Исследование структуры аморфной полупроводниковой системы As-Se релаксационными методами

© Р.А. Кастро[¶], В.А. Бордовский, Г.И. Грабко, Т.В. Татуревич

Российский государственный педагогический университет им. А.И. Герцена, 191186 Санкт-Петербург, Россия

(Получена 24 мая 2011 г. Принята к печати 1 июня 2011 г.)

Представлены результаты комплексного исследования релаксации темнового тока в длинновременной области МДМ структуры на основе тонкопленочной халькогенидной системы As—Se. Оценены значения параметров, характеризующих электронные процессы, происходящие в приконтактных слоях исследуемых соединений. Обнаружено совпадение природы механизмов проводимости и накопления заряда. Вычислена функция распределения времен релаксации и установлена ее структурная чувствительность к таким технологическим факторам, как изменение стехиометрии состава и способа изготовления экспериментальных образцов.

1. Введение

Проблема управления электронными свойствами аморфных пленок неупорядоченных материалов, в частности халькогенидных стеклообразных полупроводников (ХСП), является актуальной задачей физики конденсированного состояния. Одно из направлений решения данного вопроса связано с исследованиями влияния примесей различных металлов, а также отклонения от стехиометрии на проводимость ХСП, что обусловлено перспективностью получения гомогенных p-n-переходов на их основе [1–3]. С другой стороны, эта задача может решаться путем изучения воздействия модифицирования данных соединений (изменения атомной структуры при сохранении химического состава) на их физические свойства [4].

Энергетическое распределение локальных состояний, обусловленное наличием релаксаторов различной природы, оказывает значительное влияние на процесс поляризации, а также на кинетику этого процесса для многих классов веществ — полимеров, жидких диэлектриков, ХСП [5]. Данное обстоятельство обусловливает перспективность использования анализа особенностей тока изотермической релаксации в качестве метода выявления энергетической структуры локализованных центров. Одними из таких методов, достаточно часто используемыми в последнее время, являются: изучение эстафетного механизма переноса заряда в системах металл-диэлектрик-металл (МДМ) [6-8], а также расчет функции распределения времен релаксации (ФРВР) и характеристик, связанных с ней, для различных халькогенидных стеклообразных и аморфных полупроводников [9,10].

Последнее обстоятельство обусловлено тем, что для широкого класса ХСП выявлен недебаевский характер механизма дисперсии, связанный со спектром времен релаксации τ_i , что указывает на существование в этих материалах набора релаксаторов с различными временами релаксации.

Цель предлагаемой работы — исследование релаксационных свойств, а также спектра релаксаторов и энергетического распределения плотности заряженных дефектных состояний в аморфных слоях AsSe и в аморфных слоях As₂Se₃, приготовленных разными методами.

2. Методика эксперимента

Слои As₂Se₃, AsSe были изготовлены методом термического испарения (ТИ) в вакууме. Слои получались испарением размельченного порошка триселенида мышьяка соответствующего состава, засыпаемого в танталовую подложку открытого типа; давление остаточных газов составляло ~ 10⁻⁵ мм рт.ст. Помимо этого, для проведения эксперимента использовались аморфные слои As₂Se₃ (BЧ), которые изготавливались на установке ионно-плазменного высокочастотного распыления типа УРМ-3-021 на частоте электромагнитного поля 13.6 МГц, в атмосфере аргона при давлении 8 · 10⁻³ мм рт.ст. Толщина полученных пленок была ~ 1 мкм. В сандвич-структурах Al-As₂Se₃-Al, Al-AsSe-Al площадь перекрытия электродов составляла 14.0 мм². Поляризация аморфных слоев осуществлялась при использовании источника постоянного напряжения (U = 0.02 - 1 B), что позволяло создавать поля напряженностью $E = 10^2 - 10^4$ В/см. Температура исследуемых образцов менялась в пределах T = 294-344 K. Ток регистрировался с помощью электрометрического усилителя В7-30, самопишущего потенциометра ПДП-4, а также генератора сигналов специальной формы Г6-15, обеспечивающего напряжение развертки [8,10].

3. Результаты и обсуждение

3.1. Особенности механизма переноса заряда в исследуемых системах

Практически для всех типов пленок экспериментальные временные зависимости тока I(t), снятые как при

[¶] E-mail: recastro@fromru.com

разных *E*, так и при разных *T*, подчиняются гиперболическому закону: $I = At^{-n}$, что позволяет выделить две существенно разные фазы релаксационного процесса: быструю при $t < t_1$ ($t_1 \sim 10$ с) и медленную при $t > t_1$. Исключение составляют кривые изотермической токовой релаксации (ИТР) для AsSe. В этом случае начиная с $T \approx 314$ К временная зависимость тока описывается экспонентой (рис. 1).

Помимо этого, установлено, что кривые ИТР для всех типов пленок при увеличении температуры и кривые спада темнового тока для ВЧ-слоев, снятые при различных значениях напряженности электрического поля, прикладываемого к образцам, при росте E практически не изменяют угол наклона по отношению к осям координат. Вместе с тем тот же параметр для ТИ-пленок (как As₂Se₃, так и AsSe) при увеличении напряженности поля существенно меняется (рис. 2).

Рис. 1. Зависимости I(t) для AsSe при разных температурах *T*, K: I = 294, 2 = 304, 3 = 314, 4 = 324, 5 = 334, 6 = 344. $E = 10^3$ В/см.

Рис. 2. Кривые спада темнового тока для образцов As₂e₃ (ТИ) (*1*, *2*, *5*) и образцов As₂Se₃ (BЧ) (*3*, *4*, *6*) при значениях напряженности электрического поля $E = 6 \cdot 10^2$ (*1*, *3*), 10^3 (*2*, *4*), 10^4 B/см (*5*, *6*). T = 294 K.

Физика и техника полупроводников, 2011, том 45, вып. 12

Рис. 3. Зависимости n(E): I — As₂Se₃ (ТИ), 2 — As₂Se₃ (ВЧ), 3 — AsSe (ТИ). T = 294 К.

Еще одна особенность экспериментальных характеристик обнаруживается при рассмотрении влияния варьирования внешних параметров воздействия (E, T) и технологического фактора (способ изготовления образцов, отклонение от стехиометрии исходного состава) на закономерности изменения показателя степени *n* гиперболической зависимости спада темнового тока от времени: $I(t) = At^{-n}$.

Так, в частности, как следует из рис. 3, для исходного состава (As₂Se₃) исследуемой системы (As–Se) характеристики n(E) для ВЧ- и ТИ-слоев имеют противоположный характер. Если из экспериментальных кривых I(t), снятых при разных E, для ТИ-слоев следует спадающая экспоненциальная зависимость n от E (кривая I), то для ВЧ-слоев — возрастающаяся линейная кривая (2). Что касается того же параметра n в случае пленок, приготовленных с отклонением от стехиометрии исходного состава, то, согласно данным рис. 3 (кривая 3), для AsSe n флуктуирует около определенного постоянного значения (0.253–0.289).

Для дальнейшего рассмотрения особенностей релаксационного процесса представлялось интересным проанализировать более подробно длинновременную составляющую поляризационного тока $(t > t_1)$. Как было сказано выше, для этих целей в последнее время достаточно часто привлекается теория "эстафетного" механизма переноса заряда в системах металл—диэлектрик—металл [6–8].

Одним из основных положений данной модели [11] является то, что перенос инжектированных из контакта в образец носителей заряда происходит не через зону проводимости, а по локальным центрам, расположенным в запрещенной зоне полупроводника. В этой ситуации наличие потенциального барьера на границе коллекторный электрод-полупроводник приводит к накоплению значительного заряда в приконтактной области, влияющего на перенос носителей заряда.

В результате этого наблюдаются уменьшение тока во времени действия прикладываемого напряжения U, ги-

Рис. 4. a — кривые Q(t) для As₂Se₃ (BЧ) при $E = 10^3$ (1), 2 · 10³ (2), 4 · 10³ (3), 6 · 10³ (4), 8 · 10³ (5), 10⁴ B/см (6). b — зависимости величины заряда, накопленного за фиксированные промежутки времени действия поля, от значений тока, соответствующих концам этих промежутков, для образцов As₂Se₃ (BЧ) при $E = 2 · 10^3$ (1), 4 · 10³ (2), 6 · 10³ (3), 8 · 10³ (4), 10⁴ B/см (5).

стерезис вольт-амперных характеристик, специфические особенности зависимости заряда Q от величины тока $(Q \propto I^{1/2})$ в любой момент времени) и от t [11]:

$$Q = \frac{UC_k t}{(t + \tau_k)},\tag{1}$$

где C_k — электрическая емкость контакта, τ_k — характеристическая постоянная времени, равная

$$\tau_k = \frac{L^3}{\mu_3 d_k U},\tag{2}$$

L — толщина образца, μ_3 — эффективная подвижность заряда, переносимого через запрещенную зону, d_k — толщина, соответствующая емкости контакта.

Помимо этого, в [8], где с привлечением "эстафетного" механизма токопереноса изучалось воздействие легирующей добавки на релаксационные процессы в структурах, подобных исследуемым соединениям, было выяснено, что введение висмута значительно изменяет характеристики приповерхностной области аморфных слоев триселенида мышьяка, что в свою очередь существенно влияет на перенос носителей заряда.

В нашем случае для всех составов подобно результатам, предсказываемым теорией [11]: заряд (вычислявшийся по площади под кривой I(t)), аккумулируемый в контактном слое, в соответствии с формулой (1) вначале релаксационного процесса интенсивно увеличивался, а затем выходил на насыщение; величина Q была пропорциональна $I^{1/2}$ в любой момент времени (рис. 4, *a*, *b*). Так же, подобно полученным ранее данным [6–8], вследствие изменения тока во времени вольт-амперные характеристики исследованных структур обнаруживали гистерезис.

Линейность зависимостей $Q(I^{1/2})$ (рис. 4, b), позволяет определить значения тока отсечки I_0 (когда Q = 0) и заряда отсечки Q_0 (I = 0). По методике, описанной в [6–8,12], с использованием численных значений I_0 и Q_0 были рассчитаны физические величины, характеризующие релаксационные процессы, протекающие в прианодном слое при комнатной температуре: C_k , d_k , μ_3 , n_t — концентрация ловушек, ответственных за накопление заряда (см. таблицу, где значения C_k , d_k , μ_3 рассчитаны для $E = 10^3$ В/см).

Для определения влияния температуры T на длинновременную составляющую процесса поляризации на основе экспериментальных кривых ИТР были построены температурные зависимости проводимости (σ) и заряда (рис. 5), что позволило рассчитать соответствующие энергии активации ΔE_{σ} и ΔE_Q . Как следует из рис. 5, в образцах As₂Se₃ (ТИ) ход температурной зависимости Qповторяет ход $\sigma(T)$. При этом и Q(T), и $\sigma(T)$ подчиняются экспоненциальному закону $\propto \exp(-\Delta E_{\sigma,Q}/kT)$; при увеличении T наблюдается рост этих характеристик с энергией активации $\Delta E_{\sigma} \approx \Delta E_Q \approx 0.35$ эВ. Данные результаты говорят о совпадении природы механизмов

Слой	$C_k,$ $10^{-9}\Phi$	<i>d</i> _k , м	n_t , cm ⁻³	$N_{\rm F},$ $10^{18} { m cm}^{-3} \cdot { m 3B}^{-1}$	$\mu_3,$ $10^{-8} \mathrm{cm}^2 \cdot \mathrm{B}^{-1} \cdot \mathrm{c}^{-1}$
As ₂ Se ₃ (ВЧ) As ₂ Se ₃ (ТИ) AsSe (ТИ)	5.8 4.7 20	$\begin{array}{c} 2.1\cdot 10^{-7} \\ 2.6\cdot 10^{-7} \\ 6.2\cdot 10^{-8} \end{array}$	$\begin{array}{c} 8.1 \cdot 10^{15} \\ 5.4 \cdot 10^{15} \\ 6.6 \cdot 10^{16} \end{array}$	$ \begin{array}{r} 1.7-3.1 \\ 1.2-2.6 \\ 5.0-6.0 \end{array} $	1.77 9.4 3

Физические параметры, характеризующие электронные процессы

проводимости и накопления заряда [7,12] и об активационном характере этих процессов.

Дополнительным косвенным подтверждением сделанных выводов служит сравнительный анализ характеристической постоянной $\tau_k(2)$, по физическому смыслу представляющей собой время зарядки приконтактной области, и постоянной времени τ_e , определявшейся как время спадания величины тока в *e* раз. Как следует из рис. 6, полевые зависимости $\tau_k(E)$ и $\tau_e(E)$ для слоев As₂Se₃ (ТИ), по крайней мере качественно, хорошо согласуются друг с другом.

Из дальнейшего анализа полученных результатов следует, что значения энергии активации ΔE_{σ} , рассчитан-

Рис. 5. Температурные зависимости проводимости (1) и величины накопленного заряда (2) для пленок As₂Se₃ (ТИ) при $E = 10^3$ B/см и t = 100 с.

Рис. 6. Зависимости $\tau_k(E)$ и $\tau_e(E)$ для образцов As₂Se₃ (ТИ).

Рис. 7. Гистограммы значений энергии активации проводимости для различных стадий кинетики поляризационного процесса в ТИ-слоях: *I* — As₂Se₃, *2* — AsSe.

ные для различных стадий кинетики тока поляризации (рис. 7), являются максимальными на начальном этапе релаксационного процесса. Это свидетельствует об участии в образовании контактной емкости самых глубоких состояний. Помимо этого, на основании приведенных данных можно сделать вывод о прямой связи между изменением структуры исследуемых соединений, обусловленным отклонением от стехиометрии исходного состава (As–Se), и энергией активации проводимости поляризационного процесса.

Как следует из рис. 7, значения ΔE_{σ} повышаются при переходе от As₂Se₃ (0.35-0.5 эВ) к AsSe (0.57-0.66 эВ). Отклонение от стехиометрии приводит к увеличению дефектности исследуемой структуры — росту количества межцепочечных гомополярных связей As-As [13]. Наличие последних влияет на энергетический спектр ловушек. Переход от As₂Se₃ к AsSe сопровождается существенным изменением плотности локализованных состояний вблизи уровня Ферми N_F (в объемных областях данных составов) и концентрации ловушек n_t в приповерхностных слоях, а также значительным уменьшением подвижности μ_3 (см. таблицу). Последнее обстоятельство, скорее всего, обусловлено увеличением актов рекомбинации (связанных с увеличением как $N_{\rm F}$, так и n_t) при эстафетном режиме переноса носителей заряда через запрещенную зону по ловушкам (являющегося, по мнению авторов [11,12], основным механизмом проводимости, наблюдаемым в МДМ структурах на основе высокоомных полупроводников, для которых характерно наличие в запрещенной зоне локализованных центров с глубокими уровнями захвата).

Еще большие изменения подвижности наблюдаются при переходе от ВЧ-слоев ($\mu_3 \approx 1.77 \cdot 10^{-8} \text{ см}^2 \cdot \text{B}^{-1} \cdot \text{c}^{-1}$) к ТИ-слоям ($\mu_3 \approx 9.4 \cdot 10^{-8} \,\mathrm{cm}^2 \cdot \mathrm{B}^{-1} \cdot \mathrm{c}^{-1}$). Как известно, дрейфовая подвижность является структурно-чувствительным параметром, что позволяет связать наблюдаемые особенности данной характеристики со специфическими свойствами спектра локализованных состояний, присущими исследуемым составам. Согласно существующим представлениям [14], спектр локализованных состояний в ТИ-пленках содержит глубокие ловушки для электронов, что и обусловливает их дырочную проводимость; в противоположность этому в ВЧ-пленках установлен биполярный перенос носителей заряда, что может свидетельствовать об одинаковом распределении по энергиям ловушек для электронов и дырок, в качестве которых выступают заряженные дефекты $D^+, D^$ с отрицательной корреляционной энергией [15]. Более того, авторы работ [4,16] (изучавшие электрические и оптические свойства аморфных пленок As₂S₃, As₂Se₃, приготовленных методами термического испарения в вакууме и ионно-плазменного высокочастотного распыления) утверждают, что в отличие от ВЧ-слоев, для которых наблюдается совпадение величины дрейфовой подвижности электронов и дырок, в ТИ-образцах подвижность дырок значительно превосходит значение подвижности электронов (что характерно для большинства ХСП [3,15]).

С точки зрения авторов работы [4], причиной, обусловливающей специфические особенности электрических свойств ВЧ- и ТИ-слоев, наблюдавшиеся в [4,16], является наличие в основной матрице аморфной структуры включений с повышенным содержанием связей As-As, характерных для пленок, приготовленных способом ионно-плазменного высокочастотного распыления. Исходя из вышеизложенного вполне разумно предположить, что как n_t , так и N_F должны быть наибольшими в слоях, приготовленных с отклонением от стехиометрии исходного состава и, напротив, наименьшими в ТИпленках As₂Se₃, что и наблюдалось в наших экспериментах (ср. n_t , N_F для образцов всех типов).

Дополнительное подтверждение сделанных выводов обнаруживается при рассмотрении функции распределения времен релаксации (и характеристик, связанных с ней), используемой для дальнейшего анализа релаксационных процессов, происходящих в изучаемых структурах.

3.2. Спектр релаксаторов в исследуемых составах

Гиперболический характер спада экспериментальных кривых в пленках As_2Se_3 (ТИ, ВЧ) и AsSe указывает на отклонение от экспоненциального дебаевского

Рис. 8. ФРВР для образцов As_2Se_3 (ТИ) (1, 2) и As_2Se_3 (ВЧ) (3, 4). *T*, K: 1, 3 — 295; 2, 4 — 305. На вставке — температурная зависимость параметра распределения *b* в слоях As_2Se_3 (ТИ).

механизма дисперсии $I(t) \propto \exp(-t/\tau)$, что связано с существованием набора релаксаторов со спектром времен релаксации τ . Как было указано выше, данное обстоятельство позволяет описывать свойства изучаемых систем с помощью ФРВР, расчет которой производится на основе экспериментальных кривых I(t).

Величина ФРВР $H(\tau)$ вычисляется как [9]

$$H(\tau) = \frac{(I_g - I_e)\sin(\pi b/2)}{\pi [\cosh bu + \cos(\pi b/2)]},$$
(3)

где $u = \ln(\tau / \tau_0)$. Значения τ_0 и *b* определяются графически согласно уравнению

$$I(t) = I_e + \frac{I_g - I_e}{1 + (t/t_0)^b},$$
(4)

где I_e и I_g — экстремальные значения тока при больших (конечных) и малых (начальных) временах соответственно, t_0 и b — эмпирические постоянные, $t_0 \equiv \tau_0$.

На рис. 8 представлена ФРВР для As_2Se_3 (ТИ, ВЧ) при двух температурах. В рассмотренном температурном интервале для обоих составов наблюдается тенденция к расширению ("размазыванию") спектра времен релаксации с ростом *T*, но при этом имеется существенное различие. Если для ВЧ-слоев это расширение достаточно сильное, то для ТИ-слоев оно более плавное. Эта тенденция сохраняется во всем исследованном температурном диапазоне, что наглядно показывает линейная зависимость параметра распределения *b* от температуры в ТИ-пленках (см. вставку на рис. 8). Данные особенности ФРВР могут быть связаны с теми же отличиями в спектре локализованных состояний, характерными для образцов обоих типов, которые были описаны выше.

Функция распределения времен релаксации для As_2Se_3 (ТИ) и AsSe при комнатной температуре по логарифмической шкале времен приведена на рис. 9. Как

Рис. 9. Вид функции распределения времен релаксации для ТИ-слоев As_2Se_3 (1) и AsSe (2) при комнатной температуре.

следует из рисунка, ФРВР для AsSe (кривая 2) охватывает более широкий спектр значений, что также обусловлено особенностями распределения локализованных состояний, характерных для слоев системы As–Se.

4. Заключение

Таким образом, на основе полученных результатов можно сделать следующие выводы. Изменение состава и способа изготовления экспериментальных образцов исследованной системы ХСП Аs-Se сопровождается существенными преобразованиями в спектре локализованных состояний, определяющими процессы переноса и накопления заряда, что в значительной степени обусловлено появлением дополнительных связей As-As. Установлено, что основными механизмами релаксации являются: накопление носителей заряда в приэлектродной области и перенос носителей заряда по локализованным центрам. Обнаружено совпадение природы механизмов проводимости и накопления заряда. Особенности ФРВР выявляют ее структурную чувствительность к технологическим факторам, таким как способ изготовления образцов и изменение состава, что может быть использовано для дальнейшего исследования электронных свойств ХСП.

Список литературы

- Н.И. Калмыкова, Т.Ф. Мазец, Э.А. Сморгонская, К.Д. Цэндин. ФТП, 23 (2), 297 (1989).
- [2] В.Л. Аверьянов, Б.Т. Коломиец, В.М. Любин, О.Ю. Приходько. Письма ЖТФ, 6, 577 (1980).

- [3] Электронные явления в халькогенидных стеклообразных полупроводниках, под ред. К.Д. Цэндина. (СПб., Наука, 1996).
- [4] Sh.Sh. Sarsembinov, O.Yu. Prikhodko, A.P. Ryaguzov, S.Ya. Maksimova, V.Zh. Ushanov. Semicond. Sci. Technol., 19 (7), 787 (2004).
- [5] Г.А. Бордовский, Р.А. Кастро. Изв. РГПУ им. А.И. Герцена, 2 (4), 7 (2002).
- [6] С.Н. Мустафаева, С.Д. Мамедбейли, М.М. Асадов, И.А. Мамедбейли, К.М. Ахмедли. ФТП, **30** (12), 2154 (1996).
- [7] С.Н. Мустафаева, А.И. Гасанов. ФТТ, 46 (11), 1937 (2004).
- [8] Н.И. Анисимова, В.А. Бордовский, Г.И. Грабко, Р.А. Кастро. ФТП, 44 (8), 1038 (2010).
- [9] R.A. Castro, G.A. Bordovsky, V.A. Bordovsky, N.I. Anisimova. J. Non-Cryst. Sol., 352, 1560 (2006).
- [10] Р.А. Кастро, В.А. Бордовский, Н.И. Анисимова, Г.И. Грабко. ФТП, 43 (3), 382 (2009).
- [11] Б.Л. Тиман. ФТП, 7 (2), 225 (1973).
- [12] Б.Л. Тиман, А.П. Карпова. ФТП, 7 (2), 230 (1973).
- [13] N. Anisimova, V. Avanesyan, G. Bordovski, R. Castro, A. Nagaytsev. *Proc. VIII Int. Symp. Electrets* (Paris, 1994) p. 136.
- [14] В.И. Микла, Д.Г. Семак, И.П. Михалько. Изв. вузов. Сер. физ., № 5, 66 (1977).
- [15] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах (М., Мир, 1982).
- [16] Ш.Ш. Сарсембинов, О.Ю. Приходько, А.П. Рягузов, С.Я. Максимова, В.Ж. Ушанов. Сб. тр. IV Межд. конф. "Аморфные и микрокристаллические полупроводники" (СПб., 2004) с. 209.

Редактор Л.В. Шаронова

Investigation of structure of amorphous semiconductor system As–Se by relaxation methods

R.A. Castro, V.A. Bordovsky, G.I. Grabko, T.V. Taturevich

Herzen Russian State Pedagogical University, 191186 St. Petersburg, Russia