Исследование примесной фотопроводимости и люминесценции в кристаллах ZnSe: Ni в видимой области спектра

© Ю.А. Ницук[¶], Ю.Ф. Ваксман, В.В. Яцун

Одесский национальный университет им. И.И. Мечникова, 65082 Одесса, Украина

(Получена 12 марта 2012 г. Принята к печати 20 марта 2012 г.)

Проведены исследования спектров фотопроводимости и фотолюминесценции кристаллов ZnSe:Ni в видимой области спектра. Установлено, что высокотемпературная примесная фотопроводимость кристаллов ZnSe:Ni обусловлена оптическими переходами электронов с основного состояния ${}^{3}T_{1}(F)$ на высокоэнергетические возбужденные состояния с последующим термическим переходом электронов в зону проводимости. Обнаружена полоса фотопроводимости, обусловленная фотоионизацией примеси никеля. Эффективное возбуждение внутрицентровой люминесценции кристаллов ZnSe:Ni осуществляется светом из области собственного поглощения ионов Ni²⁺.

1. Введение

В последние годы кристаллы ZnSe, легированные переходными металлами, получили широкое распространение в качестве материала для активных сред лазеров среднего инфракрасного (ИК) диапазона. Кристаллы ZnSe: Cr были использованы для получения лазерной генерации на 2.4 мкм [1]. На основе кристаллов ZnSe: Fe реализован перестраиваемый лазер с длиной волны излучения 3-5.05 мкм [2]. Использование кристаллов ZnSe: Ni для получения лазерной генерации в ИК области сдерживается трудностью наблюдения люминесцентного излучения в этой области при температурах выше 150 К [3]. В то же время эти кристаллы могут быть использованы в качестве фотоприемников видимого и микроволнового излучения [4]. Поэтому исследование фотопроводимости и фотолюминесценции кристаллов ZnSe: Ni в видимой области спектра является актуальным.

В данной работе исследована и идентифицирована структура спектров фотопроводимости и люминесценции кристаллов ZnSe:Ni в видимой области. Показано наличие полос фотопроводимости и люминесценции, обусловленных присутствием примеси никеля.

Цель данной работы — идентификация спектров фотопроводимости и люминесценции кристаллов ZnSe: Ni в видимой области спектра.

2. Методика эксперимента

Исследуемые образцы были получены методом диффузионного легирования никелем исходно чистых монокристаллов ZnSe. Нелегированные кристаллы получены методом свободного роста на подложке монокристаллического ZnSe, ориентированной в плоскости (111). Преимуществом диффузионного легирования является возможность получать заданные концентрации примеси и профили легирования. Подробное описание методики легирования и результаты исследований оптического поглощения полученных кристаллов приведены в [5]. Содержание никеля в исследуемых кристаллах определялось по величине изменения ширины запрещенной зоны кристаллов ZnSe в зависимости от концентрации примесей никеля. В качестве контрольных получены и исследованы образцы ZnSe, которые подвергались термообработке при тех же температурах, что и кристаллы, легированные никелем.

Спектры фотопроводимости измерялись с использованием монохроматора МУМ-2 с дифракционной решеткой 1200 штр./мм. Источником света служила галогенная лампа, мощность светового потока которой поддерживалась постоянной на различных длинах волн. Для исследования фотопроводимости на кристаллы наносились омические индиевые контакты. Вжигание индия осуществлялось при температуре 600 К с использованием вакуумной установки ВУП-4.

Спектры фотолюминесценции измерялись с помощью призменного спектрографа ИСП-51. Регистрация излучения проводилась фотоэлектронным умножителем ФЭУ-100. Возбуждение люминесценции осуществлялось светодиодами Edison Opto Corporation с энергией квантов в максимуме излучения 3.1, 2.69 и 2.25 эВ и азотным импульсным лазером ИЛГИ-503 с энергией квантов 3.74 эВ.

3. Анализ спектров фотопроводимости

Нелегированные кристаллы ZnSe характеризовались единственной полосой фотопроводимости с максимумом на 2.68 эВ при 300 К (рис. 1, кривая 1). Эта полоса обусловлена межзонными оптическими переходами. При легировании никелем происходит смещение этой полосы в область меньших энергий. Величина этого смещения возрастает с увеличением концентрации никеля и соответствует изменению ширины запрещенной зоны, определенному в работе [5] по спектрам оптического поглощения.

[¶] E-mail: nitsuk@onu.edu.ua

Рис. 1. Спектры фотопроводимости кристаллов ZnSe (1) и ZnSe: Ni (2-4). [Ni] = $2 \cdot 10^{17}$ (2), $4 \cdot 10^{19}$ (3) и $8 \cdot 10^{19}$ см⁻³ (4).

Легирование никелем приводит к появлению дополнительных полос фотопроводимости в области энергии световых квантов 1.6-2.5 эВ (рис. 1, кривые 2-4). Интенсивность этих полос возрастает с увеличением концентрации никеля. Выделяются полосы на 1.72, 1.86, 2.02, 2.14, 2.34 и 2.47 эВ. Установлено, что полосы на 2.47 (полоса I_1) и 1.72 эВ (полоса I_2) меняют свое положение при изменении концентрации никеля. Положение остальных полос не претерпевало изменений при увеличении степени легирования.

На рис. 2 представлены результаты исследований спектров фотопроводимости при различных температурах. При T = 77 К во всех исследуемых кристаллах наблюдается только одна полоса межзонной фотопроводимости (рис. 2, кривая 1). При температурах 300 К и выше наблюдается спектр примесной фотопроводимости (рис. 2, кривые 2–4). При этом резко возрастает интенсивность полосы I_2 (рис. 2, кривая 4). В кристаллах с концентрацией никеля больше $2 \cdot 10^{18}$ см⁻³ интенсивность полосы I_2 превышает величину собственной фотопроводимости.

При увеличении температуры от 300 до 400 К (рис. 2, кривые 2–4) полосы I_1 и I_2 смещаются в область меньших энергий на 100 мэВ. Такое смещение соответствует температурному изменению ширины запрещенной зоны ZnSe. Остальные полосы примесной фотопроводимости не меняют свое положение с ростом температуры, что свидетельствует о внутрицентровом характере этих переходов. Кроме того, положение внутрицентровых полос хорошо совпадает с полосами оптического поглощения B, C, D, E, измеренными нами ранее [5] на этих кристаллах. В работе [6] указанные полосы оптического погловление интерпретировались как обусловленные

внутрицентровыми оптическими переходами, происходящими в пределах иона Ni²⁺. Это свидетельствует о том, что указанные полосы фотопроводимости обусловлены теми же оптическими переходами, что и оптическое поглощение. В таблице приведены энергии оптическое поглощение. В таблице приведены энергии оптических переходов и их идентификация. Эта таблица построена на основе наших исследований оптического поглощения [5], фотопроводимости, люминесценции и расчетов энергетических состояний иона Ni²⁺ в ZnSe, выполненных в [6–9].

Процесс фотопроводимости в исследуемых кристаллах происходит следующим образом. Полоса фотопроводимости I_1 обусловлена оптическими переходами из основного состояния ${}^3T_1(F)$ иона Ni²⁺ в зону проводимости (см. таблицу). Соответствующие процессы можно представить следующим образом:

$$\mathrm{Ni}^{2+} + h\nu \to \mathrm{Ni}^{3+} + e_{\mathrm{c.b.}} \tag{1}$$

Сравнение энергии максимума этой полосы фотопроводимости 2.47 эВ с энергией максимума полосы собственной фотопроводимости, равной 2.66 эВ для кристаллов с $[Ni] = 2 \cdot 10^{17} \text{ см}^{-3}$, позволяет заключить, что уровень основного состояния иона Ni^{2+} располагается на 190 мэВ выше потолка валентной зоны.

Полосы фотопроводимости B, C, D, E, образуются благодаря двухстадийному процессу. Сначала происходят внутрицентровые оптические переходы электронов из основного состояния ${}^{3}T_{1}(F)$ на более высокие возбужденные энергетические уровни иона Ni²⁺ (см. таблицу). Затем происходит тепловой переход электронов из уровней возбудженных состояний в зону проводимости.

Рис. 2. Спектры фотопроводимости кристаллов ZnSe:Ni, измеренные при 77 (1), 300 (2), 350 (3) и 400 K (4). $[Ni] = 2 \cdot 10^{18} \text{ cm}^{-3}$.

Линия	Поглощение <i>E</i> , эВ [5]	Переход	Фотопроводи- мость E , эВ	Люминесцен- ция <i>E</i> , эВ	Стоксов сдвиг <i>Е</i> , мэВ
A	2.57	${}^{3}T_{1}(F) \rightarrow {}^{1}A(G)$ [6,7]	_	2.53	40
I_1	—	${}^{3}T_{1}(F) \rightarrow E_{c}$ [8]	2.47	—	—
В	2.34	${}^{3}T_{1}(F) \rightarrow {}^{1}T_{1}(G)$ [6,7]	2.34	2.30	40
С	2.14	${}^{3}T_{1}(F) \rightarrow {}^{1}E(G)$ [6,7]	2.14	2.12	20
D	2.02	${}^{3}T_{1}(F) \rightarrow {}^{1}T_{1}(D)$ [7,9]	2.02	1.99	30
E	1.86	${}^{3}T_{1}(F) \rightarrow {}^{1}T_{2}(G)$ [9]	1.86	1.83	30
I_2	1.72 [8]	${}^{2}T_{2}(D) \rightarrow {}^{3}T_{1}(F)$ [8,10]	1.72	—	—

Оптические переходы в кристаллах ZnSe: Ni

Образование I_2 полосы с максимумом на 1.72 эВ может быть описано следующим двухстадийным механизмом. Сначала происходят тепловые переходы электронов из валентной зоны на основное состояние образующихся ионов Ni²⁺. Вероятность переходов возрастает с увеличением температуры до 400 К. Примесный центр переходит в состояние Ni⁺. Затем происходят оптические переходы электронов из валентной зоны на основное состояние ${}^2T_2(D)$ иона Ni⁺, вследствие чего локальный центр переходит в состояние Ni²⁺:

$$Ni^{2+} + h\nu \rightarrow Ni^{2+} + p_{v.b.}$$
⁽²⁾

Этот процесс сопровождается образованием дырок в валентной зоне, что подтверждается компенсацией электронной проводимости, наблюдаемой при измерении термоэдс при освещении светом квантов порядка 1.7 эВ.

Исследование люминесценции кристаллов ZnSe:Ni

На рис. 3 приведены спектры фотолюминесценции кристаллов ZnSe и ZnSe:Ni, возбуждаемые излучением лазера с энергией квантов 3.74 эВ. Спектры фотолюминесценции нелегированных кристаллов ZnSe при T = 77 К характеризуются двумя полосами излучения на 2.53 и 2.77 эВ (рис. 3, кривая 1). Полоса излучения на 2.53 эВ (О-полоса) была исследована ранее и связывалась в [11] с нейтральными центрами кислорода (O_{Se}). Энергия термической активации этих центров свечения составила 0.13 эВ. Полоса излучения на 2.77 эВ (полоса EX) связана с излучением экситонов, локализованных на нейтральных вакансиях ценка [12]. В контрольных образцах наблюдались аналогичные линии излучения.

При легировании никелем полосы излучения ЕХ и О смещаются в область меньших энергий (рис. 3, кривые 2, 3). В кристаллах ZnSe:Ni с [Ni] = $4 \cdot 10^{19}$ (рис. 3, кривая 2) полоса ЕХ локализована на 2.66 эВ, полоса О — на 2.42 эВ. В кристаллах ZnSe:Ni с [Ni] = $8 \cdot 10^{19}$ (рис. 3, кривая 3) полоса ЕХ размещается на 2.63 эВ, полоса О — на 2.39 эВ. Величина смещения полос ЕХ и О соответствует изменению ширины запрещенной зоны в зависимости от концентрации Ni в ZnSe. Легирование кристаллов никелем приводит к появлению серии линий излучения 1.82, 1.99, 2.12, 2.32 и 2.54 эВ (рис. 3, кривые 2, 3). Интенсивность этих линий излучения увеличивается с увеличением концентрации никеля, а их спектральное положение остается неизменным.

Как видно из таблицы, наблюдаемые линии излучения коррелируют с полюсами поглощения A, B, C, D, E (см. таблицу). Величина стоксового смещения линий люминесценции относительно соответствующих линий поглощения составляет 20–40 мэВ.

Установлено, что относительная интенсивность полос *A*, *B*, *C*, *D*, *E* люминесценции ZnSe: Ni существенным образом зависит от энергии квантов возбуждающего света (рис. 4, кривые 1-3). Свечение с наименьшей интенсивностью возбуждается лазером с энергией квантов 3.74 эВ. Максимальная интенсивность излучения достигается при возбуждении светодиодами с $E_{ex} = 2.69$ и 2.25 эВ (рис. 4, кривые 2, 3). Это свидетельствует о том,

Рис. 3. Спектры фотолюминесценции кристаллов ZnSe (1) и ZnSe: Ni (2, 3). [Ni] = $4 \cdot 10^{19}$ (2) и $8 \cdot 10^{19}$ см⁻³ (3).

Физика и техника полупроводников, 2012, том 46, вып. 10

Рис. 4. Спектры фотолюминесценции кристаллов ZnSe:Ni. *E*_{ex} = 3.74 (1), 3.1 (2), 2.69 (3) и 2.25 эВ (4).

Рис. 5. Спектры фотолюминесценции кристаллов ZnSe:Ni $([Ni] = 2 \cdot 10^{17} \text{ см}^{-3})$, измеренные при 77 (1) и 300 К (2).

что зона-зонное возбуждение примесной люминесценции кристаллов ZnSe: Ni является малоэффективным. Установлено, что при уменьшении энергии квантов возбуждающего света в спектре люминесценции возрастает удельный вес низкоэнергетичных полос C, D, E, что обусловлено прямым возбуждением центров Ni²⁺. Как видно из рис. 4, при изменении энергии квантов возбуж-

Физика и техника полупроводников, 2012, том 46, вып. 10

дающего света положение максимумов полос излучения не менялось.

При возбуждении излучением светодиода с энергией квантов в максимуме излучения 2.25 эВ на низкоэнергетическом крае полосы излучения E отчетливо выделяются полосы излучения на 1.73 и 1.78 эВ (полосы E_1 и E_2 на кривой 4, рис. 4). Наличие указанных полос излучения может быть объяснено спин-орбитальным расщеплением основного состояния ${}^{3}T_1(F)$ иона Ni²⁺.

С увеличением температуры от 77 до 300 К интенсивность полос излучения A, B, C, D, E уменьшается при неизменном положении их максимумов (рис. 5). Аналогичное поведение при изменении температуры наблюдалось и у соответствующих линий поглощения. Это свидетельствует о том, что полосы оптического поглощения и люминесценции A, B, C, D, E обусловлены внутрицентровыми оптическими переходами, происходящими в пределах иона никеля. Наблюдаемое смещение О-полосы соответствует температурному изменению ширины запрещенной зоны ZnSe (140 мэВ). Подобное поведение полос излучения характерно для рекомбинационной люминесценции.

5. Заключение

Проведенные исследования позволяют сделать следующие выводы.

1. Показано, что высокотемпературная длинноволновая фотопроводимость кристаллов ZnSe: Ni обусловлена внутрицентровыми оптическими переходами, происходящими в пределах ионов Ni²⁺ с последующими тепловыми переходами электронов с уровней возбужденных состояний Ni²⁺ в зону проводимости.

2. Определена глубина залегания уровня основного состояния ${}^{3}T_{1}(F)$ иона Ni²⁺, который располагается на 190 мэВ выше потолка валентной зоны.

3. Установлено, что легирование никелем приводит к появлению серии линий излучения в видимой области спектра. Обнаруженные полосы люминесценции кристаллов ZnSe:Ni являются результатом внутрицентровых переходов в ионе Ni²⁺.

Список литературы

- V.V. Fedorov, S.B. Mirov, A. Gallian, D.V. Badikov, M.P. Frolov, Yu.V. Korostelin, V.I. Kozlovsky, A.I. Landman, Yu.P. Podmar'kov, V.A. Akimov, A.A. Voronov. IEEE J. Quant. Electron., 42 (9), 907 (2006).
- [2] I.T. Sorokina, E. Sorokin, S.B. Mirov, V.V. Fedorov, V. Badikov, V. Panyutin, K. Schaffers. Optics Lett., 2002, 27, 1040 (2002).
- [3] L.D. DeLoach, R.H. Page, G.D. Wilke, S.A. Payne, W.F. Krupke. IEEE J. Quant. Electron., **32**, 885 (1996).
- [4] J.M. Baranowski, J.M. Noras, J.W. Allen. J. Phys. C: Sol. St. Phys., 7, 4529 (1974).
- [5] Ю.Ф. Ваксман, Ю.А. Ницук, В.В. Яцун, А.С. Насибов, П.В. Шапкин. ФТП, 44 (2), 149 (2010).

- [6] С.А. Казанский, А.И. Рыскин, Г.И. Хилько. ФТТ, 10 (8), 2417 (1968).
- [7] О. Маделунг. Физика твердого тела. Локализованные состояния (М., Наука, 1985).
- [8] J.M. Noras, J.W. Allen. J. Phys. C: Sol. St. Phys., 13, 3511 (1980).
- [9] A. Zunger. Sol. St. Phys., 39, 276 (1986).
- [10] H.R. Szawelska, J.W. Allen. J. Phys. C: Sol. St. Phys., 10, 2115 (1977).
- [11] Ю.Ф. Ваксман. ФТП, 29 (2), 346 (1995).
- [12] Г.Н. Иванова, Д.Д. Недеогло, А.В. Симашкевич, К.Д. Сушкевич. ФТП, **14** (1), 31 (1980).

Редактор Т.А. Полянская

Investigation of photoconductivity and luminescence of ZnSe: Ni crystals in the visible spectral region

Yu.A. Nitsuk, Yu.F. Vaksman, V.V. Yatsun

Odessa Mechnikov National University, 65082 Odessa, Ukraine

Abstract The photoconductivity and photoluminescence of ZnSe: Ni crystals in the visible region of spectrum are investigated. It is shown that high-temperature impurity photoconductivity of ZnSe: Ni crystals is caused by the optical transitions of electrons from the basic state ${}^{3}T_{1}(F)$ to excited high-energy levels of Ni²⁺ ion with their subsequent thermal activation in the conduction band. The photoconductivity line conditioned by the photoionization of Ni impurity is founded. The effective excitation of ZnSe: Ni crystals intracenter luminescence is carried out by the light from the own absorption range of Ni²⁺ ions.