Инверсия знака примесной проводимости в стеклообразных пленках As₂Se₃ : Bi, полученных двумя различными методами

© Н.Ж. Алмасов*, О.Ю. Приходько*, К.Д. Цэндин^{+¶}

* Казахский национальный университет им. Аль-Фараби,

050038 Алмаата, Казахстан

+ Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

(Получена 27 марта 2012 г. Принята к печати 29 марта 2012 г.)

Показано, что в пленках $As_2Se_3: Bi_x$, полученных методом термического напыления, осуществляется примесная проводимость *p*-типа, а в таких же пленках, полученных ионно-плазменным сораспылением в вакууме, осуществляется примесная проводимость *n*-типа. На основе этого предложен новый метод получения *p*-*n*-гомопереходов в пленочных структурах из халькогенидных стеклообразных полупроводников, легированных висмутом различными методами.

Примесная проводимость в стеклообразных проводниках типа As₂Se₃ исследовалась многими авторами [1–8]. Почти во всех этих работах обсуждался знак примесных носителей заряда, поскольку проблема получения *p*-*n*-переходов на основе легированных халькогенидных стеклообразных полупроводников (ХСП) не решена до сих пор. В большинстве из цитируемых выше работ тип основных носителей определен неоднозначно по следующим причинам. В работах [1–3] измерялась термоэдс при комнатной температуре, и ее знак соответствовал либо *р*-типу, либо *n*-типу проводимости в зависимости от концентрации примеси. Известно, однако, что существует интервал температур, в котором знак термоэдс определяется собственными носителями, а проводимость является уже примесной. С другой стороны, известно, что нет прямой связи между знаком термоэдс и типом большинства носителей заряда, когда в области низких температур проводимость определяется прыжковым переносом вблизи уровня Ферми [9].

В настоящей статье обсуждаются результаты исследований проводимости пленок стеклообразного As₂Se₃, легированного висмутом. Рассматриваются гетерогенная модель легирования ХСП [10] и экспериментальные данные, позволяющие судить о типе проводимости без привлечения данных о термоэдс.

На рис. 1, а представлена энергетическая диаграмма термически напыленной пленки As_2Se_3 : Bi_x с x = 2 ат% (x — средняя концентрация Bi), полученная в работе [6] на основе анализа оптических и электрических свойств. Согласно этой работе, термически напыленные пленки As_2Se_3 : Bi_x микронеоднородны. Область I с узкой запрещенной зоной, $E_g \sim 1.0$ эВ, — это кластеры аморфного Bi_2Se_3 , в то время как область II с широкой запрещенной зоной — это стеклообразная матрица с обедненным содержанием висмута, т.е. с концентрацией примеси существенно ниже средней. Электрически активный центр (акцептор с энергией E_a) и компенсирующий его собственный дефект с эффективной отрицательной корреляционной энергией (И-минус центр) располагаются: первый внутри кластера Ві2Se3, а второй внутри самой матрицы (по-видимому, вблизи границы между кластером Bi₂Se₃ и матрицей As₂Se₃ с незначительным содержанием висмута). Согласно микронеоднородному механизму легирования [10], электрически активный центр появляется в кластере не случайно. Кластер представляет собой жесткую область, состоящую из атомов, имеющих более высокое координационное число по сравнению с атомами низкокоординированной лабильной матрицы. Таким образом, кластер представляет собой объем, в пределах которого может произойти отклонение от правила 8-N, т. е. примесный атом в этой жесткой области может не насытить все свои валентные связи и при этом появится примесное состояние, в данном случае акцепторное. Важно понимать, что электрически активными атомами при этом могут быть не "официальные" легирующие химические элементы (в нашем случае это висмут), а атомы, которые внутри кластера Bi₂Se₃ не насытили все свои валентные связи.

В [6] было установлено приблизительное равенство энергий активации (ΔE) проводимости по постоянному току аморфных пленок Bi₂Se₃ и As₂Se₃ : Bi_x для интерва-

Рис. 1. Энергетическая диаграмма модели для термически напыленных пленок $As_2Se_3 : Bi_x(a)$, модифированных пленок $As_2Se_3 : Bi_x(b)$. c — иллюстрация правила $E_g - \Delta E = \text{const}$ для модифицированных пленок $As_2Se_3 : Bi_x$ и $As_2Se_3 : Bi_x : Cu$.

[¶] E-mail: tsendin@mail.ioffe.ru

ла x = 2 - 0.2 ат% независимо от концентрации висмута, и согласно этому факту было сделано заключение о том, что электрически активные примесные центры являются акцепторами. Действительно, для любой концентрации Ві в матрице общим элементом в ней и в кластере является Se, неподеленные электронные пары которого формируют, как известно, верх валентной зоны в матрице As₂Se₃ [11]. В этом случае разрыв между верхними границами валентных зон матрицы и кластера пренебрежимо мал (на рис. 1, а он даже не показан), активация дырок из акцепторных центров, локализованных в кластерах, в матрицу происходит с той же энергией $E_a \approx 0.2$ эВ независимо от концентрации висмута и может обеспечивать сквозную проводимость на постоянном токе через образец (см. рис. 1, а). Поэтому можно заключить, что в термически напыленных пленках As_2Se_3 : Bi_x примесные состояния, локализованные в кластерах Bi₂Se₃, являются акцепторами и обеспечивают р-тип проводимости.

Приведем теперь факты, свидетельствующие о преобладании носителей зарядов *n*-типа в пленках $As_2Se_3:Bi_x$, полученных ионно-плазменным сораспылением в вакууме, т.е. в так называемых модифицированных пленках. На рис. 2 приведены зависимости оптической ширины запрещеной зоны E_g , ΔE и значения $E_g - \Delta E$ для пленок, полученных ионно-плазменным сораспылением As_2Se_3 с Ві и полученных сораспылением As_2Se_3 с Ві и полученных сораспылением As_2Se_3 с двумя элементами Ві и Си одновременно. В обоих случаях, как для $As_2Se_3:Bi_x$, так и для $As_2Se_3:Bi_x:Cu$, изменялась концентрация висмута, в то время как концентрация меди была постоянной и равнялась 15 ат%.

Необходимо отметить следующие два важных момента: во-первых, была установлена независимость значений $E_g - \Delta E$ от концентрации висмута (правило постоянства: $E_g - \Delta E = \text{const}$); во-вторых, наблюдается совпадение этих констант для обоих случаев, для As₂Se₃ : Bi_x и As₂Se₃ : Bi_x : Cu.

Постоянство разности $E_g - \Delta E$ является главной особенностью микрогетерогенной модели легирования ХСП [10]. Действительно, атомы примеси можно поделить на две группы: одна формирует кластеры, другая участвует в формировании однородного твердого раствора матрицы с измененной оптической запрещенной зоной. Для термически напыленных пленок As₂Se₃ : Bi_x почти весь висмут сосредоточен в кластерах и оптическая ширина запрещенной зоны практически не изменялась. В случае модифицированных пленок концентрация висмута была большой ($x = 2 - 10 \, \text{at\%}$) и оптическая ширина запрещенной зоны изменялась. Предположим, что, так же как в пленках, полученных термическим напылением (рис. 1, a), аморфные кластеры Bi₂Se₃ существуют и в модифицированных пленках и имеют при этом схожие энергетические диаграммы (рис. 1, *b*). Тогда величина оптической ширины запрещенной зоны будет изменяться главным образом из-за смещения края зоны,

Рис. 2. Зависимость величин E_g (1, 1'), ΔE (2, 2') и $E_g - \Delta E$ (3, 3') от содержания Bi x для As₂Se₃ : Bi_x (1, 2, 3) и As₂Se₃ : Bi_x : Cu (1', 2', 3') [7].

имеющего большой разрыв, т.е. за счет смещения дна зоны проводимости (рис. 1, c).

Другими словами, мы предполагаем, что модифицированные пленки также описываются микрогетерогенной моделью. Покажем теперь, что в этом случае выполнение правила постоянства $E_g - \Delta E$ и величина этой константы свидетельствуют о донорной природе электрически активных атомов, расположенных в кластерах Bi₂Se₃ модифицированных пленок (рис. 1, b). Поскольку имеем значение константы $E_g - \Delta E = 0.73$ эВ, энергия донорного уровня Е_d по отношению к дну зоны проводимости кластера E_c равняется примерно 1.0-0.73 = 0.27 эВ. Положение Е_d относительно дна зоны проводимости матрицы зависит от концентрации "официального" легирующего элемента (рис. 1, с). Таким образом, мы приходим к выводу, что модифицированные пленки As_2Se_3 : Bi_x , скорее всего, являются полупроводниковыми пленками п-типа проводимости, в отличие от термически напыленных пленок р-типа того же состава.

Совпадение констант для пленок, модифицированных только висмутом, $As_2Se_3 : Bi_x$, и совместно висмутом с медью, $As_2Se_3 : Bi_x : Cu$, подтверждает примесную проводимость *n*-типа. На самом деле правило постоянства $E_g - \Delta E$ для As₂Se₃ : Bi_x не совсем очевидно (только три точки на рис. 2). Более того, величина постоянной $E_g - \Delta E$ близка к величине $E_g/2$, т.е. уровень Ферми E_F всего лишь немного сдвинут из положения в середине запрещенной зоны. Однако кардинальные изменения происходят в случае пленок, легированных двойной примесью, As_2Se_3 : Bi_x : Cu, где можно видеть выполнение правила постоянства $E_g - \Delta E$ и сильное смещение E_F из положения в середине запрещенной зоны. Поэтому совпадения констант в пленках $As_2Se_3: Bi_x: Cu$ и As₂Se₃ : Bi_x означает наличие примесной проводимости и в As₂Se₃ : Bi_x. Известно, что медь хорошо растворяется в As₂Se₃ [4,8]. Поэтому можно предположить, что в модифицированных пленках As₂Se₃ : Bi_x : Cu большинство кластеров обогащены только висмутом и обеспечивают положение $E_{\rm F}$ около E_d (рис. 1, *b*), а медь распределена однородно по всей матрице. Таким образом, основным результатом добавления меди в состав пленки является сильное уменьшение величины E_g , которое позволяет четко выявить донорный центр в кластере Bi₂Se₃, уровень которого в As₂Se₃ : Bi_x виден не столь явно.

Природа акцепторов (рис. 1, a) и доноров (рис. 1, b) неизвестна. Донорная или акцепторная природа примесного состояния определяется как атомной структурой кластера, так и химической природой атома, не насытившего все свои валентные связи внутри кластера. Можно только предположить, что в качестве таких атомов могут выступать в кластерах Bi_2Se_3 дефекты замещения, а именно Se на месте Bi (акцептор) и атом Bi на месте Se (донор), и что различные методы легирования могут способствовать возникновению той или иной концентрации доноров или акцепторов.

Наши данные позволяют предположить, что закономерности изменения электронных свойств и типа проводимости, установленные нами для $As_2Se_3:Bi_x$, могут быть справедливыми и для пленок XCП тройного состава $As_{40}Se_{30}S_{30}$, легированных Bi. Поэтому произведенный в работе анализ позволяет предложить новый метод получения p-n-гомопереходов в пленочных структурах XCП, легированных висмутом различными методами.

Работа поддержана программой фундаментальных исследований президиума РАН № 24, грантом РФФИ № 10-03-00456-а и ГК 16.526.12.6017.

Список литературы

- В.Л. Аверьянов, Б.Т. Коломиец, В.М. Любин, О.Ю. Приходько. Письма ЖТФ, 6 (10), 577 (1980).
- [2] R.P. Barclay, J.M. Marshal, C. Main. J. Non-Cryst. Sol., 77–78, 1269 (1985).
- [3] B.T. Kolomiets, V.T. Averyanov, V.M. Lyubin, O.Yu. Prikhodko. Sol. Energy. Mater., **8**(1), 1 (1982).
- [4] А.В. Данилов, Р.Л. Мюллер. ЖПХ, 35 (9), 2012 (1962).
- [5] M.I. Frazer, A.E. Owen. J. Non-Cryst. Sol., **59–60**, 1031 (1983).
- [6] Н.П. Калмыкова, Т.Ф. Мазец, Э.А. Сморгонская, К.Д. Цэндин. ФТП, 23 (2), 297 (1989).
- [7] В.Л. Аверьянов, Т.К. Звонарева, В.М. Любин, Н.В. Норцева, Б.В. Павлов, Ш.Ш. Сарсембинов, К.Д. Цэндин. ФТП, 22 (11), 2093 (1988).
- [8] З.У. Борисова. Халькогенидные полупроводниковые стекла (Л., 1983).
- [9] N.F. Mott, E.A. Davis. *Electron Processes in Non-Crystalline Materials* (Clarendon Press, Oxford, 1979).
- [10] Т.Ф. Мазец, К.Д. Цэндин. ФТП, 24 (11), 1953 (1990).
- [11] M. Kastner. Phys. Rev. Lett., 28 (7), 355 (1972).

Редактор Л.В. Шаронова

Inversion of impurity conduction sign in As_2Se_3 : Bi vitreous films made by two different methods

N.G. Almasov*, O.Yu. Prikhodko*, K.D. Tsendin+

* Al-Farabi Kazakh National University, 050038 Almaty, Kazakhstan
+ loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract It is shown that $As_2Se_3 : Bi_x$ vitreous films made by thermal evaporation technique have *p*-type impurity conductivity. In contrast to this, vitreous films $As_2Se_3 : Bi_x$ obtained by cosputtering in vacuum (modified films) have *n*-type impurity conductivity. This result allows to propose the new method of p-n homojunction fabrication based on chalcogenide vitreous semiconductors doped with Bi by different technique.