Туннельные полевые транзисторы на основе графена

© Д.А. Свинцов, В.В. Вьюрков[¶], В.Ф. Лукичёв, А.А. Орликовский, А. Буренков[∗], Р. Охснер[∗]

Физико-технологический институт Российской академии наук, 117218 Москва, Россия * Институт интегральных схем общества Фраунгофера, 91058 Эрланген, Германия

(Получена 17 июля 2012 г. Принята к печати 17 июля 2012 г.)

Отсутствие закрытого состояния в транзисторах на основе графена является основным препятствием на пути к их использованию в цифровых схемах. Недавно было сообщено о создании туннельного транзистора на графене с низким током закрытого состояния; однако управление проводимостью канала с помощью затвора в данном приборе было неэффективным. Мы предлагаем новую конструкцию туннельного транзистора на графене, в которой ток экспоненциально зависит от напряжения на затворе, а подпороговая крутизна приближается к термоэмиссионному пределу. Особенностью транзистора является наличие полупроводникового (или диэлектрического) туннельного зазора в канале. Характеристики транзистора наследуют низкий ток закрытого состояния, свойственный полупроводниковым каналам, и высокий ток открытого состояния, свойственный графену.

Введение

Полевые транзисторы на основе графена обладают уникальными высокочастотными свойствами благодаря большой подвижности носителей заряда. Использование таких транзисторов в логических схемах, однако, невозможно из-за низкого отношения токов открытого и закрытого состояний. В свою очередь отсутствие закрытого состояния обусловлено особенностями электронного спектра в графене. Графен является бесщелевым полупроводником с линейной зависимостью энергии квазичастиц ε от квазиимпульса p в окрестности экстремумов энергетической зоны:

$$\varepsilon = \pm v_{\rm F} p,$$
 (1)

где $v_{\rm F} = 10^6$ м/с — характерная скорость электронов в графене, знаки плюс и минус относятся соответственно к зоне проводимости и валентной зоне.

Именно отсутствие запрещенной зоны в однослойном графене и малая (порядка 0.1 эВ [1,2]) величина запрещенной зоны в двухслойном графене, узких полосках графена и полупроводниковых нанотрубках приводят к малому отношению токов открытого и закрытого состояний в полевых транзисторах на их основе.

Одним из возможных решений проблемы является добавление туннельного контакта в канал транзистора. При этом проводимость канала может изменяться при варьировании напряжения на затворе по двум причинам: во-первых, благодаря изменению прозрачности туннельного барьера, во-вторых, благодаря изменению энергии Ферми в графене, ведущей к изменению плотности состояний туннелирующих электронов.

Впервые туннельный транзистор на основе графена был предложен в работе [3]. Вертикальная конструкция представляла собой два параллельных листа графена (сток и исток), разделенных туннельно прозрачной диэлектрической прослойкой из нитрида бора. И высота туннельного барьера, и концентрация электронов в контактах регулировались нижним затвором. Влияние затвора на проводимость канала в данном устройстве, как показали измеренные характеристики, было слабым (неэкспоненциальным), и отношение токов открытого и закрытого состояния достигало лишь 50.

В данной статье мы предлагаем новую конструкцию туннельного полевого транзистора на основе графена. Зависимость тока от напряжения на затворе в предлагаемой структуре является экспоненциальной, а обратная крутизна подпороговой характеристики приближается к $(60 \text{ мB/дек})^{-1}$ при комнатной температуре. Мы рассматриваем одновременное влияние туннельного и термоэмиссионного тока на характеристики прибора и показываем, что предельное значение крутизны для данного транзистора, а также для любого туннельного транзистора с контактом Шоттки составляет (60 мВ/дек)⁻¹.

В первом разделе данной статьи описываются возможные конструкции приборов. Во втором разделе рассматривается распределение электрического потенциала вдоль канала транзистора. Третий раздел посвящен вычислению тока транзистора. В последнем, четвертом разделе, произведено обсуждение полученных результатов. Доказательство утверждения о предельной крутизне транзистора вынесено в *Приложение*.

1. Предлагаемая конструкция прибора

Туннельный контакт в предлагаемых вариантах транзистора представляет собой контакт листа графена с диэлектриком (полупроводником). Для обеспечения большого тока открытого состояния туннельная прозрачность барьера должна быть достаточно высокой, а значит, барьер должен быть либо узким, либо низким (т.е. работа выхода из графена в материал тун-

[¶] E-mail: vyurkov@ftian.ru

Рис. 1. Схематическое изображение предлагаемых транзисторных структур: *a* — туннельный контакт внутри канала; *b* — туннельный контакт у стока.

нельного контакта должна быть небольшой). Высота барьера Ф определяется материалом туннельного контакта, она сравнительно высока для диэлектрических материалов. В работе [4] сообщалось, что на границе "графен-гексагональный нитрид бора" эта высота составляет 1.5 эВ для дырок и 4 эВ для электронов. Для уменьшения работы выхода в качестве туннельного контакта можно использовать полупроводниковый материал (например, кремний). В этом случае высота барьера приблизительно равна половине ширины запрещенной зоны полупроводника.

Две предлагаемые конструкции туннельных полевых транзисторов с графеновыми каналами схематически изображены на рис. 1 в поперечном разрезе.

На рис. 1, *а* кремниевая вставка шириной *L* помещена в центр проводящего канала, а лист графена окружен диэлектриком. Для обеспечения высокой подвижности и малого наведенного заряда в канале может быть использован гексагональный нитрид бора [5]. Проводимость канала управляется верхним затвором, находящимся на расстоянии *d* от листа графена.

На рис. 1, *b* кремниевый туннельный контакт расположен около стока, причем контакты стока и затвора разделены диэлектрическим спейсером, который может быть сформирован, например, при окислении металлического электрода. Структура может управляться как верхним, так и нижним затвором.

Зонные диаграммы и распределение потенциала в канале транзистора

Для расчета характеристик предполагаемого транзистора необходимо знать распределение локального электрического потенциала в канале транзистора φ как функцию напряжения на затворе V_G и туннельную прозрачность барьера D.

Вдали от туннельного контакта и электродов стока и истока локальный потенциал в канале (по отношению к заземленному истоку) не зависит от координаты и равен φ_0 . Это значение может быть найдено из модели плоского конденсатора [6], дающей локальную связь плотности заряда и напряжения:

$$\frac{\kappa\kappa_0}{d}\left(V_G-\varphi_0\right)=e\left[n_e(\varphi_0)-n_h(\varphi_0)\right],\tag{2}$$

где κ — диэлектрическая проницаемость подзатворного диэлектрика ($\kappa = 5.04$ для гексагонального нитрида бора [7]), κ_0 — электрическая постоянная, e > 0 — элементарный заряд, n_e и n_h — концентрации электронов и дырок, рассчитанные на единицу площади.

Предполагая, что уровень Ферми в графене у контактов истока и стока расположен точно между зоной проводимости и валентной зоной (т.е. в так называемой дираковской точке), можно рассчитать концентрации электронов и дырок в канале. Так как $e\phi_0$ есть локальная энергия Ферми, при низких температурах ($kT \ll e\phi_0$) и положительном потенциале затвора для концентрации электронов получается следующее простое выражение:

$$n_e = \frac{e^2 \varphi_0^2}{\pi \hbar^2 v_{\rm F}^2}.$$
 (3)

Соответственно локальный потенциал в канале дается выражением

$$\varphi_0 = \frac{\pi v_F^2 \kappa \kappa_0 \hbar^2}{2de^3} \left(\sqrt{\frac{4de^3 V_G}{\pi v_F^2 \kappa \kappa_0 \hbar^2} + 1} - 1 \right).$$
(4)

Потенциал в туннельном контакте, определяющий высоту барьера для туннелирующих электронов, для структур с барьером в центре канала существенно зависит от отношения L/d. Разумно предположить, что для длинных барьеров при $L \gg d$ потенциал внутри барьера равен V_G почти везде, кроме области вблизи границ. При $L \ll d$ потенциал затвора, наоборот, практически не "проникает" в туннельный зазор. В этом случае высота барьера (отсчитанная от дираковской точки) не зависит от напряжения на затворе, и роль последнего сводится к регулированию концентрации носителей заряда в графене. Аналогичная ситуация имеет место на рис. 1, *b*, где туннельный контакт расположен вне подзатворной области и потенциал затвора практически не влияет на высоту барьера.

В дальнейшем мы рассмотрим два характерных профиля потенциала вдоль канала транзистора. Первый соответствует относительно длинным туннельным зазорам в центре канала (как на рис. 1, a), соответствующая зонная диаграмма представлена на рис. 2. Второй тип распределения соответствует транзистору с туннельным

Рис. 2. Зонные диаграммы для транзистора на основе графена с туннельным контактом внутри канала $(L \gg d)$ при нулевом напряжении на стоке (сверху) и при положительном напряжении на стоке V_D . Положение дираковской точки показано крестом.

Рис. 3. Зонные диаграммы для транзистора на основе графена с туннельным контактом около стока при нулевом напряжении на стоке (сверху) и при положительном напряжении на стоке V_D . Положение дираковской точки показано крестом.

контактом вне подзатворной области (как на рис. 1, b), соответствующая зонная диаграмма представлена на рис. 3. Предположим также, что приложенное между стоком и истоком напряжение целиком падает на туннельном контакте. Это оправдано, если сопротивление туннельного контакта превышает сопротивление листа графена. В обоих случаях (рис. 2 и 3) туннельный барьер будет считаться трапециевидным.

3. Расчет туннельного тока

Туннелирование через запрещенную зону полупроводников изучалось в работах Кейна [8] и Келдыша [9] в середине прошлого века, однако обобщение этих работ, учитывающее точную зонную структуру кремния, появилось сравнительно недавно [10]. Насколько известно авторам работы, теоретическая модель туннелирования через запрещенную зону в системе "графен-кремний" еще не разработана, и она заслуживает отдельного исследования. В дальнейших расчетах мы применим упрощенную модель, достаточную для предварительных оценок характеристик транзистора. Модель основана на квазиклассическом описании туннелирования:

$$D \approx \exp\left(-\frac{2}{\hbar} \int_{x_1}^{x_2} |p_x(x)| dx\right),\tag{5}$$

где x_1 и x_2 — классические точки поворота, а проекция импульса p_x в области барьера может быть найдена из условия сохранения энергии и поперечной (к оси x) компоненты импульса:

$$\varepsilon = \varepsilon_c(x) + \frac{p_x^2}{2m_x} + \frac{p_\perp^2}{2m_\perp}.$$
 (6)

В данном выражении $\varepsilon_c(x)$ есть энергия дна зоны проводимости в туннельном контакте, m_x — эффективная масса туннелирования, которая фактически является подгоночным параметром при сравнении теоретических расчетов с экспериментальными измерениями [11,12], и m_{\perp} — поперечная эффективная масса; вообще говоря, указанные массы могут быть разными.

Вычисление прозрачности для трапециевидного барьера дает следующий результат:

$$D(\varepsilon, p_{\perp}) = \exp\left[-\frac{4\sqrt{2m_x}}{3eF\hbar} \left\{ \left(\Phi + \frac{p_{\perp}^2}{2m_{\perp}} - \varepsilon\right)^{3/2} - \left(\Phi - eV_D + \frac{p_{\perp}^2}{2m_{\perp}} - \varepsilon\right)^{3/2} \right\} \right]$$

при $\varepsilon - p_{\perp}^2/2m_{\perp} < \Phi - eV_D;$
$$D(\varepsilon, p_{\perp}) = \exp\left[-\frac{4\sqrt{2m_x}}{3eF\hbar} \left(\Phi + \frac{p_{\perp}^2}{2m_{\perp}} - \varepsilon\right)^{3/2}\right]$$

при $\Phi - eV_d < \varepsilon - p_{\perp}^2/2m_{\perp} < \Phi,$ (7)

где Φ — эффективная высота барьера для структур с длинным туннельным зазором ($L \gg d$) в центре канала (рис. 1, *a*). Она эффективно управляется напряжением на затворе:

$$\Phi_A = \Phi_0 + e(\varphi_0 - V_G). \tag{8}$$

В структурах же с коротким туннельным зазором около стока (рис. 1, *b*, зонная диаграмма на рис. 3) эффектив-

ная высота барьера от напряжения на затворе не зависит: $\Phi = \Phi_0$. В данных выражениях Φ_0 есть работа выхода из графена в материал туннельного контакта при нулевом напряжении на затворе, отсчитанная от дираковской точки в графене. Величина *F* в уравнении (7) означает напряженность поля в зазоре. Выражения для этой величины различны для двух предлагаемых структур (соответственно для структуры на рис. 1, *a* и *b*):

$$F_A = e \, \frac{V_D}{L},\tag{9}$$

$$F_B = e \, \frac{V_D - \varphi_0}{L}.\tag{10}$$

Авторы работы [13] предложили использовать в качестве m_x "легкую" массу зоны проводимости, так как туннельная прозрачность барьера для легких носителей наибольшая, и соответственно они дают основной вклад в ток. В дальнейших вычислениях мы используем следующие параметры зонной структуры: $m_x = 0.19m_e$, $m_t = 0.98m_e$, где m_e — масса свободного электрона, $\Phi_0 = \Delta/2 = 0.56$ эВ, где $\Delta = 1.12$ эВ — ширина запрещенной зоны в кремнии.

Зная распределение потенциала и туннельную прозрачность барьера, мы можем применить известную "баллистическую" формулу для расчета тока туннельного транзистора. Для уменьшения количества уравнений в промежуточных расчетах мы не будем отдельно рассматривать туннельный и термоэмиссионный токи и положим прозрачность туннельного барьера равной единице при $\varepsilon - p_{\perp}^2/2m_{\perp} > \Phi$. В данных обозначениях выражение для плотности тока между стоком и истоком принимает вид

$$j = \frac{eg}{(2\pi\hbar)^2} \int_{-\infty}^{\infty} d\varepsilon \left[f_s(\varepsilon) - f_D(\varepsilon) \right] \int_{0}^{p_{\perp \max}} D(\varepsilon, p_{\perp}) dp_{\perp},$$
(11)

где g = 4 — электронный фактор вырождения в графене, f_S и f_D — функции распределения Ферми в контактах истока и стока соответственно. Если начало отсчета энергии расположено в дираковской точке, то эти функции имеют вид

$$f_{S}(\varepsilon) = \frac{1}{1 + \exp\left(\frac{\varepsilon - e\varphi_{0}}{kT}\right)}, \quad f_{D}(\varepsilon) = \frac{1}{1 + \exp\left(\frac{\varepsilon - e\varphi_{0} + eV_{D}}{kT}\right)}.$$
(12)

Интегрирование по поперечной компоненте импульса проводится от нуля до максимального значения при заданной энергии $p_{\perp max} = \varepsilon/v_F$, а интегрирование по энергии может быть распространено на весь интервал $(-\infty, +\infty)$, так как функция Ферми (при больших энергиях) и прозрачность барьера (при малых энергиях) спадают экспоненциально быстро. Следует отметить, что состояния с отрицательными энергиями заняты электронами валентной зоны графена, которые также могут давать вклад в туннельный ток.

4. Обсуждение результатов

Рассчитанные зависимости тока транзистора, включающего туннельную и термоэмиссионную компоненты, от напряжений на стоке и затворе представлены на рис. 4–7 для двух типов предложенных структур. Еще не проводя вычислений, можно предположить, что транзистор с длинным туннельным зазором в центре канала будет эффективнее управляться затвором по сравнению с транзистором с зазором у стока.

Действительно, плотность тока в транзисторе с туннельным контактом в центре канала спадает экспоненциально при напряжениях на затворе, меньших работы выхода из графена в полупроводник ($eV_G < \Phi_0$). Подпороговая крутизна характеристики, рассчитанная при d = 1 нм и L = 5 нм (рис. 4), равна kT/e, что говорит о преобладании термоэмиссионной компоненты тока над туннельной. Такое соотношение между двумя компонентами тока характерно также для туннельных транзисторов с контактом Шоттки и высокой прозрачностью туннельного барьера, на что было указано в работе [14]. В отличие от классических кремниевых МОП транзисторов на объемной подложке, изменение проводимости в предлагаемой структуре обусловлено не только снижением высоты барьера, но и изменением энергии Ферми е φ_0 в графеновых контактах. Последний эффект особенно важен в случае тонких диэлектриков. Подстановка значений $V_G = 2 \text{ B}, d = 1 \text{ нм}$ и $\kappa = 5.06$ в уравнение (4) дает энергию Ферми в контакте стока, равную 0.7 эВ, что превышает высоту барьера на границе раздела графен-кремний. Говоря образно, при столь высоких напряжениях на затворе электроны могут беспрепятственно "выливаться" из истока в сток.

Зависимости тока транзистора от напряжения на стоке, выходящие на насыщение (рис. 5), схожи с аналогичными зависимостями для классических МОП транзисторов на объемной подложке. Слабая зависимость тока насыщения от напряжения на стоке обусловлена именно

Рис. 4. Зависимости плотности тока от напряжения на затворе для транзистора с туннельным контактом в центре канала. Ширина барьера L = 5 нм, толщина подзатворного диэлектрика d = 1 нм, температура T = 300 К.

Рис. 5. Зависимости плотности тока от напряжения на стоке для транзистора с туннельным контактом в центре канала. Ширина барьера L = 5 нм, толщина подзатворного диэлектрика d = 1 нм, температура T = 300 К.

туннельным током, так как увеличение напряжения на стоке приводит к увеличению напряженности поля в зазоре и, следовательно, к увеличению прозрачности барьера. Ток включенного состояния предлагаемого транзистора довольно высок по сравнению с током кремниевых транзисторов, что является следствием высокой инжекционной способности графенового контакта. Кремниевая вставка в канале не ограничивает максимальный ток транзистора, так как движение электрона в туннельном кремниевом контакте при L = 5 нм является баллистическим.

Характеристики туннельного транзистора на графене с коротким туннельным зазором вблизи стока (рис. 6, 7) ведут себя совершенно иным образом. Некоторые особенности характеристик, такие как неэкспоненциальное убывание тока при малых напряжениях на затворе, отсутствие насыщения, схожи с представленными в работе [3] для транзистора с вертикальным туннелированием. Ранее уже было упомянуто, что степенная зависимость тока от напряжения на затворе наблюдается, если затвор влияет только на плотность состояний туннелирующих электронов, но не на высоту барьера. В двумерных системах с линейным спектром туннельная плотность состояний пропорциональна энергии Ферми $e\phi_0$, которая в свою очередь зависит квадратично от напряжения на затворе. В структурах с коротким туннельным зазором (L = 1 нм, d = 5 нм для характеристик на рис. 6 и 7) основная компонента тока — туннельная, и поэтому высокие токи включенного состояния, предсказанные для предыдущей конструкции, здесь недостижимы. Несмотря на то что основная доля тока в структурах с коротким туннельным зазором обусловлена туннелированием, подпороговая крутизна характеристики данного транзистора по-прежнему ограничена термоэмиссионным пределом kT/e. Известно, что крутизна зависимости туннельного тока от напряжения на затворе может принимать любое значение. Однако при

высокой крутизне туннельного тока сам туннельный ток мал (по сравнению с термоэмиссионным), и наоборот. Более строгое доказательство, касающееся ограничения крутизны данного транзистора (а также любого транзистора с барьером Шоттки), приведено в *Приложении*.

Полученные значения плотности тока являются лишь грубыми оценками. Существует несколько неучтенных факторов, которые могут изменить эту оценку в лучшую или в худшую сторону. Во-первых, пространственный заряд в туннельном зазоре может ограничить рост тока при высоких напряжениях на затворе. Во-вторых, отражение электронов на границе раздела графен-кремний может значительно уменьшить значение прозрачности барьера. В-третьих, локальное значение энергии Ферми в графене в непосредственной близости от туннельного контакта превосходит $e\phi_0$. Этот факт, опущенный в предыдущих вычислениях, напротив, приведет к более высокой оценке плотности тока.

Рис. 6. Зависимости плотности тока от напряжения на затворе для транзистора с туннельным контактом около стока. Ширина барьера L = 1 нм, толщина подзатворного диэлектрика d = 5 нм, температура T = 300 К.

Рис. 7. Зависимости плотности тока от напряжения на стоке для транзистора с туннельным контактом около стока. Ширина барьера L = 1 нм, толщина подзатворного диэлектрика d = 5 нм, температура T = 300 К.

Физика и техника полупроводников, 2013, том 47, вып. 2

Приложение

Предельная подпороговая крутизна транзистора с барьером Шоттки

В данном Приложении мы рассмотрим подпороговую крутизну для предложенных туннельных транзисторов на основе графена, а также для любых транзисторов с контактом Шоттки. Форма потенциального барьера $U(x, V_G)$, через который происходит туннелирование, предполагается произвольной. Все последующие вычисления выполняются с точностью до главного экспоненциального множителя. Этого достаточно для оценки подпороговой крутизны.

Инжекционный ток из контакта истока пропорционален произведению функции Ферми $f_S(\varepsilon)$, прозрачности барьера $D(\varepsilon, V_G)$ и, возможно, некоторой степенной функции энергии, происходящей из плотности состояний (в дальнейшем она рассматриваться не будет). Функция Ферми спадает экспоненциально при $\varepsilon > \mu$, где μ — энергия Ферми в контакте истока. Прозрачность барьера, наоборот, экспоненциально растет при увеличении энергии. Два данных факта позволяют нам применить метод перевала для оценки интеграла, выражающего плотность тока инжекции. Вводя обозначение

$$g(\varepsilon) = \frac{\varepsilon}{kT} + \frac{2}{\hbar} \int_{x_1}^{x_2} \sqrt{2m[U(x, V_G) - \varepsilon]} dx, \qquad (\Pi.1)$$

мы приходим к следующему выражению для инжекционного тока в подпороговом режиме:

$$j_{\text{sub}} \propto \int \exp[-g(\varepsilon)] d\varepsilon \approx \int \exp\left[-g(\varepsilon_0) - \frac{g''(\varepsilon_0)}{2}\right]$$
$$\times (\varepsilon - \varepsilon_0)^2 d\varepsilon = A(V_G) \exp[-g(\varepsilon_0)], \quad (\Pi.2)$$

где функция *А* слабо (неэкспоненциально) зависит от напряжения на затворе.

Точка перевала ε_0 определяется из условия максимума для функции $g(\varepsilon)$:

$$\frac{1}{kT} + \frac{2}{\hbar} \frac{d}{d\varepsilon} \left[\int_{x_1}^{x_2} \sqrt{2m[U(x, V_G) - \varepsilon]} dx \right] \bigg|_{\varepsilon = \varepsilon_0} = 0. \quad (\Pi.3)$$

По определению, крутизна подпороговой характеристики есть

$$\frac{d \ln j_{\text{sub}}}{dV_G} \approx -\frac{dg(\varepsilon_0)}{dV_G} \\
\approx -\frac{2}{\hbar} \frac{d}{dV_G} \left\{ \int_{x_1}^{x_2} \sqrt{2m[U(x, V_G) - \varepsilon]} dx \right\} \\
= -\frac{2}{\hbar} \int_{x_1}^{x_2} \frac{d}{dU} \left\{ \sqrt{2m[U(x, V_G) - \varepsilon]} \right\} \frac{dU}{dV_G} dx. \tag{II.4}$$

Изменение потенциальной энергии в канале транзистора не может по модулю превосходить eV_G , иначе говоря, $|\partial U(x, V_G)/\partial V_G| \leq 1$, поэтому

$$\frac{d\ln j_{\text{sub}}}{dV_G} \leq \frac{2e}{\hbar} \int_{x_1}^{x_2} \frac{d}{dU} \left\{ \sqrt{2m[U(x, V_G) - \varepsilon_0]} \right\} dx$$

$$= -\frac{2e}{\hbar} \frac{d}{d\varepsilon_0} \left[\int_{x_1}^{x_2} \sqrt{2m[U(x, V_G) - \varepsilon]} dx \right] \Big|_{\varepsilon = \varepsilon_0} = \frac{e}{kT}.$$
(II.5)

Мы показали, что предельная крутизна транзистора с барьером Шоттки не может быть выше $(60 \text{ MB/dek})^{-1}$. Следует отметить, что крутизна, рассчитанная по туннельному току, может принимать любое значение, однако одновременный учет туннельного и термоэмиссионного токов приводит к качественно новому результату.

Выведенное ограничение неприменимо к туннельным транзисторам с управляемым p-n-переходом, в которых происходит туннелирование между валентной зоной и зоной проводимости в полупроводнике. Ток в данном типе транзисторов ограничен краем зоны, и поэтому обратная крутизна подпороговой характеристики может быть меньше 60 мВ/дек, что было показано теоретически (в частности, для транзисторов на основе узких полосок графена в работе [15]) и экспериментально [16].

Работа поддержана грантами РФФИ (11-07-00464) и EU-RU.NET (http://eu-ru.net/).

Список литературы

- A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. Rev. Mod. Phys., 81, 109 (2009).
- [2] E. McCann, V.I. Fal'ko. Phys. Rev. Lett., 96, 086 805 (2006).
- [3] L. Britnell et al. Science, **335**, 947 (2012).
- [4] N. Kharche, S.K. Nayak. Nano Lett., 11, 5274 (2011).
- [5] K. Kim et al. Nature, 479, 7373 (2011).
- [6] M. Shur. *Physics of semiconductor devices* (Pentice-Hall, Englewood Clifs, NJ, 1990).
- [7] R. Geick, C.H. Perry, G. Rupprecht. Phys. Rev., 146, 543 (1966).
- [8] E.O. Kane. J. Appl. Phys., 32, 83 (1961).
- [9] L.V. Keldysh. Sov. Phys. JETP, 6, 33 (1958).
- [10] A. Schenk. Sol. St. Electron., **36**, 1 (1993).
- [11] L.F. Mao, J.L. Wei, Ch.H. Tan, M. Zh. Xu. Sol. St. Commun., 114, 383 (2000).
- [12] J. Shannon, K. Nieuwestee. Appl. Phys. Lett., 62, 1815 (1993).
- [13] S. Xiong, T. King, J. Bokor. IEEE Trans. Electron. Dev., 52, 8 (2005).
- [14] R.A. Vega. IEEE Trans. Electron. Dev., 53, 7 (2006).
- [15] Q. Zhang, T. Fang, H. Xing, A. Seabaugh, D. Jena. IEEE Electron. Dev. lett., 54, 10 (2008).
- [16] A.C. Seabaugh, Q. Zhang. Proc. IEEE, 98, 12 (2010).

Редактор Т.А. Полянская

Tunnel field-effect transistors with graphene channels

D. Svintsov, V. Vyurkov, V. Lukichev, A. Orlikovsky, A. Burenkov*, R. Oechsner*

Institute of Physics and Technology, Russian Academy of Sciences, 117218 Moscow, Russia * Fraunhofer Institute of Integrated Systems and Device Technology, 91058 Erlangen, Germany

Abstract The absence of off-state has been the main obstacle to the implementation of graphene-based transistors to digital circuits. Recently graphene tunneling field-effect transistors with low off-state current were reported, however, they exhibited relatively weak effect of gate voltage on channel conductivity. We propose a novel tunneling graphene transistor with channel conductivity effectively controlled by gate voltage and subthreshold slope approaching a thermoemission limit. The proposed transistor has a semiconductor (dielectric) tunneling gap operated by gate and exhibits both high on-state current inherent to graphene channels and low off-state current inherent to semiconductor channels.