Создание и исследования фоточувствительности гетероструктур Ох/*n*-GaP

© В.Ю. Рудь[¶], Ю.В. Рудь^{*}, Е.И. Теруков^{*}, Т.Н. Ушакова^{*}

Санкт-Петербургский государственный политехнический университет, 195257 Санкт-Петербург * Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург

(Получена 22 ноября 2011 г. Принята к печати 28 ноября 2011 г.)

Методом безвакуумного термического взаимодействия кристаллов фосфида галлия с окружающей воздушной средой созданы первые фоточувствительные гетероструктуры Ox/n-GaP (Ox — естественный окисел). Выявлен фотовольтаический эффект гетероструктур, который преобладает при их освещении со стороны окисной пленки. Анализируются первые спектральные зависимости относительной квантовой эффективности фотопреобразования полученных гетероструктур, определен характер межзонных переходов и оценены значения ширины запрещенной зоны фосфида галлия. Сделан вывод о возможностях применения безвакуумного термического окисления гомогенных монокристаллов *n*-GaP в окружающей воздушной атмосфере для создания широкодиапазонных фотопреобразователей оптических излучений.

Полупроводниковые фотопреобразователи и источники оптических излучений на кристаллах алмазоподобных полупроводников $A^{III}B^V$, $A^{II}B^{VI}$, $A^{III}B^{VI}$ и др. создаются в условиях вакуума путем диффузии примесей, а также жидкостной, газофазной и молекулярно-пучковой эпитаксии [1,2]. В последние годы вскрыты возможности упростить процесс получения фоточувствительных гетероструктур (ГС) и провести их создание в воздушной среде, отказавшись от вакуумирования [2–4]. Данная работа посвящена созданию новых гетероструктур с естественным окислом (Ox)/GaP, а также первым экспериментальным исследованиям их фотоэлектрических свойств.

1. Для создания структур применялись ориентированные в кристаллографических плоскостях (100) и (111) монокристаллические пластины фосфида галлия *n*и *p*-типа проводимости с концентрацией свободных электронов и дырок $10^{16}-10^{18}$ см⁻³ при T = 300 К. Электрически однородные монокристаллы выращены методом безтигельной зонной перекристаллизации близкого к стехиометрии GaP-расплава. Для создания гетероструктур использовались пластины со средними размерами $5 \times 5 \times 0.3$ мм, поверхность которых после шлифования на абразивных порошках с различным размером зерна подвергалась воздействию полирующего травителя, после чего тщательно промывалась деионизованной водой и просушивалась.

Проведенный нами цикл экспериментов по выявлению влияния условий термообработки гомогенных пластин GaP в окружающей воздушной среде позволил установить, что на поверхности прошедших термообработку пластин возникает сплошная тонкая (~ 1 мкм) пленка золотисто-лилового цвета с зеркально-гладкой наружной поверхностью. Важно отметить, что созданные пленки естественного окисла (Ox) обладают высокой адгезией по отношению как к поверхностям естественных сколов, так и подвергнутым шлифовке с последующей химической полировкой плоскостям пластин GaP. Важно сразу отметить, что образование интерференционных пленок на поверхности GaP прекращалось, как только в ростовой камере создавался вакуум не ниже 10^{-3} мм. рт. ст. Из обнаруженной четкой связи факта появления интерференционной пленки Ох на подложке GaP с наличием в ростовой камере воздушной атмосферы вытекает предположение о том, что на поверхности GaP происходят два разных процесса:

а) образование пленки собственного окисла $Ga_2O_3\ [5]$ и

б) диффузионный выход фосфора из кристалла GaP в атмосферу.

Экспериметальные результаты исследований свидетельствуют о том, что наличие воздуха и присутствующего в нем кислорода играют определяющую роль в образовании интерференционных пленок Ох на поверхности подложки GaP. Из сопоставления обнаруженной четкой взаимосвязи факта появления интерференционной пленки Ох с составом среды термообработки пластины GaP вытекает предположение о том, что наступающее при этом в приповерхностной области исходной пластины GaP взаимодействие компонент бинарного соединения с воздушной атмосферой как раз и завершается в соответствии с результатами [5] образованием в приповерхностной зоне пластины GaP собственного окисла Ga₂O₃ и диффузионным выходом фосфора из приповерхностной области подложки GaP. Как только воздух из ростовой камеры откачивается, процесс дальнейшего образования интерференционной пленки Ох прерывается. Этот экспериментальный факт дает основания высказать предположение о том, что наличие воздуха и содержащегося в его составе кислорода играют определяющую роль в образовании пленки Ох на поверхности GaP.

[¶] E-mail: yuryrud@mail.ioffe.ru

Рис. 1. Стационарная вольт-амперная характеристика гетероструктуры Ox/*n*-GaP; *T* = 300 K. Образец 7.

Такой самоорганизованный процесс приповерхностного окисления фосфида галлия представляется достаточно производительным и к тому же он не требует дорогостоящего оборудования. Он достаточно легко контролируется температурой и временем окисления GaP и позволяет осуществлять рост пленки Ох на неограниченных площадях. Отметим также, что предпринятое нами проведение окисления пластин GaP с ориентациями (111) и (100) не привело к обнаружению влияния кристаллографической ориентации на результаты процесса термообработки.

После окончания процедуры воздушной термообработки пластин GaP посредством механической и в последующем химической полировки пленка собственного окисла Ох оставлялась только на выбранной одной плоскости пластины GaP и таким образом получение ГС Ох/*n*-GaP обычно сводилось только к выбору наиболее однородной по своей окраске пленки.

Омические контакты к подложке *n*-GaP создавались посредством электрического разряда на воздухе между концами двух тонких ($t \approx 20-50$ мкм) проводников из Ag или Pt, тогда как к пленке Ох омический контакт создавался с помощью применения контактола на основе Ag.

2. Измерения первых вольт-амперных характеристик (ВАХ) анизотипных ГС Ох/*n*-GaP показали, что пропускное направление токопереноса в таких ГС отвечает отрицательной полярности напряжения внешнего смещения на пластинах GaP. Полученные структуры обнаружили ярко выраженные диодные характеристики. На рис. 1 представлена типичная для этих гетероструктур стационарная ВАХ при T = 300 К. Для лучших структур установлен коэффициент выпрямления до 10^7 при T = 300 К и напряжениях смещения $U \approx 1$ В, что свидетельствует о достаточно высоком потенциале нового метода создания ГС Ox/*n*-GaP в плане повышения их технологичности и совершенства.

Из рис. 1 также можно видеть, что с ростом напряжения смещения U > 1.2 В прямой ток в полученных ГС подчиняется линейному закону:

$$I = \frac{U - U_0}{R_0},\tag{1}$$

где напряжение отсечки $U_0 \approx 1.2$ В, а остаточное сопротивление $R_0 \approx 300 \Omega$ при T = 300 К.

При освещении созданных ГС естественным излучением в активной области ГС генерируются электроннодырочные пары, которые разделяются в активной области ГС, и в результате возникает фотонапряжение, а подложка этих ГС заряжается отрицательно, что согласуется с направлением выпрямления тока в таких структурах. Важно подчеркнуть, что знак фотонапряжения ГС Ox/n-GaP сохраняется неизменным во всей спектральной области их фоточувствительности и не зависит от локализации светового зонда на фотоприемной поверхности созданных гетероструктур. Максимальная вольтовая фоточувствительность первых ГС Ох/n-GaP достигает ~ 750 В/Вт, при их освещении со стороны тонкой пленки Ох и T = 300 К. Сформулированные выше закономерности фоточувствительности новых гетероструктур дают основания связывать их фотовольтаические свойства с существованием в них единственной активной области, возникшей на интерфейсе между пленкой Ох и пластиной *n*-GaP.

Типичные спектральные зависимости относительной квантовой эффективности $\eta(h\omega)$ полученных гетероструктур Ox/*n*-GaP, определенные как отношение тока короткого замыкания к числу падающих фотонов,

приведены на рис. 2 при освещении гетероструктуры со стороны пленки Ох (кривая 1) и подложки n-GaP толщиной ~ 0.2 мм (кривая 2), причем спектры $\eta(\hbar\omega)$ для каждой из применявшихся геометрией освещения гетеростурктуры приведены к своему абсолютному максимуму (рис. 2). Обратим внимание на тот факт, что полная ширина спектров $\eta(\hbar\omega)$ на их полувысоте δ при переходе от освещения гетероструктуры со стороны подложки (рис. 2, кривая 2) к освещению со стороны пленки Ох (рис. 2. кривая 1) резко возрастает от 0.1 до $\hbar\omega \geq 1.2$ эВ. Резкий коротковолновый спад η при $\hbar \omega > 2.3$ эВ связан с наступлением межзонного поглощения в подложке GaP, в результате которого слой фотогенерированных носителей заряда сужается и одновременно удаляется от активной области гетероструктуры. При этом с ростом толщины подложки спектральное положение резкого спада $\eta(\hbar\omega)$ смещается в длинноволновую спектральную область, что обусловлено ростом фотоактивного поглощения падающего на структуру излучения в толще кристалла подложки.

Длинноволновый широкий безструктурный максимум в спектре $\eta(\hbar\omega)$ вблизи энергии падающих фотонов $\hbar\omega \approx 1.2$ эВ и четкий перегиб в спектрах полученных гетероструктур при $\hbar\omega \approx 2.1$ эВ могут быть отнесены к фотоактивному поглощению оптического излучения с участием уровней дефектов решетки различной природы, содержащихся в использованных при создании гетеростурктуры монокристаллических подложках *n*-GaP (рис. 2, кривая 2).

С переходом к фоторегистрации падающего излучения в условиях освещения ГС со стороны тонких пленок Ох на месте резкого коротковолнового спада η при $h\omega > 2.3$ эВ (рис. 2, кривая 2) возникает уже резкий коротковолновый рост η при $h\omega > 2.2$ эВ (рис. 2, кривая 1), при освещении со стороны подложки. Это вызвано смещением зоны фотогенерации неравновесных носителей заряда непосредственно в активную область гетеростурктуры.

Длинноволновый край фотоактивного поглощения полученных гетероструктур Ox/n-GaP при $\hbar \omega > 2.2$ эВ, как следует из рис. 3, линеаризуется в координатах $(\eta \hbar \omega)^{1/2} = f(\hbar \omega)$ (кривая 1) и $(\eta \hbar \omega)^2 = f(\hbar \omega)$ (кривая 2). Это, с позиций теории фундаментального оптического поглощения в алмазоподобных полупроводниках, позволяет путем экстраполяции полученных спектральных зависимостей фотоактивного поглощения ГС к нулю определить характер межзонных переходов и соответственно оценить значения ширины запрещенной зоны для непрямых ($E_G^{\text{ind}} \approx 2.2 \, \text{эB}$) и прямых $E_G^d \approx 2.7 \, \text{эB}$ межзонных переходов при $T = 300 \,\mathrm{K}$ [6,7]. Полученные оценки удовлетворительно согласуются с данными исследований оптического поглощения гомогенных монокристаллов GaP, синтезированных и выращенных в условиях достаточно высокого вакуума [7-9].

3. Развит и реализован новый технологический процесс создания фоточувствительных гетероструктур на

Рис. 3. Зависимости $(\eta \hbar \omega)^{1/2} = f(\hbar \omega)$ — (кривая *I*), $(\eta \hbar \omega)^2 = f(\hbar \omega)$ — (кривая 2) для гетероструктуры Ox/*n*-GaP. T = 300 K. Образец 5.

монокристаллах фосфида галлия GaP. Получены стационарные вольт-амперные характеристики и спектры относительной квантовой эффективности фотопреобразования новых гетероструктур. На основании спектральных зависимостей $\eta(\hbar\omega)$ для полученных на воздухе гетероструктур определен характер межзонных оптических переходов и оценены соответствующие им значения ширины запрещенной зоны, согласующиеся с известными зонными параметрами синтезированных и выращенных зонной перекристаллизацией в вакууме монокристаллов фосфида галлия. Отсутствие выраженного коротковолнового спада η в спектрах фоточувствительности новых гетероструктур позволяет высказать заключение о высоком совершенстве гетерограницы в гетероструктурах Ох/n-GaP, которые впервые созданы в результате безвакуумного самоорганизованного процесса формирования гетероструктур непосредственно в воздушной атмосфере.

Список литературы

- [1] Т. Мосс, Г. Баррел, Б. Эллис. Полупроводниковая оптоэлектроника (М., Мир, 1976).
- [2] Zh.I. Alferov, V.M. Andreev, N.N. Ledentsov. Ioffe Institute 1918–1998. Development and Research Activities (Ioffe Institute, 1998) p. 68.
- [3] В.Ю. Рудь, Ю.В. Рудь. ФТП, 33, 954 (1999).
- [4] Ю.А. Николаев, В.Ю. Рудь, Ю.В. Рудь, Е.И. Теруков. Письма ЖТФ, 33 (7), 87 (2007).

- [5] C. Tatsuyama, S. Ichimura, H. Ivakuro. Jpn. J. Appl. Phys., 21, L25 (1982).
- [6] С. Зи. Физика полупроводниковых приборов: В 2-х кн., под ред. Р.А. Суриса (М., Мир, 1984).
- [7] П.И. Баранский, В.П. Клочков, И.В. Потыкевич. Полупроводниковая электроника. Справочник (Киев, Наук. думка, 1975).
- [8] Физико-химические свойства полупроводниковых веществ. Справочник. под ред. А.В. Новоселовой (М., Наука, 1978).
- [9] Ж. Панков. Оптические процессы в полупроводниках (М., Мир, 1973).

Редактор Т.А. Полянская

Creation and investigations the photosensitivity of the Ox/*n*-GaP heterostructures

V.Yu. Rud', Yu.V. Rud'*, E.I. Terukov*, T.N. Ushakova*

St. Petersburg State Polytechnical University, 195257 St. Petersburg, Russia * loffe Physicotechnical Institute Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract The new method of thermal interaction of GaP single crystals with surround air environment was created the first photosensitive Ox/n-GaP heterostructures. The results of measuring the first spectrum of the relative quantum photoconversion effeciency of Ox/n-GaP heterostructures are presented. It is shown that the created heterostructures is observed wide-band photosensitivity spectral dependence. The character of interband transitions has been investigated and the band gap values for direct and indirect transitions in Ox/n-GaP heterrojunction determined. The conclusion was drawn that new Ox/n-GaP structures have potential application to use as the wideband photoconverters of optical radiations.