Влияние самария на термоэлектрическую добротность твердых растворов Sm_x Pb_{1-x}Te

© Ф.Ф. Алиев[¶], Г.А. Гасанов^{¶¶}

Институт физики Национальной академии наук Азербайджана, AZ-1143 Баку, Азербайджан

(Получена 17 мая 2011 г. Принята к печати 21 июля 2011 г.)

Исследованы температурные и концентрационные зависимости электрических (проводимость σ , коэффициент Холла R), термоэлектрических (термоэдс α) и тепловых (теплопроводность K_{tot}) характеристик твердых растворов Sm_xPb_{1-x}Te (x = 0, 0.02, 0.04, 0.08) в интервале температур 100–500 К. По данным σ , α , K_{tot} рассчитаны термоэлектрическая мощность $\alpha^2 \sigma$, добротность Z и эффективность δ . Установлено, что при концентрации дырок $p \approx 1.2 \cdot 10^{18}$ см⁻³ при комнатной температуре $\alpha^2 \sigma$ и Z имеют максимальные значения.

Одной из важных особенностей редкоземельных твердых растворов на основе $A^{IV}B^{VI}$ является высокая дефектность их структуры. При известных методах синтеза [1] концентрация вакансий и межузельных атомов в таких твердых растворах достигает $10^{18} - 10^{19}$ см⁻³. Электроактивность данных дефектов не позволяет достичь низкой концентрации носителей заряда, необходимой для практического применения твердого раствора.

В работе [2] увеличение отношения $u/K_{\rm ph}$ (u подвижность носителей заряда, K_{ph} — фононная теплопроводность) обосновывается изменением кинетических свойств кристаллов в процессе искажения кристаллической решетки, являющегося следствием образования дополнительных дефектов. Для таких материалов характерны интересные физические процессы, высокая подвижность носителей заряда, низкая теплопроводность и перспективы их функционирования в широких температурном и концентрационном диапазонах. С этой точки зрения особый интерес вызывает случай, когда снижение интенсивности рассеяния фононов на фононах компенсируется за счет возрастания интенсивности рассеяния носителей заряда на дефектах [3]. Так как длина волны электронов больше, чем длина волны фононов, то это приводит к общему увеличению и/Kph. Такая ситуация реализуется в твердых растворах системы Sm_xPb_{1-x}Te. Вышеизложенные особенности могут быть предпосылкой высокой термоэлектрической добротности $Sm_x Pb_{1-x}$ Te.

Для уточнения данного предположения проведены исследования температурных зависимостей электропроводности $\sigma(T)$ (рис. 1), коэффициента Холла R(T) (рис. 2), термоэдс $\alpha(T)$ (рис. 3) и теплопроводности $K_{\text{tot}}(T)$. Для выяснения механизма изменения термоэлектрической добротности Z проведен одновременный анализ всех трех параметров, определяющих $Z(\alpha, \sigma, K_{\text{tot}})$.

Далее приведены формулы [4–6], с помощью которых определяются δ — величина, характеризующая эффективность термоэлемента, а также Z, являющиеся

основными параметрами термоэлемента:

$$\delta = \frac{1}{\alpha} \frac{ZT}{1 + ZT},\tag{1}$$

где $Z = \alpha^2 \sigma / K_{\text{tot}}$.

Кинетические и термоэлектрические параметры Sm_x Pb_{1-x} Te приведены в таблице.

Как видно из таблицы, уменьшение количества самария в твердом растворе приводит к увеличению K_{tot} в 1.2 раза. Причиной является преобладающая роль в теплопроводности дырочной составляющей K_h (0.04 Вт/см·К). Для анализа вкладов K_h и K_{ph} необходимо их выделить из общей теплопроводности:

$$K_{\rm ph} = K_{\rm tot} - L\sigma T. \tag{2}$$

Достаточно большое значение отношения $K_h/K_{\rm ph}$ в широком интервале температур позволяет проследить за изменением числа Лоренца L с температурой по мере перехода от теплового механизма рассеяния к дефектному. В сильно легированных образцах $\mathrm{Sm}_x \mathrm{Pb}_{1-x}$ Те, в которых подвижность носителей заряда не позволила достичь условия сильного поля, дырочная доля тепло-

Рис. 1. Температурные зависимости электропроводности σ в твердых растворах Sm_xPb_{1-x}Te. *x*: *I* — 0, *2* — 0.02, *3* — 0.04, *4* — 0.08.

[¶] E-mail: farzali@physics.ab.az

^{¶¶} E-mail: hummat.hasanov@gmail.com

Кинетические коэффициенты и термоэлектрические параметры Sm_xPb_{1-x}Te при 300 K

Образец	$p, 10^{18} \mathrm{cm}^{-3}$	α , мк $\mathbf{B} \cdot \mathbf{K}^{-1}$	σ , $\mathrm{Om}^{-1} \cdot \mathrm{cm}^{-1}$	$K_{\text{tot}} \cdot 10^2$, Вт · см ⁻¹ · K ⁻¹	$Z \cdot 10^3$, K ⁻¹	δ , К · мкВ ⁻¹	$\alpha^2 \sigma \cdot 10^{-4}$, Bt/m · K ²
РbТе	4.1	240	570	16	2.1	1.61	3.3
Sm _{0.02} Pb _{0.98} Te	2.1	250	520	15	2.2	1.59	3.3
Sm _{0.04} Pb _{0.96} Te	1.5	260	500	14	2.5	1.65	3.4
Sm _{0.08} Pb _{0.92} Te	1.2	275	490	13	2.8	1.63	3.7

проводности не полностью подавлялась. Для этого необходимо знать $\Delta K_h(H)$. Из-за невозможности реализации условия сильного магнитного поля H (за счет малых значений подвижности дырок) для определения K_h была использована формула [7]

$$L = \frac{(r+3/2)(r+7/2)F_{r+1/2}F_{r+5/2} - (r+5/2)F_{r+1/2}^2}{(r+3/2)^2F_{r+1/2}^2} \left(\frac{k_0}{e}\right)^2,$$
(3)

где r — параметр механизма рассеяния, принимающий значения 0, 1, 2 при рассеянии носителей заряда соответственно на акустических, оптических фононах и на ионизованных примесях, $F(\mu^*)$ — однопараметрический интеграл Ферми, μ^* — приведенный химический потенциал, k_0 — постоянная Больцмана. В случае квадратичного закона дисперсии и любой степени вырождения

Рис. 2. Температурные зависимости коэффициента Холла в твердых растворах $Sm_x Pb_{1-x}$ Те. Обозначения те же, что на рис. 1.

Рис. 3. Температурные зависимости термоэдс α в твердых растворах Sm_x Pb_{1-x} Te. Обозначения те же, что на рис. 1, 2.

термоэдс в классически сильном магнитном поле имеет вид [8]

$$\alpha_{\infty} = -\frac{k_0}{e} \left[\frac{5}{3} \frac{F_{3.2}(\mu^*)}{F_{1/2}(\mu^*)} - \mu^* \right].$$
(4)

Известно [8], что $\alpha_{\infty} = \alpha + \Delta \alpha_{\infty}$, где $\Delta \alpha_{\infty}$ — магнитотермоэдс при сильном магнитном поле. В узкозонных полупроводниках $\Delta \alpha_{\infty}$ составляет $\sim (10-15)\%$ от α [9]. Определенные из (4) значения η^* учитывали в (3) для нахождения L при разных значениях r (r = 0, 1, 2) (рис. 4). Расчет, проведенный по формуле (3), показал, что экспериментальные эначения L(p) при r = 0, 1и $p \leq 2.1 \cdot 10^{18}$ см⁻³ меньше зоммерфельдовского значения числа Лоренца $L_0 = (\pi/3)(k_0/e)^2$, а при r = 2 $L = L_0$.

Результаты, полученные при $L < L_0$, свидетельствуют о том, что имеет место неупругое рассеяние дырок в Sm_x Pb_{1-x}Te, которое, согласно [10], может быть обусловлено либо взаимодействием между носителями заряда (дырками), либо рассеянием носителей заряда на оптических фононах (рис. 4).

Согласно [10], при сильном вырождении $(\mu^* \gg 1)$ число Лоренца имеет вид

$$\frac{L}{L_0} = \left[1 + \frac{W_{\rm el}}{W_0} - \frac{u}{u_{0n}} \left(\frac{L}{L_0} - 1\right)\right]^{-1},\tag{5}$$

где $W_0 = (L_0 \sigma T)^{-1}$ — тепловое сопротивление для упругого рассеяния, $W_{\rm el}$ — тепловое сопротивление, обусловленное столкновениями между носите-

Рис. 4. Зависимость L/L_0 от концентрации дырок в твердых растворах $\text{Sm}_x \text{Pb}_{1-x}$ Те. Обозначения те же, что на рис. 1–3.

лями, u — экспериментальное значение подвижности, u_{0n} — подвижность при рассеянии носителей заряда на оптических фононах. В результате для отношения $W_{\rm el}/W_0$ получаем

$$\frac{W_{\rm el}}{W_0} = 2\pi^4 \frac{e^3 (k_0 T) (k_{\rm F} r_s)^2 u p}{\varepsilon_\infty^2 \hbar^3 k_{\rm F}^3 v_{\rm F}^4} B(Z), \tag{6}$$

где $v_{\rm F}$ — скорость звука в кристалле, $k_{\rm F}$ — квазиимпульс на уровне Ферми, $r_s = [\varepsilon_{\infty}/4\pi e^2 \rho(\mu)]^{1/2}$ — радиус экранирования, соответствующий диэлектрической проницаемости ε_{∞} ; $\rho(\mu) = 3ep\alpha_{\infty}/\pi^2k_0T$ — плотность состояний, μ — химический потенциал. Выражения для функции Иоффе B(Z), а также для Z, ε_{∞} и других параметров взяты из работ [2,4,10,11]. Все сказанное вполне применимо к Sm_xPb_{1-x}Te при $\mu^* \ge 4$ и энергии фононов $\hbar\omega = 0.0136$ эВ.

Для случая невырожденного полупроводника ($\mu^* \leq 4$) и рассеяния носителей заряда на акустических фононах при использовании значений *L*, $K_{\rm ph}$, σ может возникнуть такая ситуация, когда *Z* при данной температуре определяет и положение уровня Ферми, и безразмерный коэффициент, описываемый формулой

$$\beta = \frac{2(2\pi)^{3/2}}{e\hbar^3} k_0^{7/2} \frac{u}{K_{\rm ph}} \left(m_p^*\right)^{3/2} T^{5/2}.$$
 (7)

Для заданной температуры максимальное значение термоэлектрической добротности Z_{max} определяется оптимальной концентрацией p, увеличивающейся с ростом температуры. Для невырожденных полупроводников с малой (в сравнении с фононной) величиной дырочной теплопроводности, в которых концентрация дырок $p = 2(2\pi m_p^* k_0 T)^{3/2} h^3$, Z_{max} определяется согласно формуле $Z_{\text{max}} = M(m_p^*)(u/K_{\text{ph}})T^{3/2}e^{r+1/2}$, где m_p^* — эффективная масса дырок, M — эффективная средняя молекулярная масса.

Оптимальной концентрации и оптимальной подвижности можно достичь либо путем легирования, либо каскадированием слоевидной формы материала, где каскады имеют разные концентрации носителей заряда. Из-за технических проблем осуществление второго варианта практически невозможно.

Физика и техника полупроводников, 2012, том 46, вып. 3

Анализ полученных данных показывает, что для достижения Z_{max} , кроме получения оптимальной концентрации p, необходимо использовать материалы со сложной зонной структурой, носители заряда в которых обладают большой эффективной массой, высокой подвижностью и малым K_{ph} . Из-за противоречивости одновременная реализация всех условий затруднена (высокая подвижность носителей заряда обычно обусловливается малой эффективной массой) и их сочетание в одном и том же материале в ряде случаев невозможно.

Другим возможным способом увеличения Z является рост эффективной массы носителей заряда при постоянном или слабо уменьшающемся значении $u/K_{\rm ph}$. Такого можно достичь в твердых растворах и соединениях со сложной зонной структурой, когда с ростом концентрации носителей заряда или температуры уровень Ферми попадает в подзону тяжелых носителей. Предложенная для PbTe в [12] аналогичная сложная зонная структура также наблюдается при переходе к твердым растворам Sm_xPb_{1-x}Te. По методу, описанному в [9], нами была определена эффективная масса дырок: $m_p^* = [(0.33-0.34) \pm 0.01]m_0$. Можно предположить, что значение m_p^* соответствует валентной зоне тяжелых дырок.

При расчете учтены также данные о концентрационной зависимости эффективной массы дырок. Получено, что основной вклад в неупругость вносит член $W_{\rm el}/W_0$ в (5). Доля неупругого рассеяния, связанного с рассеянием на полярных оптических фононах, не превышает ~ 2%.

Сопоставление экспериментальных данных по температурной зависимости $K_{\rm ph}(T)$ при $T \ge 100$ K с результатами, рассчитанными по формуле Лейбфрида и Шлеммана [13], указывает на основную роль трехфононных перебросов.

На основании приведенных экспериментальных данных по $K_{\rm ph}$, L, σ рассчитанны Z и δ (см. таблицу). Исследование экстремумов Z и δ в Sm_xPb_{1-x}Te показывает, что Z достигает максимального значения при концентрации дырок $p \approx 2.1 \cdot 10^{18} \, \mathrm{cm}^{-3}$, а δ не зависит от р и дырочная теплопроводность при концентрации $p \approx 2.1 \cdot 10^{18} \, {
m cm}^{-3}$ составляет $\sim 3\%$ от $K_{
m tot}$. Показано, что увеличение α, σ и уменьшение K_{tot} приводят к увеличению коэффициента мощности $\alpha^2 \sigma$ и Z. Однако самолегирование самарием сильно влияет на Z, что несомненно связано с изменением количества собственных дефектов. Отметим, что аналогичная зависимость $K_{\rm ph}(T)$ характерна для дефектных материалов [14]. За счет фонон-фононного и фонон-дефектного рассеяния $K_{\rm ph}$ уменьшается по закону $K_{\rm ph} \propto T^{-(0.2-0.3)}$. Рост количества замещающих ионов Sm³⁺ уменьшает $K_{\rm ph}$ и показатель степени *n* в T^{-n} . В результате отношение и/К_{ph} с ростом температуры меняется незначительно. Поэтому увеличение $\alpha^2 \sigma$ и Z с температурой происходит только за счет линейного увеличения $\alpha(T)$ до T < 350 К. Увеличение Z наблюдается также при уменьшении концентрации дырок до $p \approx 2.1 \cdot 10^{18}$ при температуре $T \approx 300$ К. Ввиду того, что мы располагали минимальной концентрацией, равной $p \approx 2.1 \cdot 10^{18}$ не можем утверждать об ее оптимальности для Z в Sm_xPb_{1-x}Te. Пока среди исследуемых образцов Sm_xPb_{1-x}Te образец с x = 0.08 является перспективным рабочим материалом для изготовления приемников теплового излучения.

Список литературы

- Ю.И. Равич, И.А. Смирнова, Б.А. Ефимова. Методы исследования полупроводников в применении к халькогенидам свинца PbS, PbSe, PbTe (М., Наука, 1968).
- [2] А.Ф. Иоффе. Полупроводниковые термоэлементы (М.–Л., АН СССР, 1960).
- [3] Е.А. Гуриева, П.П. Константинов, Л.В. Прокофьева, Ю.И. Равич, И.М. Федоров. ФТП, 37 (3), 292 (2003).
- [4] А.А. Бугаев, Б.П. Захарченя, А.Г. Пыжов, А.С. Стильбанс, Ф.А. Чудновский, Э.М. Шер. ФТП, **13** (7), 1446 (1979).
- [5] Ф.Ф. Алиев, М.Б. Джафаров, В.И. Эминова. ФТП, 43 (8), 1013 (2009).
- [6] Ф.Ф. Алиев, М.Б. Джафаров, А.А. Саддинова, Э.М. Годжаев. Термоэлектричество, 2, 42 (2010).
- [7] Б.М. Могилевский, А.Ф. Чудновский. *Теплопроводность* полупроводников (М., Наука, 1972).
- [8] Б.М. Аскеров. Кинетические эффекты в полупроводниках (Л., Наука, 1970).
- [9] Ф.Ф. Алиев, Г.Г. Гусейнов, Г.П. Пашаев, Г.М. Агамирзоева, А.Б. Магеррамов. Неорг. матер., 44 (2), 156 (2008).
- [10] И.А. Смирнов, В.И. Тамарченко. Электронная теплопроводность в металлах и полупроводниках (М., Наука, 1977).
- [11] H.A. Hasanov. Semicond. Phys. Quant. Electron. Optoelectron., **12** (2), 135 (2009).
- [12] А.А. Андреев, В.Н. Родионов. ФТП, 1 (2), 183 (1967).
- [13] Д. Драбль, Г. Голдемит. Теплопроводность полупроводников (М., ИЛ, 1963).
- [14] В.С. Оскотский, И.И. Смирнов. Дефекты в кристаллах и теплопроводность (Л., Наука, 1972).

Редактор Л.В. Шаронова

Influence of samarium on thermoelecrtical figure of merit of $Sm_x Pb_{1-x}Te$ solid solutions

F.F. Aliev, H.A. Hasanov

Institute of Physics, National Academy of Sciences of Azerbaijan Republic, AZ-143 Baku, Azerbaijan

Abstract Temperature and concentration relationships of electric (conductivity σ , Hall coefficient *R*), thermoelectric (α) and heat (K_{tot}) characteristics of Sm_xPb_{1-x}Te (x = 0, 0.02, 0.04, 0.08) solid solutions in the temperature range between 100–500 K are investigated. From data on σ , α and K_{tot} thermoelectric power $\alpha^2 \sigma$, figure of merit *Z* and efficiency δ are calculated. It is found that at holes concentration of $p \approx 1.2 \cdot 10^{18} \text{ cm}^{-3}$ at room temperature $\alpha^2 \sigma$ and *Z* have maximum values.