Влияние температуры осаждения пленки AIO_x методом спрей-пиролиза на ее пассивирующие свойства в конструкции кремниевого солнечного элемента

© Г.Г. Унтила[¶], Т.Н. Кост, А.Б. Чеботарёва, М.Б. Закс*, А.М. Ситников*, О.И. Солодуха*

Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына МГУ им. М.В. Ломоносова, 119991 Москва, Россия * ООО "Солнечный ветер",

350000 Краснодар, Россия

(Получена 21 ноября 2011 г. Принята к печати 28 ноября 2011 г.)

Исследовано влияние температуры осаждения пленки AlO_x в диапазоне $330-530^{\circ}$ C методом спрейпиролиза на параметры кремниевых (n^+pp^+)Cz-Si/AlO_x солнечных элементов при тыльном освещении. Обнаружено, что с ростом температуры осаждения AlO_x уменьшаются все тыльные параметры: фототок с 25.4 до 24.1 мA/см², фотонапряжение с 611 до 598 мВ, эффективность с 12.2 до 10.9%, что свидетельствует об ухудшении пассивации p^+ -поверхности пленкой AlO_x. Сделан вывод, что с увеличением температуры осаждения AlO_x растет величина положительного заряда, встроенного в нестехиометрический межфазный слой SiO_x, образующийся между с-Si и AlO_x в процессе осаждения AlO_x, что приводит к экранированию отрицательного заряда, локализованного на границе AlO_x/SiO_x, и соответственно к уменьшению индуцированной полем пассивации.

1. Введение

В последнее время пассивация кремниевых солнечных элементов (СЭ) с помощью оксида алюминия AlO_x является одной из наиболее актуальных тем в области фотовольтаики. Благодаря отрицательному заряду [1] пленки AlO_x могут обеспечить высокоэффективную пассивацию слабо и сильно легированного кремния *p*-типа. Встроенный отрицательный заряд индуцирует аккумулятивный слой на поверхности *p*-Si, что приводит к эффективной, индуцированной электрическим полем пассивации.

Эта идея не является новой, в 1980-х годах Jaeger и Hezel [2] использовали нанесенный методом APCVD (atmospheric pressure chemical vapor deposition) оксид алюминия для пассивации поверхности СЭ, достигнув эффективной скорости поверхностной рекомбинации SRV (surface recombination velocity) около 200 см/с на 2 Ом · см монокристаллическом кремнии *p*-типа.

После 2004 г. интерес к AlO_x возродился благодаря работам Agostinelli et al., которые получил низкие значения SRV до 10 см/с на кремнии *p*-типа (2 Ом · см), выращенном методом Чохральского (Cz-Si) с помощью метода thermal atomic layer depositrion (ALD) [3,4].

Наилучшая поверхностная пассивация была продемонстрирована с помощью метода PA-ALD (plasma assisted ALD). Ноех et al. получил SRV до 2 см/с на *p*-Si с сопротивлением 2 Ом · см, выращенном безтигельной зонной плавкой (Fz — Float zone) [5], а также великолепную пассивацию легированных бором эмиттеров, с концентрацией легирования около 10^{19} см⁻³. Это позволило получить плотность тока насыщения эмиттера ~ 10 fA/см² на *p*⁺-эмиттерах с слоевым сопротивлением более 100 Ом/ \square [6]. Анализ зависимостей

Пленки AlO_x, полученные методом ALD, были успешно применены к лабораторным СЭ. Schmidt et al. достигли эффективности преобразования 20.6% на пластинах Fz-Si *p*-типа (0.5 Ом · см) толщиной 300 мкм [7]. Наконец, Вепіск et al. достигли рекордного значения эффективности для СЭ из кремния *n*-типа, а именно в 2008 г. — 23.2% на пластинах FZ-Si (1 Ом · см) толщиной 250 мкм [8]. В 2009 г. этот результат был увеличен до 23.4% [9].

Однако технология осаждения ALD обладает существенным недостатком, поскольку за 1 цикл, который соответствует росту одного атомного слоя ($\sim 1.2 \, {\rm \AA}$), необходимо время порядка 5 с [6]. Это приводит к статической скорости осаждения ~ 1.5 нм/мин. По этой причине данный метод невозможно было применить в индустриальном широкомасштабном производстве. Vermang et al. [10] протестировали пригодность пленок AlO_x , осажденных методом Thermal ALD, к индустриальным СЭ конструкции PERC (passivated emitter and rear cells). Было обнраружено, что однородность времени жизни, полученная с помощью двухслойной пассивирующей структуры Al_2O_3/SiN_x , оказалась неудовлетворительной, что может объяснить тот факт, что не было получено увеличения напряжения холостого хода Voc по сравнению с обычной пассивацией SiO_x/SiN_x.

Тем не менее оксид алюминия можно наносить различными методами, включая Plasma Enhanced Chemical Vapour Deposition (PECVD) [11,12], APCVD [2],

плотности тока насыщения от слоевого сопротивления p^+ -эмиттеров, пассивированных пленкой PA-ALD AlO_x, а также обработанных термическим SiO₂, аморфным кремнием *a*-Si:Н и нитридом кремния *a*-SiN_x:Н [6], показывает, что пленка оксида алюминия наилучшим образом пассивирует поверхность p^+ -эмиттера, что является необходимым условием для создания высокоэффективных СЭ из кремния *n*-типа.

[¶] E-mail: GUunita@mics.msu.su

sol-gel [3], и распылением (sputtering) [4,13,14]. Saint-Cast et al. с помощью установки inline PECVD достиг SRV~ 10 см/с на полированной поверхности Fz-Si *p*-типа (1 Ом · см), что сравнимо с рекордными значениями, полученными методом PA-ALD. На этом оборудовании была достигнута высокая статическая скорость осаждения 100 нм/мин, что по меньшей мере на порядок быстрее, чем PA-ALD, причем без значительного ухудшения качества пассивации.

Нами впервые был использован метод ультразвукового спрей-пиролиза (ругоsol) для синтеза пленок AlO_x с целью пассивации p^+ -Si поверхности СЭ на основе (n^+pp^+) с-Si структуры [15] с планарной p^+ -поверхностью. Метод ругоsol реализуется на простом оборудовании, дешев, но высокопроизводителен, т.е. отвечает требованиям промышленного производства СЭ. Для температуры процесса 400° С скорость роста пленки составила ~ 50 нм/мин.

В данной работе исследовано влияние температуры осаждения AlO_x методом ругоsol на параметры двухсторонних СЭ конструкции Indium Fluorine Oxide (IFO)/ (n^+pp^+) Cz-Si/AlO_x при тыльном освещении, которые максимально чувствительны к пассивирующим свойствам пленки AlO_x . Кроме того, в отличие от предыдущей работы [15] в данном эксперименте p^+ -поверхность, на которую наносили пленку AlO_x , была текстурирована.

2. Методика эксперимента

Для эксперимента использовали Cz-Si пластины размером 125×125 мм *р*-типа проводимости с удельным сопротивлением 3-6 Ом · см, ориентации (100) и толщиной 200 мкм, с которых щелочным травлением удалили нарушенный слой, образующийся при резке слитка на пластины, и провели текстурирование пластин стандартным для промышленного производства методом (травление в смеси щелочи и изопропилового спирта). Структуры $(n^+ p p^+)$ Cz-Si были получены диффузией бора и фосфора из нанесенных боросилиткатного и фосфоросиликатного стекла. Слоевое сопротивление R_p тыльной стороны после диффузии составило $R_p \approx 20 \, \mathrm{Om}/\Box$. Профиль бора после диффузии показан на рис. 1. Слоевое сопротивление n^+ -эмиттера составило ~ 60 Ом/ \Box . После удаления стекол в 4% HF p^+ -поверхность обработали в травящем растворе HNO3: H2O: HF, в результате чего был удален слой толщиной ~ 325 нм, а слоевое сопротивление выросло до $R_p \approx 37 \, \text{Om}/\square$. На рис. 1 показана точка на профиле концентрации бора, соответствующая этому травлению. Слоевое сопротивление n^+ -эмиттера травлением было доведено до ~ 90 Ом/ \Box . Затем пластины были разрезаны на фрагменты размером 25×25 мм алмазным скрайбером.

Структуры IFO (n^+pp^+) Cz-Si/AlO_x получали нанесением пленок AlO_x и IFO методом пиролиза аэрозоли пленкообразующего раствора, полученной ультразвуковым способом (pyrosol). Схема установки для нанесения пленок была описана ранее [16].

Рис. 1. Профиль концентрации бора в p^+ -слое структуры (n^+pp^+) Сz-Si с тыльным слоевым сопротивлением $\sim 20 \text{ Om}/\square$. Точка на кривой соответствует слоевому сопротивлению $R_p \approx 37 \text{ Om}/\square$.

Сначала осаждали пленку AlO_x толщиной ~ 100 нм из раствора 0.2 M Al(acetylacetonate)₃+2 M H₂O в метаноле, используя газ-носитель аргон. Температуру осаждения варьировали от 330 до 530°C. Непосредственно перед нанесением пленок AlO_x структуры были отмыты в перекисно-аммиачном растворе (RCA очистка: 10% NH₄OH+10% H₂O₂ в H₂O) и 4% HF.

Затем осаждали пленку IFO толщиной ~ 80-100 нм из пленкообразующего раствора $0.2 \,\mathrm{M}\,\mathrm{InCl}_3 + +0.05 \,\mathrm{M}\,\mathrm{NH}_4\mathrm{F} +0.1 \,\mathrm{M}\,\mathrm{H}_2\mathrm{O}$ в метаноле при температуре 475°C, используя газ-носитель аргон +5% кислорода [17]. Расход газа-носителя в обоих случаях был равен 800 мл/мин. Перед нанесением пленок IFO n^+ -поверхность структур $(n^+pp^+)\mathrm{Cz}$ -Si/AlO_x была освежена в 4% HF.

После такой последовательности осаждения все пленки AlO_x после осаждения прошли термообработку при температуре 475°C.

Для изготовления контактов к тыльной стороне пленку AlO_x накрывали маской из клейкой ленты, в которой предварительно были сформированы окна в виде параллельных полосок с шагом 2 мм, и вскрывали окна в пленке AlO_x травлением в HF. После на тыльную сторону наносили эвтектику InGa и маску удаляли, в результате получали полоски InGa шириной ~ 200 мкм, которые в области окон осуществляли контакт к *p*⁺-поверхности. Сборку СЭ завершали формированием проволочных контактов к обеим сторонам СЭ согласно конструкции Laminated Grid Cell (LGCell) [18]: медные проволоки диаметром 60 мкм, покрытые низкотемпературной контактной композицией, с шагом 2 мм прикрепляли к обеим сторонам СЭ с помощью ламинирующей пленки методом низкотемпературного ламинирования $(T \approx 165^{\circ} \text{C})$, причем на тыльной стороне проволоки укладывали перпендикулярно полоскам InGa.

С целью сравнения также был изготовлен СЭ без пленки AlO_x на тыльной поверхности, однако с аналогичной контактной системой. В этом случае тыльная *p*⁺-поверхность между InGa-полосками была покрыта ламинирующей пленкой.

Для измерения спектральных кривых внешней квантовой эффективности EQE (external quantum efficiency) использовались осветитель ЛОС-2 с ксеноновой лампой 1000 Вт и набор интерференционных светофильтров. Угол падения лучей на СЭ не превышал 3°. Для калибровки использовали образец, проверенный в Fraunhofer ISE. Фототок СЭ получали перемножением полученной кривой внешнего спектрального отклика на стандарт солнечного спектра AM 1.5G 1000 Вт/м² (ASTM G173). Спектры полного отражения $R(\lambda)$ измеряли на спектрометре ЛОМО-спектр СФ-56 с интегрирующей полусферой. Спектры внутренней квантовой эффективности IQE (internal quantum efficiency) вычисляли как IQE = EQE/(1 - R).

Для измерения световых вольт-амперных характеристик (ВАХ) использовали прибор Keithley 2602A System Source Meter. СЭ прикрепляли с помощью теплопроводной пасты к термостатируемому столику, температуру которого $25 \pm 0.1^{\circ}$ стабилизировали термостатом Нааке F3. СЭ освещали галогеновой лампой 1000 Вт через водяной фильтр толщиной 4 см.

3. Результаты

На рис. 2 приведены спектры внутренней квантовой эффективности $IQE(\lambda)$ и отражения $R(\lambda)$ при тыльном освещении для трех СЭ: Т330, Т530, на которые пленку AlO_x наносили соответственно при температуре 330 и 530°С, а также для СЭ сравнения Т0 без пассивирующей пленки оксида алюминия.

Полученные кривые демонстрируют, что, во-первых, спектры отражения практически не отличаются с точ-

Рис. 2. Спектры внутренней квантовой эффективности $IQE(\lambda)$ (кривые 1, 2, 3) и отражения $R(\lambda)$ (1'-3') при тыльном освещении для солнечных элементов T330 (1, 1'), T530 (2, 2') и T0 (3, 3').

Рис. 3. Влияние температуры осаждения пленки AlO_x методом ругоsol на параметры двухсторонных солнечных элементов конструкции IFO/ (n^+pp^+) Cz-Si/AlO_x при тыльном освещении: эффективность *Eff* (1), ток короткого замыкания J_{sc} (2), напряжение холостого хода U_{oc} (3) и фактор заполнения *FF* (4).

ностью до влияния площади InGa-контактов, во-вторых, нанесение пленки AlO_x заметно увеличивает тыльный отклик и, в-третьих, тыльный отклик растет с уменьшением температуры осаждения пленки.

Таким образом, уменьшение температуры осаждения AlO_x методом pyrosol с 530 до 330°C привело к росту фототока J_{sc} (при освещении с тыла СЭ) с 24.1 до 25.4 мА/см² (на 5.4%). Однако, как видно из рис. 3, увеличился не только фототок, но и все остальные параметры СЭ: напряжение холостого хода U_{oc} с 598 до 611 мВ (на 2.2%), фактор заполнения *FF* с 75.8 до 78.7% (на 3.8%) и соответственно эффективность *Eff* с 10.9 до 12.2% (на ~ 12%).

Для сравнения приведем параметры СЭ ТО без пассивирующей пленки AlO_x: $J_{sc} = 19.7 \text{ мA/cm}^2$ (на 22% меньше, чем у СЭ ТЗЗО), $U_{oc} = 592 \text{ мB}$ (на 3% меньше), FF = 77.3% (на 2%) и, наконец, *Eff*=9% (на 26% меньше).

4. Обсуждение

Таким образом, проведенное в данной работе исследование влияния температуры осаждения пленки AlO_x методом спрей-пиролиза на p^+ -поверхность кремниевых СЭ со структурой IFO/ (n^+pp^+) Cz-Si/AlO_x обнаружило, что увеличение температуры осаждения пленки AlO_x ухудшает параметры СЭ (ток короткого замыкания и напряжение холостого хода) при тыльном освещении, что напрямую свидетельствует об ухудшении пассивации тыльной p^+ -поверхности пленкой AlO_x. Для интерпретации этого результата рассмотрим литературные данные по осаждению пленок AlO_x на кремний.

Многочисленные исследования пассивации кремниевых пластин пленками AlO_x выявили важные закономерности, общие для всех методов осажения. Способность пленки AlO_x пассировать поверхность кремниевых пластин основана на комбинации химической пассивации (уменьшение дефектов на границе раздела) и полевой пассивации (электростатическое экранирование неосновных носителей заряда), которая в свою очередь обусловлена большой плотностью связанного отрицательного заряда, локализованного на границе раздела с-Si/AlO_x. Величина этого заряда после отжига достигает 10^{13} см⁻³ [1,19,20].

Эффективная пассивация для метода PA-ALD достигается уже при толщине пленки AlO_x всего 5 нм [21,22]. Исследование оптическим методом генерации второй гармоники структур с пленками AlO_x толщиной 2–20 нм показало, что в этом диапазоне толщин величина заряда не зависит от толщины пленки, а ухудшение пассивации при толщине менее 5 нм связывают с уменьшением химической пассивации [21].

Для пассивации поверхности ключевую роль играет межфазный слой SiO₂ между с-Si и AlO_x [1,23], поскольку именно на границе раздела AlO_x/SiO_x формируется связанный отрицательный заряд [4,24].

Высококачественные пленки AlO_x осаждают при низкой температуре, например: 200-300°С — методом РЕСVD [11,12,23,25], 150-200°С — методами PA-ALD и Thermal ALD [26], и даже при комнатной — методом Sputtering [13,14]. Однако эти свежеосажденные пленки не пассивируют поверхность, и для ее активации пленки отжигают при температуре 300-900°С. В работе [1] проведен обзор результатов для различных методов осаждения, а также условий отжига. Для низкотемпературных пленок слой SiO₂ либо не обнаруживали, либор находили нестехиометричный слой SiO_x. И только в результате отжига структур появляется слой SiO₂, а нестехиометричный SiO_x превращается в стехиометричный SiO₂ [14,23,25,27] в результате диффузии избыточного кислорода в пленке AlO_x к границе раздела [23,25]. Одновременно возникают отрицательный заряд и пассивация поверхности.

Таким образом, приведенный анализ литературы показывает, что в пассивации кремниевых пластин *p*-типа ключевую роль играют наличие и свойства (стехиометричность) межфазного слоя SiO_x в структуре $AlO_x/SiO_x/Si$.

При осаждении методом pyrosol пленок оксидов металлов на кремниевые пластины на границе раздела пленка/Si неизбежно образуется нестехиометрический слой оксида кремния SiO_x, в котором локализован встроенный положительный заряд [28–30]. При увеличении температуры осаждения пленки AlO_x, по-видимому, происходит рост величины встроенного в SiO_x положительного заряда по аналогии с тем, как это происходит при осаждении на кремний пленок оксида индия (нелегированных, а также легированных оловом или фтором) методом pyrosol [17,31].

В случае структуры $AlO_x/SiO_x/Si$ увеличение положительного заряда в слое SiO_x приводит к экранированию действия отрицательного заряда, локализованного на границе AlO_x/SiO_x , и тем самым уменьшает индуцированную полем пассивацию.

Ухудшение пассивации означает увеличение скорости рекомбинации на границе раздела p^+ -Si/SiO_x, что проявляется, во-первых, в снижении величины J_{sc} за счет уменьшения квантовой эффективности разделения заряда, причем для случая освещения с тыльной стороны ухудшение происходит в широком спектральном диапазоне. Во-вторых, увеличение скорости поверхностной рекомбинации на тыльной стороне СЭ приводит к росту темнового тока диода, и именно этот эффект в основном определяет величину падения U_{oc} на 13 мВ, так как если бы изменение U_{co} определялось только изменением J_{sc} (с $J_{sc1} = 25.4$ до $J_{sc2} = 24.1$ мА/см²), то U_{co} уменьшилось бы всего на $kT/e \ln(J_{sc1}/J_{sc2}) = 1.35$ мВ.

Наконец, наблюдаемое уменьшение фактора заполнения световых вольт-амперных характеристик, скорее всего, вызвано технологической проблемой, которая связана с тем, что пленки AlO_x химически нестабильны, и поэтому, после ее нанесения нельзя проводить полноценную стандартную очистку RCA. По-видимому, при нанесении пленки AlO_x n^+ -поверхность загрязняется, при более высокой температуре это загрязнение сильнее, и оно не до конца удаляется обработкой только в 4% HF.

5. Заключение

В данной работе впервые исследовано влияние температуры осаждения пленки AlO_x методом pyrosol на параметры двухсторонних кремниевых СЭ конструкции "IFO/ (n^+pp^+) Cz-Si/AlO_x" при тыльном освещении, включая спектральные кривые внешней квантовой эффективности, которые максимально чувствительны к пассивирующим свойствам пленки AlO_x. Обнаружено, что увеличение температуры осаждения пленки AlO_x с 330 до 530°С заметно ухудшает параметры на тыльной поверхности СЭ (эффективность уменьшилась от 12.2 до 10.9%), что напрямую свидетельствует об ухудшении пассивации тыльной p^+ -поверхности пленкой AlO_x. Сделан вывод о том, что с увеличением температуры осаждения пленки AlO_x растет величина положительного заряда, встроенного в нестехиометрический межфазный слой SiO_x, который образуется между с-Si и AlO_x в процессе осаждения пленки AlO_x. Увеличение положительного заряда в слое SiO_x приводит к экранированию действия отрицательного заряда, локализованого на границе AlO_x/SiO_x, и тем самым уменьшает индуцированную полем пассивацию.

Работа выполнена при поддержке ведущей научной школы НШ-3322.2010.2 и Российского фонда фундаменталных исследований (гранты № 11-08-01331, 10-08-01171).

Список литературы

- B. Hoex, J.J. H. Gielis, M.C.M. van de Sanden, W.M.M. Kessels. J. Appl. Phys., **104** 113703 (2008).
- [2] R. Hezel, K. Jaeger. J. Electrochem. Soc., 136, 518 (1989).
- [3] G. Agostinelli, P. Vitanov, Z. Alexieva, A. Harizanova, H.F.W. Dekkers, S. De Wolf, G. Beaucarne. Proc. 19th Europ. Photovolt. Splar Energy Conf. (Paris, 2004) p. 132.
- [4] G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H.F.W. Dekkers, S. De Wolf, G. Beaucarne. Sol. Energy Mater. Solar. Cells, 90, 3438 (2006).
- [5] B. Hoex, S.B.S. Heil, E. Langereis, M.C.M. van de Sanden, W.M.M. Kessels. Appl. Phys. Lett., 89, 042 112 (2006).
- [6] B. Hoex, J. Schmidt, R. Bock, P.P. Altermatt, M.C.M. d.Sanden, W.M.M. Kessels. Appl. Phys. Lett., 91, 112 107 (2007).
- [7] J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M.C.M. van de Sanden, W.M.M. Kessels. Photovolt.: Res. Appl., 16, 461 (2008).
- [8] J. Benick, B. Hoex, M.C.M. van de Sanden, W.M.M. Kessels, O. Schultz, S.W. Glunz. Appl. Phys. Lett., 92, 253 504 (2008).
- [9] J. Benick, B. Hoex, G. Dingenmans, W.M.M. Kessels, A. Richter, M. Hermle, S.W. Glunz. Proc. 24th Europ. Photovolt. Solar Energy Conf. (Hamburg, 2009) p. 863.
- [10] B. Vermang, X. Loozen, C. Allebe, J. John, E. Van Kerschaver, J. Poortmans, R. Mertens. Proc. 24th Europ. Photovolt. Solar Energy Conf. (Hamburg, 2009) p. 1051.
- [11] S. Miyajima, J. Irikawa, A. Yamada, M. Konagai. Proc. 24th Europ. Photovolt. Solar Energy Conf. (Valencia, 2009) p. 1029.
- [12] P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, R. Preu. Appl. Phys. Lett., 95, 151 502 (2009).
- [13] T.-T. Li, A. Cuevas. Phys. Status Solidi, **RRL 3**, 160 (2009).
- [14] T.-T. Li, S. Ruffell, M. Tucci, Y. Mansoulie, Ch. Samundsett, S. DeIullis, L. Serenelli, A. Cuevas. Sol. Energy Mater. Solar. Cells, 95, 69 (2010).
- [15] G. Untila, T. Kost, A. Chebotareva, M. Zaks, A. Sitnikov, O. Solodukha. Proc. 25th Europ. Photovolt. Solar Energy Conf. (Valencia, 2010) p. 2592.
- [16] A. Chebotareva, G. Untila, T. Kost, S. Jorgensen, A.G. Ulyashin. Thin Sol. Films, 515, 8505 (2007).
- [17] G.G. Untila, T.N. Kost, A.B. Chebotareva. Thin Sol. Films, 518, 1345 (2009).
- [18] Г.Г. Унтила, Т.Н. Кост, А.Б. Чеботарёва, М.Б. Закс, А.М. Ситников, О.И. Солодуха. ФТП, **39**, 1393 (2005). [Semiconductors, **39**, 1349 (2005)].
- [19] B. Hoex, J. Schmidt, P. Pohl, M.C.M. van de Sanden, W.M.M. Kessels. J. Appl. Phys., **104**, 044 903 (2008).
- [20] J.J.H. Gielis, B. Hoex, M.C.M. van de Sanden, W.M.M. Kessels. J. Appl. Phys., **104**, 073 701 (2008).
- [21] N.M. Terlinden, G. Dingemans, M.C.M. van de Sanden, W.M.M. Kessels. Appl. Phys. Lett., 96, 112 101 (2010).
- [22] G. Dingemans, R. Seguin, P. Engelhart, M.C.M. van de Sanden, W.M.M. Kessels. Phys. Status Solidi, RRL 4, 10 (2010).

- [23] A.R. Chowdhuri, C.G. Takoudis, R.F. Klie, N.D. Browning. Appl. Phys. Lett., 80, 4241 (2002).
- [24] J.A. Aboad, D.R. Kerr, E. Bassous. J. Electrochem. Soc.: Solid-State Sci. Technol., 120, 1130 (1973).
- [25] R.F. Klie, N.D. Browning, A.R. Chowdhuri, C.G. Takoudis. Appl. Phys. Lett., 83, 1187 (2003).
- [26] G. Dingemans, M.C.M. van de Sanden, W.M.M. Kessels. Electrochem., and Solid-State Lett., 13, H76-H79 (2010).
- [27] S.-C. Ha, E. Choi, S.-H. Kim, J.S. Roh. Thin Sol. Films, 476, 252 (2005).
- [28] J. Shewchun, J. Dubow, C.W. Wilmsen, R. Singh, D. Burk, J.F. Wager. Appl. Phys., 50, 2832 (1979).
- [29] H. Kobayashi, Y. Kogetsu, T. Ishida, Y. Nakato. J. Appl. Phyt., 74, 4756 (1993).
- [30] H. Kobayashi, T. Ishida, Y. Nakato, H. Tsubomura. J. Appl. Phys., 69, 1736 (1991).
- [31] Г.Г. Унтила, Т.Н. Кост, А.Б. Чеботарёва, М.Б. Закс, А.М. Ситников, О.В. Солодуха. ФТП, 42, 406 (2008).

Редактор Т.А. Полянская

Effect of the temperature during the deposition of AIO_x films by spray pyrolysis on their passivation properties in silicon solar cell

G.G. Untila, T.N. Kost, A.B. Chebotareva, M.B. Zaks*, A.M. Sitnikov*, O.I. Solodukha*

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moskow State University, 119991 Moskow, Russia * Co Ltd "Solar wind", 350000 Krasnodar, Russia

Abstract Effect of AlO_x deposition temperature by spray pyrolisys on the rear conversion parameters of the silicon $(n^+pp^+)Cz$ -Si/AlO_x solar cells was studied in the range $330-530^{\circ}C$. We found out that all rear parameters decreased with the rise of AlO_x deposition temperature: the photocurrent — from 25.4 down to 24.1 mA/cm², the photovoltage — from 611 to 598 mV, the efficiency — from 12.2 down to 10.9% that indicated worse passivation of p^+ -surface by AlO_x film. We concluded that the rise of AlO_x deposition temperature promoted the increase of positive charge embedded in the nonstoichiometric interfacial SiO_x layer, formed between c-Si and AlO_x during AlO_x film deposition, that resulted in the screening of negative charge on AlO_x/SiO_x boundary and, consequently, to the decrease of field-unduced passivation.