УДК 621.315.592

Кинетика образования трещин в пористом кремнии

© Д.С. Гаев, С.Ш. Рехвиашвили

Кабардино-Балкарский государственный университет им. Х.М. Бербекова, 360004 Нальчик, Россия

(Получена 5 июля 2011 г. Принята к печати 11 июля 2011 г.)

Проведено экспериментальное и теоретическое исследование образования трещин в пористом кремнии, полученном электрохимическим способом. Обнаружено, что кинетика растрескивания пористого кремния описывается s-образным распределением Вейбулла. Данный факт, по-видимому, имеет неспецифический (общий) характер и может проявляться при образовании трещин в других твердых пористых материалах.

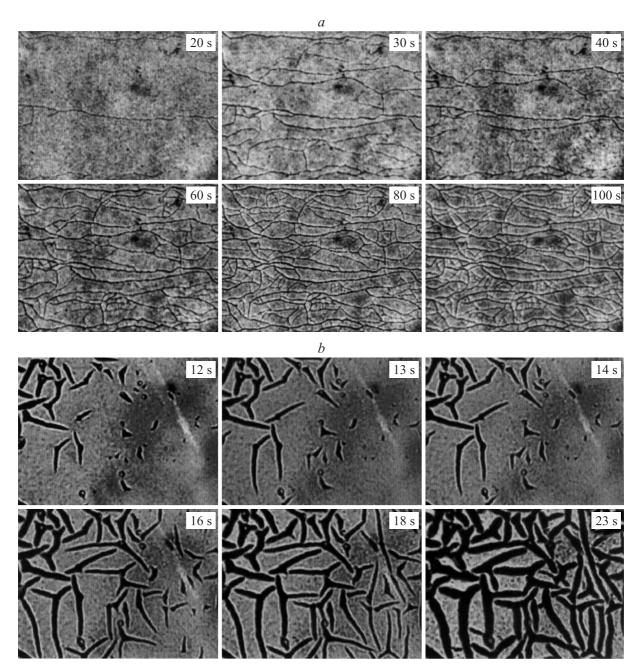
1. Введение

Пористый кремний (por-Si) является перспективным материалом для создания устройств микроэлектроники, оптоэлектроники и микросистемной техники. Несмотря на многообещающие перспективы, широкого применения por-Si пока не получил. Одной из основных причин, препятствующих активному использованию por-Si, является его временная нестабильность, которая в конечном итоге ведет к деградации эксплуатационных параметров функциональных структур. Свойства por-Si зависят от многих факторов и определяются особенностями технологии получения, исходными микроструктурными параметрами пористого слоя, условиями хранения и т.д. Одним из проявлений структурной деградации, вызываемой механическими напряжениями в пористом слое, является процесс растрескивания. С точки зрения термодинамики данный процесс является неравновесным и необратимым; в конечном итоге он приводит к релаксации пористой структуры кремния.

Исследования деградационных процессов в течение длительных интервалов времени для установления зависимостей между структурными, электрофизическими и оптическими характеристиками por-Si проводились на недостаточном уровне. Можно выделить работы [1,2], в которых изучались процессы деградации por-Si. Было отмечено, что деградационные процессы в por-Si тесно связаны с механическими напряжениями и действием капиллярных сил в порах и приводят к значительному изменению люминесцентных свойств. Однако, по нашему мнению, целесообразно провести более детальные экспериментальные и теоретические исследования.

Настоящая статья посвящена исследованию кинетики трещинообразования в слоях *por-Si* различной толщины, полученных методом электрохимического травления. Предлагается теоретическая модель, позволяющая описать экспериментальные результаты по кинетике растрескивания.

2. Методика эксперимента

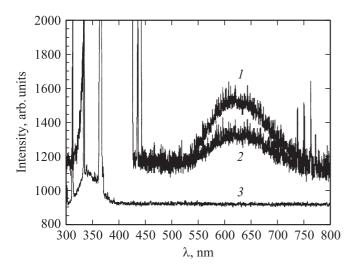

Экспериментальные структуры *por*-Si были получены методом электрохимического травления. В качестве

1

исходных заготовок использовались пластины монокристаллического кремния р-типа проводимости с удельным сопротивлением 8-10 Ом · см, кристаллической ориентацией (100) и толщиной $\sim 380\,\mathrm{мкм}$. Для снятия поверхностного оксида кремния заготовки обрабатывались в 5%-м водном растворе плавиковой кислоты в течение 10 мин и промывались в деионизованной воде. Затем структуры подвергались вакуумной сушке при температуре 150-200°C, после чего на одну из сторон кремниевой пластины вакуумно-термическим испарением напыляли алюминиевую пленку толщиной $\sim 1\,\mathrm{мкм}$. С целью уменьшения контактного сопротивления перехода алюминий-кремний структуры отжигались в вакууме при давлении 10^{-2} Па и температуре 450° С в течение 30 мин. Электрохимическое травление кремниевых структур проводили на постоянном токе в электрохимической ячейке вертикального типа с платиновым сетчатым катодом. Электролит для анодирования представлял собой раствор плавиковой кислоты (40%) и этанола (96%) в соотношении 1:1 объемом 200 мл при площади зоны травления 1 см². Расстояние между кремниевым и платиновым электродами не превышало 2 см. Процесс травления проводился при непрерывном перемешивании электролита в условиях естественного освещения. По завершению анодирования образцы промывались в деионизованной воде и помещались в ячейки с этиловым спиртом для исключения растрескивания. По описанной технологии были изготовлены структуры пористого кремния с продолжительностью травления 10-20 мин при плотности тока анодирования 20 мА/см².

Толщину пористого слоя *h* определяли по снимкам торцевых сколов структур *por*-Si, полученных на световом микроскопе Latimet-20 по данным градуировки шкалы окуляр-микрометра. Для исследования кинетики растрескивания *por*-Si производилась видеозапись эволюции морфологии поверхности в процессе испарения спирта с пористого слоя. Видеозапись велась с помощью цифрового фотоаппарата (Canon IXUS105, режим — видеокамера), оптически сопряженного со световым микроскопом Latimet-20 при увеличении 200 крат. Фотоснимки поверхности (топограммы) через интервалы времени в 1 с и более получали путем захвата кадров видеозаписи в программной среде Nero ShowTime. На рис. 1, *a*, *b* приведены отдельные топограммы поверх-

[¶] E-mail: dahir@mail.ru


Рис. 1. Топограммы поверхности пленок por-Si на различных стадиях растрескивания: a-h=8.4 мкм, b-h=15.2 мкм. Размер всех топограмм 217×150 мкм.

ности, охватывающие кинетику образования трещин на образцах с указанием времени захвата кадра от начала растрескивания. Приведенные топограммы оцифровывались в программной оболочке Nova 953 (программное обеспечение атомно-силового микроскопа Solver Pro EC, фирма НТ-МДТ) и с помощью программного приложения Grain Analyses (режим "роге") оценивалась площадь, занимаемая трещинами на анализируемой поверхности. Спектры фотолюминесценции экспериментальных структур, приведенные на рис. 2, были измерены на малогабаритном волоконно-оптическом спектрометре USB 2000+.

3. Результаты и обсуждение

Пористый кремний можно представить в виде твердотельного каркаса, образованного тонкими нитями толщиной порядка единиц нанометров [3]. В результате слипания нитей происходят локальные уплотнения структуры остова и образование в других местах пустот, которые визуализируются как трещины. Данный процесс имеет релаксационный характер.

Суммарная площадь внутренней поверхности *por-*Si, получаемого электрохимическими методами, в зависимости от величины пористости и геометрии пор может

Рис. 2. Спектры фотолюминесценции por-Si: I-h=8.4 мкм, 2-h=15.2 мкм; 3- спектр источника возбуждения.

достигать $500 \,\mathrm{m}^2/\mathrm{cm}^3$ [4]. Если структура *por*-Si обладает большой избыточной поверхностной энергией, то ее механическая устойчивость будет затруднена [5,6]. Но, как показывают эксперименты, при наличии поверхностноактивных веществ (ПАВ, в нашем случае это этиловый спирт), уменьшающих поверхностную энергию, por-Si в течение длительного времени может сохранять свою структуру. Высушивание образцов, сопровождающееся десорбцией ПАВ из пор, приводит к увеличению поверхностной энергии пор и появлению механических напряжений, поэтому устойчивость структуры в целом снижается. Поры могут сужаться под действием поверхностных сил, обусловливая раскрытие терщин в местах, где прочность структуры была невысокой. Этот процесс развивается по принципу самоорганизации [7, с. 226] и продолжается до тех пор, пока в системе "поры-трещины" не наступит квазиравновесное состояние при определенном значении свободной поверхности. Энергия, затрачиваемая на образование трещин, равна

$$\Delta W = \sigma(A_1 - A_2) - \Delta Q,\tag{1}$$

где σ — удельная поверхностная энергия кремния (для грани (111) $\sigma=1.7-1.8$ кДж/м 2 [8]), A_1 — площадь сомкнувшихся пор, A_2 — площадь новообразованной поверхности, $A_1>A_2$, ΔQ — энергия, диссипируемая в тепло.

На рис. 1,a,b представлены серии изображений выбранных участков поверхности для образцов с различной толщиной por-Si. Средняя толщина слоев por-Si исследованных образцов составила 8.4 и 15.2 мкм. Можно видеть, что трещины образуются более интенсивно на образце с большей толщиной пористого слоя, что объясняется высокой избыточной поверхностной энергией и механическими напряжениями. Обращают на себя внимание также пересечения трещин, которые в процессе зарождения происходят приблизительно под

прямым углом. При таких пересечениях механические напряжения, по-видимому, минимальны. Через достаточно продолжительное время вместе с крупными трещинами окончательно формируется нанопористая структура кремния, о наличии которой свидетельствует характерный вид спектра фотолюминесценции, который приведен на рис. 2. Похожие спектры наблюдались при старении *por*-Si в работах [9,10].

Для удобства описания экспериментов в качестве меры трещинообразования примем относительную площадь: $n=A/A_0$, где A_0 — площадь поверхности образца, A — площадь проекции трещины на поверхность образца в момент времени t. Пусть p — вероятность того, что до момента времени t на поверхности образца не возникнет ни одной трещины. Трещины могут образовываться независимо и одновременно на различных участках поверхности, поэтому для вероятности p можно записать [11]:

$$p = \exp\left(-\int_{0}^{t} \lambda(\xi)d\xi\right),\tag{2}$$

где λ определяет интенсивность трещинообразования. Если считать, что интенсивность образования трещин подчиняется степенному закону, то имеем

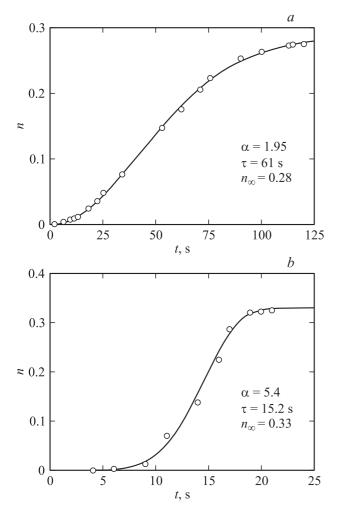
$$\lambda(\xi) = \frac{\alpha}{\tau} \, \xi^{\alpha - 1},\tag{3}$$

где α и τ — положительные параметры. С учетом (3) выражение (2) принимает вид

$$p = \exp(-(t/\tau)^{\alpha}). \tag{4}$$

В литературе выражение (4) известно как функция Кольрауша или растянутая экспонента и широко используется для описания релаксационных процессов в теориях стеклования, прочности, старения твердых материалов и др. Вероятность того, что до момента времени t на поверхности образца образуется хотя бы одна трещина

$$q = 1 - p = 1 - \exp(-(t/\tau)^{\alpha}).$$
 (5)


Данное выражение называется распределением Вейбулла [11]. Таким образом, относительная площадь всех трещин в момент времени t равна

$$n = n_{\infty} q = n_{\infty} \left[1 - \exp\left(-(t/\tau)^{\alpha}\right) \right], \tag{6}$$

где n_{∞} — равновесное (максимальное) значение относительной площади трещин при $t \to +\infty$. Используя (5), определим также среднее время трещинообразования:

$$\langle t \rangle = \int_{0}^{\infty} t \left(\frac{dq}{dt} \right) dt = \Gamma(1 + 1/\alpha)\tau,$$
 (7)

где $\Gamma(1+1/\alpha)$ — гамма-функция Эйлера.

Рис. 3. Зависмость относительной площади трещин в *por-*Si от времени. Кружки — эксперимент, сплошная кривая — формула (6).

Образование трещин на начальном этапе, когда количество микропор еще велико, приводит к нарушению целостности структуры и благоприятствует возникновению новых трещин. По мере дальнейшего образования трещин происходит схлопывание большего числа пор, избыточная поверхностная энергия постепенно уменьшается, структура por-Si сжимается и уплотняется. Начальный участок *s*-образной функции (6) приближенно описывается степенной функцией: $n \approx n_{\infty} (t/\tau)^{\alpha}$. Затем рост замедляется, проходит линейную фазу и через некоторое время практически останавливается. Отметим, что s-образные функции имеют принципиальное значение в синергетике, поскольку описывают различные процессы в экономике, биологии, гидродинамике турбулентных потоков, лазерной физике, кинетике химических реакций и др.

На рис. 3, a,b численные расчеты по формуле (6) сравниваются с экспериментальными данными. Параметры n_{∞} , τ и α находились методом наименьших квадратов. Среднее время образования трещин для исследуе-

мых образцов, рассчитанное по формуле (7), составило 54 и 14 с. Из наших экспериментов и теоретической модели следует, что увеличение толщины слоя *por-Si* приводит к существенному увеличению интенсивности растрескивания. Это связано с увеличением площади внутренней свободной поверхности и механических напряжений в слое *por-Si*. Кроме того, из толстого слоя *por-Si* происходит испарение большего количества ПАВ. При испарении образец заметно охлаждается, что, согласно выражению (1), также способствует растрескиванию.

4. Заключение

В настоящей работе электрохимическим способом были получены слои por-Si различной толщины. Проведены детальные исследования кинетики трещинообразования в слое por-Si. Исследования показали, что кинетика хорошо описывается s-образной кривой в виде распределения Вейбулла, которое играет важную роль в синергетике и теории фракталов. Интенсивность образования трещин сильно зависит от толщины пористого слоя, что связано с механическими напряжениями в этом слое. Для стабилизации пористой структуры необходимо применение органических ПАВ, снижающих поверхностную энергию por-Si.

Представляет большой интерес визуализация процесса растрескивания одновременно с измерением *in situ* спектров фотолюминесценции, но данная задача технически трудно реализуема.

Список литературы

- M.D. Mason, D.J. Sirbuly, S.K. Buratto. Thin Sol. Films, 406, 151 (2002).
- [2] W. Qiu, Y.-L. Kang, Q. Li, Zh.-K. Lei, Q.-H. Qin. Appl. Phys. Lett., 92, 041 906 (2008).
- [3] Д.Н. Горячев, Л.В. Беляков, О.М. Сресели. ФТП, 34 (9), 1130 (2000).
- [4] O. Bisi, S. Ossicini, L. Pavesi. Surf. Sci. Reports, 38, 1 (2000).
- [5] A.W. Adamson, A.P. Gast. *Physical chemistry of surface* (Toronto, A Wiley-Interscience Publication, 1997).
- [6] С.Ш. Рехвиашвили. Конденсированные среды и межфазные границы, **11** (3), 244 (2009).
- [7] Г. Хакен. Синергетика (М., Мир, 1980).
- [8] Г.Я. Красников, В.П. Бокарев. ДАН, 382 (2), 225 (2002).
- [9] Б.М. Булах, Н.Е. Корсунская, Л.Ю. Хоменкова, Т.Р. Старая, М.К. Шейнкман. ФТП, 40 (5). 614 (2006).
- [10] А.С. Леньшин, В.М. Кашкаров, С.Ю. Турищев, М.С. Смирнов, Э.П. Домашевская. Письма ЖТФ, **37** (17), 1 (2011).
- [11] Б.В. Гнеденко, Ю.К. Беляев, А.Д. Соловьев. Математические методы теории надежности (М., Наука, 1965).

Редактор Л.В. Беляков

Kinetics of cracks formation in porous silicon

D.S. Gaev, S.Sh. Rekhviashvili

Berbekov Kabardino-Balkar State University, 360004 Nal'chik, Russia

Abstract Experimental and theoretical study of the formation of cracks in porous silicon obtained by electrochemical method have been conducted. It was found that the kinetics of cracking is described by S-shaped Weibull distribution. This fact is apparently a general nature and can manifest itself in the formation of cracks in other solid porous materials.