17] Z.L. Wang. Mater. Sci. Eng., R 64, 33 (2009).
- [18] C.-S. Hong, H.-H. Park, J. Moon, H.-H. Park. Thin Sol. Films, 515, 957 (2006).
- [19] L. Ma, S. Ma, H. Chen, X. Ai, X. Huang. Appl. Surf. Sci., 257, 10036 (2011).
- [20] Y.M. Tao, S.Y. Ma, H.X. Chen, J.X. Meng, L.L. Hou, Y.F. Jia, X.R. Shang. Vacuum, 85, 744 (2011).
- [21] A. Kalaivanan, S. Perumal, N. Neelakanda Pillai, K.R. Murali. Mater. Sci. Semicond. Processing, 14, 94 (2011).
- [22] T.-J. Hsueh, C.-L. Hsu, S.-J. Chang, I.-C. Chen. Sensors Actuators B, 126, 473 (2007).
- [23] Z. Zhang, J.B. Yi, J. Ding, L.M. Wong, H.L. Seng, S.J. Wang, J.G. Tao, G.P. Li, G.Z. Xing, T.C. Sum, C.H.A. Huan, T. Wu. J. Phys. Chem. C, **112**, 9579 (2008).
- [24] C.C. Vidyasagar, Y. Arthoba Naik, T.G. Venkatesh, R. Viswanatha. Powder Technol., 214, 337 (2011).
- [25] J. Hu, R.G. Gordon. J. Appl. Phys., 72, 5381 (1992).
- [26] K.Y. Cheong, N. Muti, S.R. Ramanan. Thin Sol. Films, 410, 142 (2002).
- [27] M. Zhao, X. Wang, L. Ning, J. Jia, X. Li, L. Cao. Sensors Actuators B, 156, 588 (2011).
- [28] Б.А. Акимов, А.В. Албул, А.М. Гаськов, В.Ю. Ильин, М. Лабо, М.Н. Румянцева, Л.И. Рябова. ФТП, **31**(4), 400 (1997).
- [29] Y.S. Sonawane, K.G. Kanade, B.B. Kale, R.C. Aiyer. Mater. Res. Bull., 43, 2719 (2008).
- [30] T.-J. Hsueh, S.-J. Chang. Appl Phys. Lett., 91, 0531111 (2007).
- [31] C.J. Brinker, G.W. Scherer. Sol-Gel Science. The physics and chemistry of sol-gel processing (San Diego, Academic Press, 1990).
- [32] S. Sakka (ed.). Handbook of sol-gel science and technology: processing, characterization, and applications (N.Y., Springer, 2004).
- [33] R. Corriu, T.A. Nguyên. Molecular chemistry of sol-gel derived nanomaterials (N.Y., John Wiley & Sons, 2009).
- [34] А.И. Максимов, В.А. Мошников, Ю.М. Таиров, О.А. Шилова. Основы золь-гель технологии нанокомпозитов. 2-е изд. (СПб., ООО "Техномедиа", Изд-во "Элмор", 2008).
- [35] J.-H. Lee, B.-O. Park. Thin Sol. Films, 426, 94 (2003).

- [36] А.С. Ильин, А.И. Максимов, В.А. Мошников, Н.П. Ярославцев. ФТП, **39** (3), 300 (2005).
- [37] I.E. Gracheva, V.A. Moshnikov, S.S. Karpova, E.V. Maraeva. J. Phys.: Conf. Ser., 291, 012 017 (2011).
- [38] V.A. Moshnikov, I.E. Gracheva, V.V. Kuznezov, A.I. Maximov, S.S. Karpova, A.A. Ponomareva. J. Non-Cryst. Sol., 356, 2020 (2010).
- [39] I.E. Gracheva, V.A. Moshnikov, E.V. Maraeva, S.S. Karpova, O.A. Alexsandrova, N.I. Alekseyev, V.V. Kuznetsov, G. Olchowik, K.N. Semenov, A.V. Startseva, A.V. Sitnikov, J.M. Olchowik. J. Non-Cryst. Sol., 358, 433 (2012).
- [40] N.V. Kaneva, D.T. Dimitrov, C.D. Dushkin. Appl. Surf. Sci., 257, 8113 (2011).
- [41] T.-J. Hsueh, C.-L. Hsu. Sensors Actuators B, 131, 572 (2008).
- [42] M. Takata, D. Tsubone, H. Yanagida. J. Am. Ceram. Soc., 59, 4 (1976).
- [43] D.T. Dimitrov, S.Y. Anastasova, C.D. Dushkin. Rev. Sci. Instrum., 77, 0561081 (2006).

Редактор Т.А. Полянская

Synthesis and characterization of nanostructured zinc oxide layers for sensor application

L.K. Krasteva, D.T. Dimitrov, K.I Papazova, N.K. Nikolaev, T.V. Peshkova, V.A. Moshnikov*, I.E. Gracheva*, S.S. Karpova*, N.V. Kaneva

University of Sofia,

1164 Sofia Bulgaria

- * St. Petersburg Electrotechnical University "LETI",
- 197376 St. Petersburg, Russia

Abstract Fractal structures and nanowires arrays based on zinc oxide are prepared on glass and ceramic substrates by two different methods: sol-gel dip-coating method and chemical bath deposition. Gas-sensitive properties of synthesized structures are analyzed. The sample of ZnO nanowires modified by four dip-coatings in $Cu(NO_3)_2$ solution shows the best sensitivity to ethanol vapours in comparison to the other investigated samples.