Термоэлектрическая добротность объемных наноструктурированных композитов с распределенными параметрами

© А.А. Снарский, А.К. Сарычев*, И.В. Безсуднов+¶, А.Н. Лагарьков*

Национальный технический университет Украины "КПИ", 03056 Киев, Украина

* Институт теоретической и прикладной электродинамики,

125412 Москва, Россия

+ ЗАО НПП "Наука-Сервис",

103473 Москва, Россия

(Получена 22 сентября 2011 г. Принята к печати 14 октября 2011 г.)

Рассмотрены эффективные свойства композитов, структура которых включает в себя наноконтакты между макрокристаллитами объемной фазы. Построена модель такого наноструктурированного композита. В приближении среднего поля вычислены значения эффективных значений термоэдс, тепло- и электропроводности, термоэлектрической добротности.

1. Введение

Создание нового поколения термоэлектрических материалов является предметом исследования большого числа научных коллективов. Обзор [1] отражает современный уровень исследований в этом фундаментальном и одновременно очень важном прикладном направлении физики твердого тела. С практической точки зрения важнейшим параметром, определяющим свойства термоэлектрического материала, является его термоэлектрическая добротность Z (figure of merit, число Иоффе) или безразмерное отношение

$$ZT = \frac{\sigma \alpha^2}{\kappa} T,$$
 (1)

где T, σ , κ и α — абсолютная температура, электропроводность, теплопроводность и дифференциальная термоэдс соответственно.

Многолетние попытки увеличить *ZT* пока не привели к принципиальному прорыву. Так, для устройств, работающих при комнатной температуре ($T \approx 300$ K), один из лучших материалов $(\text{Bi}_{1-x}\text{Sb}_x)_2(\text{Se}_{1-y}\text{Te}_y)_3$ имеет величину *ZT*, близкую к единице, как и несколько десятилетий тому назад. Имеются литературные данные (достоверность которых неясна) о лабораторных образцах с *ZT* $\approx 2-3$ при комнатных температурах. Однако коммерчески доступных материалов с *ZT* при комнатных температурах в настоящее время не существует.

Возникла довольно необычная ситуация: с одной стороны, до сих пор не создано материалов со значением ZT > 2 при комнатной температуре, а с другой — не известно принципиальных ограничений на значение ZT. Более того, в серии работ G. Casati и соавт. (см., например, [2] и ссылки в этом обзоре) предложена "динамическая нелинейная машина" — наглядная модель, основанная на классической детерминистической механике и стохастических термостатах со своими температурными и электрохимическими потенциалами, в которой можно получить как угодно большие значения *ZT*. Конечно, модель такой машины не отражает реаль-

алы (см., например, [1,3-7]), такие, например, как материалы со сверхрешетками, системы с квантовыми ямами и точками, квантовые проволоки и нанокомпозиты дают надежду на достижение высоких *ZT*. Во всех этих структурах повышение *ZT* связано в первую очередь с понижением теплопроводности за счет рассеяния фононов на неоднородностях с наноразмерами.

Поскольку параметр ZT зависит линейно от теплопроводности к и от коэффициента Зеебека а квадратично, значительное увеличение последнего позволило бы осуществить долгожданный скачок в развитии термоэлектрических устройств. Одна из возможных реализаций связана с созданием композитных материалов с туннельными контактами (ТК) между частицами или слоями. Насколько нам известно, в работе [8] были впервые проведены расчет и оценка кинетических коэффициентов наноструктурированного материала в предположении, что основную роль в переносе играет квантовое туннелирование между наночастицами, а фононная теплопроводность через барьерные слои отсутствует. Термоэлектрическая эффективность такой структуры довольно велика и, по утверждению авторов [8], может достигать значений 2.5-4. В данной работе будет построена модель композитного материала с термоэлектрическими свойствами, возникающими за счет туннельных контактов между частицами.

В работе [8] в качестве модели термоэлектрического композита рассматривалась цепочка последовательно соединенных туннельных контактов. Для реального компо-

ной ситуации, но вселяет определенный оптимизм. На практике используется весьма ограниченный набор материалов, имеющих необходимые термоэлектрические, а также механические и другие свойства, и повышение термоэлектрической добротности связывается прежде всего с новыми явлениями, возникающими в композитных материалах. Наноструктурированные термоэлектрические матери-

[¶] E-mail: biv@akuan.ru

зита с такими наноразмерными элементами (туннельными контактами), возникающими на поверхности частиц материала, модель должна быть сложнее, она должна учитывать также свойства объемной фазы материала частицы, возможность не только последовательного, но и параллельного соединения туннельных контактов. Вновь создаваемая модель должна показать, как композит реагирует на приложенные электрические и термические поля, в том числе изменяющиеся во времени [9], учесть их взаимовлияние. Без теоретических указаний на эти зависимости невозможно давать оправданные рекомендации по коснтруированию наноструктурных термоэлектрических преобразователей и приборов на их основе.

В данной работе рассматривается задача об эффективных кинетических коэффициентах нанокомпозитов, в которых доминирует туннельный перенос электронов, в предположении среднего поля находятся эффективные проводимость, теплопроводность и коэффициент Зеебека. В результате вычисляется термоэлектрическая добротность наноструктурированного композита и детально обсуждается ее зависимость от параметров системы.

В следующем разделе приведен небольшой обзор свойств одиночного ТК, в разд. 3 на основе изложенных результатов строится модель термоэлектрического композита с набором ТК, обладающего широким спектром свойств проводимости и теплопроводности. В разд. 4 построенная модель использована для композитов с большими ZT. В Приложении сравниваются два подхода к решению задачи, поставленной в разд. 3 и 4, — перколяционный подход и метод среднего поля и обосновывается возможность применения последнего.

2. Термоэлектрические свойства одиночного туннельного контакта

Термоэлектрические свойства ТК рассматривались во многих работах. В [10,11] были рассмотрены термоэлектрические свойства барьеров Ландауера (см. рис. 1).

Такой барьер в одномерном случае представляет собой два резервуара — "левый" и "правый", соединенные между собой барьером, который характеризуется коэффициентом прохождения t и отражения r, так что r = 1 - t. Согласно [11], можно ввести понятия коэффициентов термоэдс α , электро- (σ) и теплопроводности κ такого барьера Ландауера, которые состоят из

Рис. 1. Барьер Ландауера, *a*: T_L , T_R — температуры, μ_L , μ_R — электрохимические потенциалы, f_L , f_R — функции распределения электронов по энергии (Ферми–Дирака), где индексы *L* и *R* означают левый и правый резервуары соответственно; t — коэффициент прохождения, r — отражения от барьера, t + r = 1.

собственно барьерной части — α_b , σ_b и κ_b и контактной. В наинизшем приближении Зоммерфельда эти кинетические коэффициенты выражаются через коэффициент прохождения *t*:

$$\sigma_b \propto \frac{t}{1-t}, \quad \kappa_b \propto \frac{t}{1-t}, \quad \alpha_b \propto \left(\ln \frac{t}{1-t}\right)', \quad (2)$$

где (...)' означает производную по энергии электрона, взятую на уровне Ферми.

Для коэффициентов барьера Ландауера в целом (с учетом контактов)

$$\sigma_b \propto t, \quad \kappa_b \propto t, \quad \alpha \propto (\ln t)'.$$
 (3)

Коэффициент прохождения *t* экэспоненциально зависит от толщины барьера. Таким образом, незначительное изменение его толщины изменяет на порядки электро- и теплопроводность, при этом термоэдс меняется незначительно.

В работе [8] приведен расчет кинетических коэффициентов ТК и получена оценка термоэлектрических параметров наноструктурированного Bi_2Te_3 в предположении, что основную роль в переносе заряда и тепла играет туннелирование электронов между частицами полупроводника. Как и в [10,11], коэффициенты электро- и теплопроводности экспоненциально зависят от толщины барьера, в то время как термоэдс такого материала зависит от толщины барьера слабо (практически линейно).

В работе [12] экспериментально изучен наноструктурированный $Sb_{2-x}Bi_xTe_3$, включающий в свою структуру дефекты в виде нанопластинок с толщиной 15–20 нм. Показано, что в таких материалах *ZT* возрастает на 15% по сравнению со "стандартным" объемным материалом (без указанных дефектов).

Необходимо отметить, что весьма высокие значения термоэлектрической добротности ТК, полученные в [8], являются теоретическими оценками и в реальных ТК могут быть иными (например, меньшими), но и в этом случае полученные в данной работе качественные результаты не изменятся.

Далее, для численных оценок рассчитываемых параметров термоэлектрических сред будут взяты свойства объемного материала Bi_2Te_3 и свойства ТК, полученные в работе [8].

Термоэлектрическая добротность и эффективные кинетические коэффициенты композита с наноконтактами

Рассмотрим термоэлектрический композит, образованный из гранул полупроводника с характерными размерами порядка микрометра в матрице из плохо проводящего материала, такой, что в некоторых местах толщина прослойки между гранулами становится порядка нанометра (рис. 2).

Рис. 2. Структура термоэлектрического композита. *а*: геометрическая схема. I — гранулы полупроводника (например, Bi_2Te_3) с характерным размером δ (микрометры), 2 — матрица из плохо проводящего материала, 3 — места ТК с характерной толщиной x (нанометры), b: электрическая схема, 3 — туннельный контакт, характеризующийся термоэдс, электро- и теплопроводностями α_b , σ_b и κ_b , ниже изображен элемент, описывающий объемные свойства и характеризующийся α_M , σ_M и κ_M .

Структура композита такова, что носители тока при прохождении через среду должны так или иначе обязательно проходить через ТК, разделяющие частицы композита. Таким образом, для описания термоэлектрических свойств композита в целом, т.е. вычисления эффективных кинетических коэффициентов, необходимо вначале определить свойства отдельных ТК.

Воспользуемся результатами работы [8], в которой были получены весьма большие численные значения для термоэлекрической добротности одиночного ТК: $ZT \approx 4$. Зависимость для удельной проводимости ТК σ_b от толщины контакта x, полученная в [8], с хорошей точностью может быть аппроксимирована экспоненциальной зависимостью

$$\sigma_b(x) = \sigma_1 e^{-\frac{x-a_1}{\Delta_1} \ln \frac{\sigma_1}{a_2}},\tag{4}$$

а выражения для числа Лоренца ТК, L_b , и термоэдс, α_b , линейный:

$$L_b(x) = L_1 + \Delta L \frac{x - d_1}{\Delta_2},$$
(5)

$$\alpha_b(x) = \alpha_1 \left(1 + \frac{\Delta \alpha}{\alpha_1} \frac{x - d_1}{\Delta_2} \right). \tag{6}$$

Типичной величиной для высоты барьера ТК является $\varepsilon_b = 0.8$ эВ, при этом численные значения параметров в (4)–(6): $d_1=0.55$ нм, $\Delta_1=0.75$ нм, $\Delta_2=1.95$ нм будут равны $\sigma_1 = 10 \cdot 1/\Omega$ м, $\alpha_2 = 0.1 \cdot 1/\Omega$ м, $L_1 = 3(k_B/e_0)^2$, $\Delta L = 2(k_B/e_0)^2$, $\alpha_1 = 300$ мкВ/К, $\Delta \alpha = 60$ мкВ/К и $(k_B/e_0)^2 = 0.74 \cdot 10^{-8}$ Дж²/К²Кл² — отношение постоянной Больцмана к заряду электрона в квадрате.

Зависимость теплопроводности ТК, κ_b , от толщины контакта зависит от соотношения Лоренца $\kappa_b = TL_b\sigma_b$

и может быть записана в виде

$$\kappa_b(x) = \kappa_0 \left(1 + \frac{L_3 - L_1}{L_1} \frac{x - d_1}{\Delta_2} \right) e^{-\frac{x - d_1}{\Delta_1} \ln \frac{\sigma_1}{\sigma_2}}, \quad (7)$$

где $\kappa_0 = TL_1\sigma_1$ ($\kappa_0(T = 300 \text{ K}) = 0.68 \cdot 10^{-4} \text{ Bt/mK}$), $(L_3 - L_1)/L_1 = 2/3$.

Параметры гранулы полупроводникового материала (рис. 2) приняты равными таковым для Bi_2Te_3 при T = 300 К: $\sigma = 8.3 \cdot 10^4 \cdot 1/\Omega$ м, $\kappa = 1 \cdot BT/M$ K, $\alpha = 200$ мкB/K.

Согласно принятой модели (рис. 2, *b*), ток в композите проходит через "пакеты", представляющие собой две части объемного полупроводникового материала Bi₂Te₃ (белый цвет), разделенные TK (черный цвет). Поскольку проводимость σ_b TK при минимальных разумных значениях толщины $x_{\min} = 0.5$ нм много меньше проводимости объемного Bi₂Te₃, можно с хорошей точностью считать, что основное сопротивление композита набирается на указанных "пакетах". Свойства каждого из этих пакетов (трехслойная среда, ток в которой течет перпендикулярно слоям) можно найти из решения известной задачи о термоэлектрических свойствах плоскослоистых сред [13]:

$$\sigma_M(x) = \frac{x+\delta}{\frac{x}{\sigma_b(x)} + \frac{\delta}{\sigma} + \frac{(\alpha_b(x)-\alpha)^2}{\delta\cdot\kappa_b(x) + x\kappa}\delta xT},$$
(8)

$$\kappa_M(x) = \frac{x+\delta}{\frac{x}{\kappa_b(x)} + \frac{\delta}{\kappa}}, \quad \alpha_M(x) = \frac{\frac{\alpha_b(x)}{\kappa_b(x)}x + \frac{\alpha}{\kappa}\delta}{\frac{x}{\kappa_b(x)} + \frac{\delta}{\kappa}}.$$
 (9)

Таким образом, композит можно представить как случайную сетку, свойства каждой связи которой определяются, согласно (8), (6), через термоэдс, электро- и теплопроводность.

На практике толщины ТК распределены случайно. Предположим для простоты, что толщина ТК, D(x), распределена равномерно в диапазоне от x_{\min} до x_{\max} , т.е. $D(x_{\min} \le x \le x_{\max}) = 1$. Для некоторых разумных значений, например для $x_{\text{max}} = 1.3$ нм и $x_{\text{min}} = 0.55 - 0.75$ нм, величина ТК меняется незначительно, не более чем в 3 раза. При этом проводимость ТК σ_b меняется на порядки, настолько же сильно изменяется и проводимость пакета — $\sigma_M(x)$. Таким образом, распределение тока и потока тепла сильно не однородно. Сетка с таким (экспоненциально широким) распределением проводимостей называется сеткой Миллера-Абрахамса, изучению ее свойств посвящено большое число работ (см., например, [14,15]), а в работе [9] исследована частотная зависимость проводимости в туннельных нанокомпозитах. В Приложении кратко описаны два метода решения задачи об эффективной проводимости в такой сетке и показано, что для качественных оценок в рассматриваемом нами случае можно использовать приближение среднего поля.

Рис. 3. Зависимости эффективных коэффициентов проводимости σ_e и теплопроводности κ_e от минимальной толщины TK d_{\min} .

Рис. 4. Зависимости a) эффективного коэффициента термоэдс, b) эффективного коэффициента термоэлектрической добротности Z_eT от величины минимальной толщины ТК d_{\min} .

Простейший вариант приближения среднего поля для термоэлектрических явлений в двухфазных средах, предложенный в [16] (см. также [17]), можно записать как

$$\left\langle \frac{\sigma_e - \sigma}{2\sigma_e + \sigma} \right\rangle = 0, \qquad \left\langle \frac{\kappa_e - \kappa}{2\kappa_e + \kappa} \right\rangle = 0$$
 (10)

И

$$\alpha_e = \frac{\langle \alpha \sigma / \Delta_0 \rangle}{\langle \sigma / \Delta_0 \rangle},\tag{11}$$

где под $\langle \ldots \rangle$ понимается усреднение по фазам и $\Delta_0 = (2\sigma_e + \sigma)(2\kappa_e + \kappa).$

В данном случае "фазы" нумеруются непрерывным параметром — толщиной ТК — x, а именно $\sigma \equiv \sigma_M(x), \ \kappa \equiv \kappa_M(x), \ \alpha \equiv \alpha_M(x), \ и \ под \langle \ldots \rangle$ теперь необходимо понимать усреднение по параметру, т.е. $\langle f(x) \rangle = \int_{x_{\min}}^{x_{\max}} f(x)D(x)dx$. Таким образом, система уравнений для вычисления эффективных электро- и теплопроводности представляет собой два нелинейных инте-

гральных уравнения:

$$\int_{x_{\min}}^{x_{\max}} \frac{\sigma_e - \sigma_M(x)}{2\sigma_e + \sigma_M(x)} D(x) dx = 0,$$

$$\int_{x_{\min}}^{x_{\max}} \frac{\kappa_e - \kappa_M(x)}{2\kappa_e + \kappa_M(x)} D(x) dx = 0,$$
(12)

а эффективная термоэдс определяется интегрированием

$$\alpha_e = \frac{\int\limits_{x_{\min}}^{x_{\max}} \frac{\alpha_M(x)\sigma_M(x)}{\Delta_0(x)} D(x) dx}{\int\limits_{x_{\min}}^{x_{\max}} \frac{\sigma_M(x)}{\Delta_0(x)} D(x) dx},$$
(13)

где $\Delta_0(x) = (2\sigma_e + \sigma_M(x)) (2\kappa_e + \kappa_M(x)).$

На рис. 3 приведены зависимости эффективных проводимости σ_e и теплопроводности κ_e .

На рис. 4 приведена зависимость коэффициентов термоэдс и добротности от толщины ТК.

Как видно из рис. 4, *a*, эффективный коэффициент термоэдс слабо, практически линейно, зависит от минимальной толщины ТК, встречающихся в композите, в отличие от экспоненциально сильной зависимости электро- и теплопроводности ТК (4), (7) и пакета (8), (9). То же можно сказать и о зависимости термоэлектрической добротности (рис. 4, *b*), которую можно рассчитать, зная эффективные значения термоэдс, электрои теплопроводности: $Z_e T = \sigma_e (\alpha_e)^2 T / \kappa_e$.

Термоэлектрическая добротность и эффективные кинетические коэффициенты композита с большим ZT

Более сложный вариант теории среднего поля, позволяющий учитывать добротности *ZT*, сравнимые с единицей и более, приведен в [17]. Согласно [17], эффективные коэффициенты σ_e , κ_e и α_e определяются решением системы трех нелинейных интегральных уравнений:

$$\int_{x_{\min}}^{x_{\max}} A(x)D(x)dx = 1, \qquad \int_{x_{\min}}^{x_{\max}} B(x)D(x)dx = 0,$$
$$\int_{x_{\min}}^{x_{\max}} C(x)D(x)dx = 0, \qquad (14)$$

где

$$A(x) = 3 \frac{\sigma_e \left(2\chi_e - \chi_M(x)\right) - \gamma_e \left(2\gamma_e - \gamma_M(x)\right)}{\Delta(x)},$$

$$B(x) = 3 \frac{\gamma_e \chi_M(x) - \gamma_M(x)\chi_e}{\Delta(x)},$$

$$C(x) = 3 \frac{\gamma_e \sigma_M(x) - \gamma_M(x)\sigma_e}{\Delta(x)}.$$

(15)

Физика и техника полупроводников, 2012, том 46, вып. 5

Рис. 5. Зависимость эффективной термоэлектрической добротности от теплопроводности объемной фазы.

Здесь

$$\gamma_M(x) = \sigma_M(x)\alpha_M(x),$$

$$\chi_M(x) = \frac{\kappa_M(x)}{T} + \sigma_M(x)\alpha_M^2(x),$$

$$\gamma_e = \sigma_e \alpha_e, \qquad \chi_e = \frac{\kappa_e}{T} + \sigma_e \alpha_e^2,$$
(16)

$$\Delta(x) = (2\sigma_e + \sigma_M(x)) (2\chi_e + \chi_M(x)) - (2\gamma_e + \gamma_M(x))^2$$

Эта система была нами решена численно для $d_{\min} = 0.55$ нм, T = 300 К (значения других параметров приведены в тексте, следующем сразу за (6)).

Эффективная добротность при данном выборе численных значений параметров равна

$$Z_e T = \frac{\sigma_e \alpha_e^2}{\kappa_e} T = 3.52.$$
(17)

Это значение добротности несколько ниже минимального значения добротности собственно туннельного контакта, для которого

$$Z_e T|_{\min} = 3.67.$$
 (18)

Таким образом, значительный разброс сопротивлений в композите и значительная неоднородность плотности ток в нем практически не снижают значение добротности.

Интересно и важно отметить, что добротность композита Z_eT , как видно из рис. 5, монотонно (как и должно быть) зависит от теплопроводности объемной фазы монотонно растет при ее уменьшении. Неожиданным результатом является тот факт, что эта зависимость в диапазоне от 0.1–10 Вт/м.К. испытывает резкое падение, оставаясь практически постоянной вне его.

5. Заключение

Методами теории среднего поля выполнено теоретическое описание поведения термоэлектрического композита, состоящего из макрочастиц, но имеющего в своей структуре наноэлементы — туннельные контакты. С учетом численных значений для параметров модели, полученных ранее в [12], оказывается возможным рассчитать значения термоэлектрической добротности такого композита. Полученные оценки позволяют смотреть с оптимизмом на возможность получения высоких значений Z_eT в материалах традиционно не квалифицируемых как наноматериалы. Гранулы среды макроскопических размеров здесь являются "носителями" на своей поверхности наноэлементов — ТК с высокой термоэлектрической добротностью, при этом так "соединяя" эти наноэлементы, что термоэлектрические параметры композита в целом оказываются сравнимыми с параметрами самих ТК. Таким образом, композиты с ТК исследованной структуры с теоретической точки зрения являются перспективными материалами для создания высокоэффективных термоэлектрических преобразователей.

Конечно, предложенная структура композита, в которой наноэлементы являются ключевыми при протекании тока и потока тепла, не является единственной. Так, например, большой интерес представляют собой композиты, включающие в себя так называемые нановолокна [18] и многие другие структуры.

Один из авторов (А.С.) выражает благодарность Л.П. Булату за полезные обсуждения работы [8].

Приложение I

Рассмотрим задачу об эффективной проводимости σ_e сетки Миллера—Абрахамса, задавая локальную проводимость $\sigma(\xi)$ следующим образом:

$$\sigma(\xi) = \sigma_0 e^{-\lambda\xi},\tag{\Pi.1}$$

где случайная переменная $\xi \in [0, 1]$ распределена однородно, а параметр λ , задающий степень неоднородности среды — $\lambda < 1$.

Перколяционноподобный подход к определению σ_e основывается на следующей идее. Все сопротивления случайной сетки временно "вынимают" со своих мест, а потом поочередно "вставляют" в порядке их возрастания. То первое, ключевое, сопротивление, которое замкнет сеть (создаст так называемый бесконечный кластер), и будет определять сопротивление всего образца, поскольку оно самое большое в этом кластере. Все сопротивления, включаемые далее, будут существенно больше ($\lambda \gg 1$) и не смогут выполнить роль шунта. При таком подходе

$$\sigma_e = \sigma(\xi) = \sigma_0 e^{-\lambda \xi_c}, \qquad (\Pi.2)$$

где $\xi_c = p_c$ — обычный порог протекания двухфазной системы [14,15].

Во многих случаях выражение (П.2) достаточно точно описывает эффективную проводимость сетки. Однако в некоторых случаях, в частности при определении корреляционной длины такой сетки, необходимо в выражении для эффективной проводимости $\sigma_{e(\text{perc})}$ учитывать предэкспоненциальный множитель, а именно

$$\sigma_{e(\text{perc})} = \sigma_0 \lambda^{-\gamma} e^{-\lambda \xi_c}. \tag{\Pi.3}$$

Определение критического индекса у значительно более сложная задача. Согласно [19,20], критический индекс у выражается через критические индексы проводимости и для трехмерного случая равен y = (t - q)/2 = 0.635.

Метод среднего поля (приближение Бруггемана–Ландауера), предложенный в [21] и [22] для двухфазной среды, представляет собой уравнение, из которого можно определить эффективную проводимость:

$$\frac{\sigma_e - \sigma_1}{2\sigma_e + \sigma_1} p + \frac{\sigma_e - \sigma_2}{2\sigma_e + \sigma_2} (1 - p) = 0, \qquad (\Pi.4)$$

где p — концентрация первой фазы с проводимостью σ_1 . Для *n*-фаз (П.4) записывается как

$$\sum_{k=1}^{n} \frac{\sigma_e - \sigma_k}{2\sigma_e + \sigma_k} p_k = 0, \qquad (\Pi.5)$$

где p_k — концентрация фазы с проводимостью σ_k .

Для непрерывного распределения фаз (П.5) легко обобщается и представляет собой нелинейное интегральное уравнение

$$\int_{\xi_1}^{\xi_2} \frac{\sigma_e - \sigma(\xi)}{2\sigma_e + \sigma(\xi)} D(\xi) d\xi = 0, \tag{\Pi.6}$$

где в рассматриваемом нами случае (П.1) $\xi_1 = 0, \xi_2 = 1, D(\xi) = 1$ и, таким образом, имеет вид

$$\int_{0}^{1} \frac{\sigma_e - \sigma(\xi)}{2\sigma_e + \sigma(\xi)} d\xi = 0. \tag{\Pi.7}$$

Для случая $\sigma(\xi)=\sigma_{0}e^{-\lambda\xi}$ выражение (П.6) может быть записано как

$$\int_{\sigma_0}^{\sigma_0 \exp(-\lambda)} \frac{\sigma_e - \sigma}{2\sigma_e + \sigma} f(\sigma) d\sigma = 0, \qquad (\Pi.8)$$

где $f(\sigma) = 1/\lambda\sigma$ и интеграл (П.8) берется точно, откуда и находится аналитическое выражение для эффективной проводимости как функция от параметра, характеризующего величину неоднородности [23], полученную таким образом эффективную проводимость будем обозначать $\sigma_{e(mf)}$.

Достаточно удивительно, что подход среднего поля для не очень большой неоднородности, основанной на

Рис. 6. Зависимость эффективной проводимости σ_e от параметра неоднородности λ в приближении среднего поля $\sigma_{e(\text{EMT})}$ и при перколяционноподобном подходе $\sigma_{e(perc)}$; на вставке — относительная расходимость двух методов $R_{sigma} = (\sigma_{e(\text{EMT})} - \sigma_{e(perc)})/\sigma_{e(perc)}$.

решении задачи о распределении электрических полей и токов около уединенного проводящего шара, количественно хорошо описывает зависимость эффективной проводимости от параметра λ (см. рис. 6).

Для большой неоднородности, например для $\lambda = 100$, когда отношение отдельных сопротивлений сетки может достигать 10^{27} , отличие величины эффективной проводимости при расчете методом среднего поля (П.8) от перколяционноподобного (П.3) не более 8 раз.

Согласно (4), выражение для проводимости σ_b можно записать как

$$\sigma_b(x) = \operatorname{const} \cdot e^{-\frac{x}{\Delta} \ln \frac{\sigma_1}{\sigma_2}}, \qquad (\Pi.9)$$

Таким образом, если переписать (П.8) в виде (П.1), то для параметра λ будет равен $\lambda \approx 4.6$. И таким образом, для вычисления эффективных свойств среды с распределенными свойствами (8)–(9) можно с хорошей точностью использовать приближение среднего поля.

Список литературы

- [1] А.В. Дмитриев, И.П. Звягин. УФН, 180, 821 (2010).
- [2] G. Benenti, G. Casati. Phil. Trans. R. Soc. A, 369, 466 (2011).
- [3] B. Poudel, M. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Lin, M. Dresselhaus, G. Chen, Zh. Ren.
- [4] Y. Lan, B. Poudel, Y. Ma. Am. Chem. Soc., 9, 1419 (2009).
- [5] M.G. Kanatzidis. Chem. Mater., 22, 648 (2010).
- [6] N. Gothard, J.E. Spowart, T.M. Tritt. Phys. Status Solidi A, 207, 157 (2010).
- [7] G.H. Zhu, H. Lee, Y.C. Lan, X.W. Wang, G. Joshi, D.Z. Wang, J. Yang, D. Vashall, H. Gruilbert, A. Pilliterri, M.S. Dresselhaus, G. Chen, Z.F. Ren. Phys. Rev. Lett., **192**, 196 803 (2009).
- [8] Л.П. Булат, Д.А. Пшенай-Северин. ФТТ, 52, 452 (2010).
- [9] L. Tortet, J.R. Gavarri, J. Musso, G. Nihoul, J.P. Clerc, A.N. Lagarkov, A.K. Sarychev. Phys. Rev. B, 5, 5390 (1998).

Физика и техника полупроводников, 2012, том 46, вып. 5

- [10] G.D. Guttman, E. Ben-Jacob, D.J. Bergman. Phys. Rev. B, 51, 17758 (1995).
- [11] G.D. Guttman, E. Ben-Jacob, D.J. Bergman. Phys. Rev. B, 52, 5256 (1995).
- [12] M. Scheele, N. Oeschler, I. Veremchuk. ACS Nano, 4, 4283 (2010).
- [13] Б.Я. Балагуров. ФТП, 19, 133 (1985).
- [14] Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников (М., Наука, 1979).
- [15] I. Webman, J. Jortner, M.H. Cohen. Phys. Rev. B, 16, 2959 (1977).
- [16] Б.Я. Балагуров. ФТП, 16, 259 (1982).
- [17] Y.L. Bunimovich. Silicon nanowires as biological sensors and highly efficient thermoelectric materials. Thesis.library.caltech.edu (2007).
- [18] А.Е. Морозовский, А.А. Снарский. Письма ЖЭТФ, **56**, 272 (1992).
- [19] А.Е. Морозовский, А.А. Снарский. ЖЭТФ, **104**, 4059 (1993).
- [20] D.A.G. Bruggeman. Annalen der Physik, **416**, 636 (1935).
- [21] R. Landauer. J. Appl. Phys., 23, 778 (1952).
- [22] Y.M. Strelniker. Phys. Rev. B, 73, 153 407 (2006).

Редактор Л.В. Беляков

Thermoelectric figure of merit of bulk nanostructured composites with distributed parameters

A.A. Snarskii, A.K. Sarychev*, I.V. Bersudnov+, A.N. Lagarkov*

National Technical University of Ukraine "KPI", 03056 Kyiv, Ukraine * Institute of Theoretical and Applied Electromagnetics, 125412 Moscow, Russia ⁺ JSC NPP "Nauka-Service", 103473 Moscow, Russia

Abstract We consider the effective properties of composite structure that includes nanocontacts between macrocrystallits of the bulk material. The model of a such nanostsructured composite is developed. In the mean-field approximation we compute effective values of the thermopower, heat- and the electrical conductivity, thermoelectric figure of merit.