Влияние дефектообразования при встраивании δ-слоя Mn на спектр фоточувствительности от квантовых ям InGaAs/GaAs

© А.П. Горшков[¶], И.А. Карпович, Е.Д. Павлова, И.Л. Калентьева

Нижегородский государственный университет им. Н.И. Лобачевского, 603600 Нижний Новгород, Россия

(Получена 6 июля 2011 г. Принята к печати 11 июля 2011 г.)

Исследовано влияние дефектообразования при нанесении δ-слоя Mn и покровного слоя GaAs лазерным испарением на спектры фоточувствительности гетероструктур с квантовыми ямами InGaAs/GaAs, расположенными в приповерхностной области.

1. Введение

В связи с развитием спинтроники [1-3] внимание исследователей привлекают полупроводниковые квантоворазмерные гетеронаноструктуры (ГНС) с ферромагнитными слоями, в которых возможна спиновая поляризация неравновесных носителей. Одной из таких сруктур является ГНС с квантовыми ямами (КЯ) InGaAs/GaAs, селективно легированная вблизи них δ -слоем Mn. В этих структурах обнаружены ферромагнитные свойства и циркулярная поляризация излучения в КЯ, связанная с излучательной рекомбинацией спин-поляризованных носителей [4].

Однако встраивание б-слоя Mn может приводить к образованию дефектов в окрестности этого слоя в результате возникновения упругих напряжений и химического взаимодействия Mn с GaAs-матрицей, ухудшающих оптоэлектронные и чувствительные к спиновой поляризации характеристики ГНС. В данной работе исследовано влияние процесса дефектообразования при встраивании δ-слоя Mn на фотоэлектрические спектры от КЯ InGaAs/GaAs в ГНС, выращенные комбинированным методом газофазной эпитаксии и лазерного испарения. Упругонапряженные слои квантовых ям могут существенно влиять на пространственное распределение дефектов в структуре, так как образуют для них потенциальный барьер или потенциальную яму, в зависимости от влияния дефектов на упругие напряжения в КЯ [5]. Так как фоточувствительность от КЯ зависит от соотношения времен жизни неравновесных носителей по отношению к процессам эмиссии и рекомбинации, КЯ можно рассматривать как зонды, реагирующие на появление в их окрестности дефектов, изменяющих рекомбинационные характеристики КЯ [6].

2. Методика

ГНС выращивались на поверхности (100) с отклонением на 3° в направлении [110] подложек *n*-GaAs комбинированным методом газофазной эпитаксии из металлоорганических соединений (ГФЭ МОС) и лазерного испарения [7]. Сначала при относительно высокой температуре (600°С) методом ГФЭ МОС при атмосферном давлении водорода выращивались буферный слой и 3 КЯ. Затем при пониженной температуре (400°C) методом импульсного лазерного испарения наносились δ-слой Mn и покровный слой GaAs толщиной 40 нм. Слои КЯ In_xGa_{1-x}As одинаковой ширины 9 нм и разного состава $x \approx 0.1, 0.2$ и 0.25 были разделены спейсерными слоями GaAs шириной $d_s \approx 25$ нм. Спейсерный слой между δ-слоем Mn толщиной 0.3 или 1.0 монослоя (MC) и самой глубокой КЯ с x = 0.26 составлял 12 нм. Понижение температуры при лазерном осаждении слоев применялось для уменьшения диффузионного размытия примесно-дефектного δ-слоя. Также были выращены структуры с тремя КЯ без б-слоя Мп. В одной из них КЯ заращивались низкотемпературным покровным слоем GaAs, выращенным лазерным испарением, а в другой — высокотемпературным покровным слоем, выращенным ГФЭ МОС.

Спектральные зависимости фоточувствительности ГНС исследовались методами спектроскопии фотоэдс (фототока) на барьере ГНС с металлом — барьере Шоттки (ФБШ). При комнатной температуре часть измерений фотоэлектрических спектров проведены на барьерах ГНС с жидким электролитом (ФПЭ) [8]. Спектры ФПЭ и ФБШ практически совпадали. В методе ФБШ на поверхность структуры методом термического испарения в вакууме наносился полупрозрачный золотой контакт, а в методе ФПЭ к поверхности структуры прижималась смоченная в электролите (раствор КСІ в смеси глицерина и воды) фильтровальная бумага.

Экспериментальные результаты и их обсуждение

На спектрах ФПЭ исследованных ГНС (рис. 1) хорошо выделяются 3 ступенчатые полосы фоточувствительности от квантовых ям с характерными пиками на их краях, которые хорошо заметны даже при комнатной температуре и становятся более острыми при низких температурах. Подобные пики наблюдались на спектрах оптического поглощения многоямных структур в работах [9,10] и связывались с генерацией экситонов. Методом фотоэлектрической спектроскопии они хорошо

[¶] E-mail: gorskovap@phys.unn.ru

Рис. 1. Фотоэлектрические спектры гетеронаноструктур с квантовыми ямами при 300 К: 1 -структура без δ -слоя Mn с покровным слоем GaAs, выращенным газофазной эпитаксией при 600°С; 2 -структура с покровным слоем GaAs, выращенным лазерным осаждением при 400°С: 3, 4 -структуры с δ -слоем Mn и покровным слоем, выращенным лазерным осаждением при 400°С (толщина слоя Mn: 3 - 0.3 MC; 4 - 1 MC).

выявляются на одноямных структурых [11]. В этой работе исследован квантово-размерный эффект Штарка на экситонах в КЯ.

Максимальная фоточувствительность в области поглощения КЯ относительно собственной фоточувствительности в области поглощения матрицы (GaAs) наблюдалась в структурах без *б*-слоя Mn с покровным слоем, выращенным методом ГФЭ МОС при 600°С (рис. 1, кривая 1). В структуре с низкотемпературным покровным слоем GaAs без *б*-слоя Mn фоточувствительность в области КЯ заметно уменьшается (кривая 2). Встраивание δ-слоя Mn приводит к дальнейшему уменьшению фоточувствительности от КЯ, возрастающему с увеличением концентрации Mn в δ -слое (кривые 3, 4). Заметим, что значение фоточувствительности в экситонном пике при увеличении концентрации Mn не изменяется относительно значения фоточувствительности в полосе межзонного поглошения соответствующей КЯ. Также не было замечено какой-либо связи этих пиков с уровнем легирования структур мелкими донорами (Sn) или акцепторами (C). Это подтверждает связь этих пиков с экситонами, а не с примесями в КЯ.

Подавление фоточувствительности от КЯ объясняется тем, что при низкотемпературном лазерном осаждении как δ -слоя Mn, так и только одного покровного слоя GaAs генерируются дефекты, достигающие даже самой удаленной от поверхности КЯ In_{0.1}Ga_{0.9}As. Эти дефекты создают в них дополнительный канал рекомбинации, уменьшающий эффективность эмиссии фотовозбужденных носителей. Примесь Mn в атомарно-дисперсном состоянии создает акцепторный уровень 0.11 эВ выше потолка валентной зоны. Поскольку встраивание δ -слоя Мп качественно проявляется так же, как и нанесение низкотемпературного покровного слоя GaAs, наблюдаемое изменение спектров, вероятно, связано с образованием дефектов при лазерном осаждении слоев (вакансий в подрешетках Ga и As, межузельных атомов и различных комплексов дефектов). На образцах с низкотемпературными слоями наблюдается примесная фоточувствительность, которая на образце без δ -слоя Mn (кривая 2) простирается до ~ 0.75 эВ. На образцах с δ -слоем Мп из-за их меньшей фоточувствительности эту полосу удается проследить только до ~0.9-1 эВ. Детальный анализ этой полосы, в частности перестроение кривой 2 в координатах Луковского [12] $\hat{S}_{\rm ph}^{2/3} h v^2 = f(hv)$, выявляет примесный уровень $E_c = 0.75$ эВ, который, как известно [13], принадлежит собственному дефектному центру EL₂. Возможно, образуются и другие центры с меньшей глубиной залегания.

В отличие от структур без Mn с высокотемпературным покровным слоем, в которых фоточувствительность в области поглощения KЯ почти не зависит от температуры в интервале 300–77 K, в структурах с Mn наблюдается полное подавление фоточувствительности от KЯ при понижении температуры до 77 K (рис. 2). При повышении температуры последовательно появляются экситонные пики от мелкой, средней и глубокой KЯ и наблюдается характерное для экситонных пиков их уширение при повышении температуры, связанное с уменьшением времени жизни экситонов. Такая зависимость фоточувствительности от температуры свидетельствует о том, что без смещения на барьере, т.е. в относительно слабом электрическом поле в окрестности KЯ, эмиссия носит термоактивированный характер.

При обратном смещении на барьере фоточувствительность от КЯ при 77 К возрастала в связи с уменьшением высоты эмиссионного барьера КЯ (эффект Шоттки) и увеличением его туннельной прозрачности.

Рис. 2. Температурные зависимости фотосигнала от квантовой ямы в гетеронаноструктуре с δ -слоем Mn (0.3 MC) при отсутствии смещения на барьере. *T*, K: 1 - 83, 2 - 158, 3 - 175, 4 - 201, 5 - 223, 6 - 279, 7 - 306.

Рис. 3. Влияние электрического поля на спектры структур с барьерами Шоттки от трех квантовых ям в гетеронаноструктурах с δ -слоем Mn (1 MC) при 300 K. Напряжение смещения V, B: I - (-0.4), 2 - (-0.2), 3 - 2, 4 - 2, 5 - 0, 6 - 5, 7 - 8, 8 - 0, 9 - 8.

Рис. 4. Влияние электрического поля на спектр структуры с барьером Шоттки от второй квантовой ямы в гетеронаноструктуре с δ -слоем Mn (1 MC) при 77 K. Обратное напряжение смещения V, B: I = 0, 2 = 1.5, 3 = 3, 4 = 5, 5 = 8.

Измерения квантово-размерного эффекта Штарка при 300 и 77 К (рис. 3, 4) показали, что в структурах с Мп положение экситонных пиков во всех трех КЯ не зависит от приложенного к структуре напряжения смещения. Однако значение фоточувствительности в пике при 77 К возрастает с ростом обратного напряжения.

Образование нечувствительных к электрическому полю, т.е. не поляризующихся экситонов, наблюдалось ранее на подобных структурах без Mn в работе [11] при температурах ниже 100 К. Они были названы аномальными экситонами. Было показано, что их образованию способствует введение дефектов в структуру путем анодного окисления поверхности ГНС, и высказано предположение, что аномальные экситоны связаны на донорноакцепторных парах. В исследованных структурах с Mn аномальные экситоны наблюдаются и при комнатной температуре. Можно предположить, что в структурах с δ -слоем Mn концентрация донорно-акцепторных пар и энергия связи экситонов с ними больше, чем в обычных структурах. Этим можно объяснить сохранение аномальных экситонов при высоких температурах.

3. Заключение

Проведенные исследования показывают, что низкотемпературное лазерное осаждение δ -слоя Mn и покровного слоя, применяемое для уменьшения диффузионного размытия δ -слоя, сопровождается образованием дефектов, подавляющих фоточувствительность от KЯ, расположенных в приповерхностной области. В структурах с Mn обнаружено образование аномальных, нечувствительных к электрическому полю экситонов в KЯ. Предполагается, что аномальные экситоны связаны на донорно-акцепторных парах в KЯ.

Авторы выражают благодарность Б.Н. Звонкову за выращивание структур для исследования.

Работа выполнялась при поддержке аналитической ведомственной целевой программы "Развитие научного потенциала высшей школы (2009–2010 годы)" (грант № 2.2.2.2/4297) и CRDF (RUXO-001-NN-06/ВР4М01), Министерства образования и науки РФ (проекты № 2.1.1/2833 и № 2.1.1/12029 АВЦП "Развитие научного потенциала высшей школы", проект № 02.740.11.0672 ФЦП "Научные и научно-педагогические кадры инновационной России").

Список литературы

- [1] S.A. Wolf. Science, 294, 1488 (2001).
- [2] Б.П. Захарченя, В.Л. Корнев. УФН, 175 (6), 628 (2005).
- [3] Б.А. Аронзон, А.Б. Грановский, А.Б. Давыдов и др. ФТТ, 49 (1), 165 (2007).
- [4] М.В. Дорохин, С.В. Зайцев, А.С. Бричкин и др. ФТТ, 52, 2147 (2010).
- [5] Y.C. Chen, J. Singh, P.K. Bhattacharya. J. Appl. Phys., 74, 3800 (1993).
- [6] И.А. Карпович, А.В. Аншон, Н.В. Байдусь, Л.М. Батукова, Б.Н. Звонков, С.М. Планкина. ФТП, 28, 104 (1994).
- [7] Б.Н. Звонков, В.В. Подольский, В.П. Лесников и др. Высокочистые вещества, 4, 114 (1993).
- [8] И.А. Карпович, А.П. Горшков, С.Б. Левичев и др. ФТП, 35, 564 (2001).
- [9] S. Schmitt-Rink, D.S. Chemla, D.A.B. Miller et al. Adv. Phys., 38, 89 (1989).
- [10] D.A.B. Miller, D.S. Chemla, T.S. Damen et al. Phys. Rev. B, 32, 1943 (1985).
- [11] А.П. Горшков, И.А. Карпович, А.В. Кудрин. Поверхность. Рентгеновские, синхронные и нейтронные исследования, 5, 25 (2006).
- [12] G. Lucovsky. Sol. St. Commun., 3, 299 (1965).
- [13] Н.Г. Баграев. ЖЭТФ, 100, 1378 (1991).

Редактор Т.А. Полянская

Influence of forming defect for embedding of Mn δ -layer on quantum wells InGaAs/GaAs heterostructures photosensitivity spectra

A.P.Gorshkov, I.A. Karpovich, E.D. Pavlova, I.L. Kalenteva

Lobachevsky State University of Nizhny Novgorod, 603600 Russia, Nizhny Novgorod, Russia

Abstract Influence of forming defect for embedding of Mn δ -layer and applying integumentary layer GaAs of low-temperature laser vaporization method in heterostructures with single quantum well InGaAs/GaAs on photosensitivity spectra has been investigated.